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Abstract

A functional similarity is described between cells of
an occupancy grid for robot sonar, and integrate-and-
fire neurons of an artificial neural net. Using this
analogy, a new grid-based mapping system for robot
sonar is described, which makes use of the neural con-
cepts of receptive fields and recurrent connections. The
performance of the new network is compared to that of
a previous Bayesian grid-based mapping method, and
a previous feature-based mapping method.

1 Introduction

There are certain situations for which it is useful
for a mobile robot to have a map of its environment.
Many techniques have been suggested for the construc-
tion, representation and use of such maps.

In the simplest cases, a map is constructed by a
human, digitised, and programmed into the robot. In
this case, the map is known to be accurate, and only
the robot’s position relative to the map needs to be
obtained by the robots sensors. However, this method
cannot be used in circumstances where no human-
constructed map was initially available, or in which
the environment changes with time. In such cases the
robot must construct the map itself, using its own sen-
sors.

For a robot with a sonar sensor, two methods of
map representation have been in common use up to
now. In grid-based representation [1], the two dimen-
sional space of the robot’s environment is overlaid with
a square grid. For each grid segment, a set of num-
bers is stored representing sensory information about
the contents of that grid segment in physical space.
In the simplest cases, known as certainty grid meth-
ods [2] [3], a single number is stored representing the
probability that the segment is occupied. In feature-
based representation [4] the map consists of a list of
physical features, such as walls and pillars, and the
positions of these features are represented by Carte-
sian coordinates.

Grid based representation has the advantage that a
grid map of free space is useful for path planning. Fur-
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thermore, the probabilistic nature of grid maps allows
them to represent uncertain information. By contrast
in a feature-based map, features are only added to the
map when their existence is known for certain. This
allows grid-based maps to be built up more quickly, as
it takes many sonar readings to confirm the existence
of a feature, but every sonar reading can be used to
update the probabilities stored in a grid-based map.

Cells of an certainty grid function similarly to neu-
rons in an artificial neural network. In the certainty
grid method, a single number is stored for each grid
segment, corresponding to the probability that the
segment is occupied. When a sonar reading suggests
the segment is occupied, this number is increased, and
when a sonar reading suggests the segment is free, this
number is decreased. If the number exceeds a thresh-
old, the segment is estimated to be occupied, other-
wise is it estimated to be free. A grid segment may
thus be described as a formal integrate-and-fire neu-
ron, with membrane potential corresponding to the
probability of occupancy, and firing occurring when
the segment is estimated to be occupied. Making the
analogy to neural networks allows us to use concepts
such as receptive fields and lateral connections, that
are familiar from the neural network and neuroscience
literature.

The derivation of the rules for updating the proba-
bilities stored in an certainty grid makes the assump-
tion that the occupancy probabilities of all cells are
independent. This assumption is, in general, not jus-
tified. Walls and empty spaces in the environment are
usually continuous, and, in man-made environments,
walls are usually straight. A simple grid-based ap-
proach does not make use of this prior information
about the environment. In this paper we present an
extension of grid based mapping in which we do not
assume the occupancy of grid segments is indepen-
dent. Lateral connections between the neurons for
neighbouring segments reinforce patterns likely to be
found in the environment, such as straight walls, and
inhibit patterns that are unlikely to be found, such as
random scatter.

2 The network

A robot can represent a map of space in either ego-
centric coordinates, meaning that the positions of fea-
tures are expressed relative to the robot, or in allocen-
tric coordinates, meaning that the positions of features
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Figure 1: The network architecture. Open arrows
indicate excitatory connections, filled arrows repre-
sent inhibitory connections. The network consists of
two sets of topographically arranged neurons, the free
space neurons and the line neurons. Both sets re-
ceive excitatory feed-forward input from sonar, and
there are excitatory and inhibitory recurrent connec-
tions between the neurons.

and of the robot are expressed in a fixed, world-centred
frame. Both types are in common use in robotics. In
this paper we use egocentric coordinates, inspired by
a previous neurobiological theory which proposes that
an egocentric representation is used in the brain [5].
The space surrounding the robot is divided into a
10 centimeter square grid, and for each grid segment
there are several neurons, coding for different types of
features in the environment. The neurons are there-
fore topographically arranged, with each neuron rep-
resenting the presence of a preset feature type in a
preset region of egocentric space. When we refer to
the “position” of a neuron, we mean the position of its
underlying grid segment in egocentric space. The neu-
rons have feed-forward inputs derived from the sonar
sensor, and recurrent inputs coming from other neu-
rons. All neurons are of integrate and fire type, with
a membrane potential z;, binary output y;, and feed-
forward input z; obeying the following equation:

zi(t+1) = zi(t) + 2 + Zwijyj(t)

yi(t) = 6(171 - 1.0)

The weights w;; of the recurrent connections are
fixed, and do not learn. Map information is stored in
the activation pattern of the neurons, rather than in
the synaptic weights. The integrate and fire type neu-
rons allow sonar input to be accumulated over several
time steps, and therefore from several different robot
positions. Note that in this model the integrated mem-
brane potential does not passively decay. All neurons
have a fixed threshold of 1.0 and no bias. This thresh-
old is sufficiently high so that on average many inputs
are required to make the neuron active.

Figure 1 shows a schematic diagram of the network
described here. The network consists of two types of
neurons. For each egocentric grid segment there is a
free space neuron, and a set of line neurons. The firing
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Figure 2: Receptive fields of various neurons. The fig-
ures show the excitatory input to the neuron due to a
single sonar return, as a function of sonar beam reflec-
tion position. The letter “R” denotes the position of
the robot. The square mesh has a 10cm spacing. A)
Receptive field of the line neuron for the grid segment
1m east of the robot with north-south orientation. B)
Receptive field of the line neuron for the grid segment
1.5m east of the robot with north-south orientation.
C) Receptive field of the line neuron for the grid seg-
ment 1m east of the robot with northwest-southeast
orientation. D) Receptive field of the free space neu-
ron for the grid segment 1m east of the robot.

of a free space neuron signals that the corresponding
region of egocentric space is unoccupied. For each grid
segment there are 16 line neurons, parametrised by a
preferred orientation which ranges from 0° to 180°.
The firing of a line neuron signals that a straight wall
of the correct orientation passes through the grid seg-
ment. The encoding of the orientation of features in
the environment is consistent with the many forms of
edge coding cells that have been found in the visual
system of animals, except that in this model they are
encoding the egocentric location of the walls in the en-
vironment, instead of the retinotopic location of edges
in a visual scene.

The external input z; of a neuron is calculated as
follows. The neuron receives an excitatory input for
every sonar return, and the inputs from all the sonar
returns are added to produce the total input for the
neuron. For a given sonar return, the strength of input
the neuron receives depends on the position of the
sonar reflection point in robot-centred space, the type
of neuron, and its position in the grid (and orientation
for line neurons). Example graphs of input strength
versus reflection point position are shown in figure 2
for various neurons. A given neuron’s input is close
to zero except in a certain region of space. Following
the neuroscience literature, we will call this region the
receptive field of the neuron. For a line neuron, the
receptive field is elongated, directed along the neurons
preferred orientation. The exact formula for the input
is a product:



Zline = Cli'n.e X Fpos X Fang X FRCF

Cline is a constant, equal to 0.5 for the simulations
described below. Fj,, is a positional factor which gives
the receptive fields their oblong shape. It is given by
a double Gaussian:

ooy = e (B0r /2030, 48200y 207, )

where dp,, is the distance of the sonar reflection
point from the line neuron position in the direction
parallel with the neuron’s orientation, dperp is the dis-
tance of the sonar reflection point from the line neuron
position in the direction perpendicular to the neuron’s
orientation, and ope, and operp are constant distances
equal to 300mm and 40mm respectively.

Fyang is an angular factor,to take into account the
fact that sonar is preferentially reflected perpendic-
ularly from specular walls by increasing the input of
those line segments whose orientation is perpendicular
to the reflected sonar beam. It is given by a Gaussian:

Fang = e~ 007 /207

where A# is the angular difference between the
sonar beam angle and a perpendicular to the neurons
orientation, and w is the sonar beam half-width, 15°.

Freor is a range confidence factor [6], whose pur-
pose is to reduce the contribution of long range read-
ings, which are more likely to be specular. It has the
form

) k
returning_range
Freor = <1 - )

maz_detect_range X range_weight

where returning_range is the measured length
of the sonar beam, maz_detect_range is the maxi-
mum measurable length (2.53m for our sensor), and
range_weight and k are constants equal to 1.1 and 0.8
respectively (values given in [6].

Figure 2a shows the input strength as a function
of sonar reflection position, to a neuron from a grid
segment 1m to the east of the robot with orientation
in the north-south direction. Figure 2b shows the in-
put to a neuron 1.5m to the east of the robot, with
the same orientation. The overall strength of input to
this neuron is lower, due to the range confidence fac-
tor. Figure 2c shows the input strength to a neuron
from the same grid segment as that in figure 2a, but
oriented at a 45° angle. This neuron also has a lower
overall input strength than the neuron of figure 2a,
due to the angular factor.

The length of a line neuron receptive field is much
greater than the grid size. The line neurons therefore
perform line detection in a similar manner to a Hough
transform. For a given wall in the environment, sonar
beams will be reflected from many points along the
wall, all lying in a straight line, and will therefore give
a large input to a line neuron whose orientation is
collinear with the wall.

For a free space neuron, the receptive field consists
the region of space from which the sonar beam would
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Figure 3: This figure illustrates the recurrent connec-
tions between neurons. A) A line neuron is connected
to all line neurons for grid segments within its recep-
tive field. If the two line neurons have the same ori-
entation, the connection is excitatory, otherwise it is
inhibitory. B) A line neuron inhibits all free space neu-
rons in its receptive field, and is reciprocally inhibited
by them.

not have been reflected if the the part of space the neu-
ron corresponds to was occupied. This region consists
of all points which are further away from the robot
than the neuron, and whose bearing from the robot
is less than one sonar beam width different from the
neurons bearing. The strength of the input is given

by:

Zfs :Cf.s XFpos x Fror

where Cy, is a constant equal to 0.2, Frorp is as
above, and Fp,, is a positional factor given by

Fpos =1 — A¢? Jw®

where A¢ is the angular difference between the
sonar beam and the bearing to the neuron, and w is
the beam half-width as above. An example of a free
space neurons receptive field is shown in figure 2d.

The recurrent connections of the network are sum-
marised in figure 3. A line neuron is connected to all
other line neurons lying in a rectangular box the size
of its receptive field (size 20pqr X 20perp). If the sec-
ond neuron has the same orientation, tfle connection
is excitatory, with weight 0.01. If the second neu-
ron has a different orientation, it is inhibitory, with
weight —0.02. The aim of these connections is to en-
force collinearity of line segments corresponding to a
single wall in the environment. A line neuron also in-
hibits with weight —0.3 all free space neurons lying
in its receptive field, and receives an inhibitory con-
nection from them of weight —0.2. The aim of these
connections is ensure that specular reflections do not
cause line neurons to erroneously fire in unoccupied
regions, or free space neurons to erroneously fire in
occupied regions.

At each time-step, a sonar scan is taken, the feed-
forward inputs are calculated, and the membrane po-
tential of the neurons are updated. Any neurons which



exceed their threshold will fire. The recurrent connec-
tions are then activated once, and a map is output on
the basis of the neural firing pattern. The robot then
makes a movement. After movement, the entire neural
activation pattern, including sub-threshold potentials,
is shifted through the distance the robot has moved,
so it remains in an egocentric coordinate system. A
new time-step then begins.

When the robot is initially placed in an environ-
ment all of the neurons have membrane potential zero.
The initial sonar scan provides sub-threshold inputs
to several neurons in the network. When the robot
moves, this potential is transferred to the neurons cor-
responding to the new egocentric position of the fea-
tures that caused the initial sub-threshold potential,
by the shifting mechanism just described. A second
scan receiving reflections from the same features will
activate these same neurons, allowing sonar informa-
tion from several viewpoints to be integrated.

3 Experimental Verification

We tested the above map-making system with sonar
data collected from a mobile robot. The robot, ARNE,
which was used to gather the data, has a 25 cm diam-
eter circular base, and two wheels which allow it to
move forward or backward, and rotate on the spot.
ARNE’s wheels are equipped with shaft encoders that
provide a measure of the distance moved and the rota-
tion angle of a turn. ARNE has a single sonar sensor
on a motorised pivot, which is used for obstacle avoid-
ance during movement.

In order to asses the performance of our model in
comparison to other methods, we also implemented a
Bayesian grid based mapping system. We found that
the grid based methods of Elfes [1], Moravec [2], and
Cho [3] performed poorly on sonar data collected from
our robot due to specular reflection from smooth wood
walls in the environment. We therefore implemented
the method of Lim and Cho [6], which was designed to
overcome the problems of specular reflection. In this
method, one number is stored for every grid segment
that corresponds to the probability of occupancy of
the segment. Also a set of numbers are stored that
correspond to the orientation probabilities of the seg-
ment, given that the segment is occupied. For the pa-
rameter C (unspecified in [6], we used the value 0.001,
as we found this gave best results. In order to produce
output that is visually comparable to that produced
by our model, we thresholded the occupancy probabil-
ities. If a segment has occupancy probability less than
0.3, it is judged to be empty, if it has occupancy proba-
bility greater that 0.7, it is judged occupied, otherwise
it is marked unknown. Occupied cells were drawn on
the output maps as line segments, with orientation
given by the maximum of the orientation probability
stored for the segment.

We also compared the performance of our model
to that of the model of Lee and Recce [7], [8]. In
this system, a non-probabilistic grid-based map is used
to represent free space, but the position of walls in
the environment is represented by sets of Cartesian
coordinates for their endpoints.

We tested the three models on identical copies of
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Figure 4: The environment used to collect sonar data.
The environment contains a mix of specular and non-
specular surfaces.

sonar data collected from several runs in several dif-
ferent environments. Figure 5 shows the maps pro-
duced 10 and 30 time-steps into a run in the environ-
ment shown in figure 4. During the data collection
runs, the robot followed a simple wall following strat-
egy [7], maintaining a distance of 35cm between itself
and the wall on its right. During each time-step the
robot attempted to move one length along the wall.
It stopped short of this full length step if an obstacle
was detected in its path. The location of the robot at
each of the time steps is shown by an unfilled circle in
figure 5. After each movement ARNE makes a sonar
range scan, taking measurements every 18°. The max-
imum sonar range measurement is 2.5 metres, which
is shorter than the length of the environment.

By 10 time-steps, all 3 systems produced a par-
tial map of the environment, and by 30 time-steps,
they produced a fairly complete map. The neural
and Bayesian methods produce broadly similar maps.
However, the effect of the lateral connections can be
seen in the neural method. For example there is a
greater coherence and collinearity of line segments
that correspond to walls. Also in the Bayesian method
there are incorrectly identified line segments in the
middle of free space regions (see figure 5), that would
cause the robot to make unneeded detours, and could
make free space regions unreachable.

The feature based method is slightly slower than
the other two at accumulating a map, but is the
most accurate at representing the positions of the
walls. This is because of its non-probabilistic nature,
whereby it must be sure of the existence of a feature
before adding it to the map. For example, even by
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Figure 5: The maps produced by the neural method described in this paper, the Bayesian method of [6], and the
feature based method of [7], from the same sonar data, after 10 and 30 time-steps. Open circles represent areas
of space marked as free, and line segments or lines represent walls. The filled circle represents the robot position.

time 30, this method has not detected the cardboard
box or smooth plaster wall. Note that the smaller
size of the free space area with this method is due to a
“safety zone” of one robot diameter placed around the
walls by the mapping software, rather than a failure
to detect free space.

4 Discussion

In this paper, we described functional similarities
between grid-based maps for robot sonar and artificial
neural networks. Making use of this analogy, we pro-
posed a new grid based mapping system making use
of the neural concepts of receptive fields and lateral
connections. Neurons with elongated receptive fields
detect sonar beam returns corresponding to straight
walls in a similar manner to a Hough transform. The
lateral connections in the network are designed to re-
inforce maps that represent configurations likely to oc-
cur in the world, like straight walls, and inhibit con-
figurations unlikely to occur, such as random scatter.

The line orientation receptive fields used in the
model are consistent with the experimentally observed
properties of neurons in the visual pathway. Further-
more cells have been found in the temporal cortex

which maintain the memory of an object through sus-
tained activity [9], similarly to the way cells in our
network continue to code for features even when they
are further from the robot than the maximum sonar
range. Previous models [10];[11] have described neu-
ral mechanisms by which an entire neural activation
pattern can be shifted to remain in egocentric coordi-
nates after movement. This shift of activity pattern is
the equivalent of dead-reckoning in egocentric coordi-
nates. In the current implementation we simply shift
the array of membrane potentials with a loop. Imple-
menting a neural mechanism for this shift would make
the network more biologically realistic but it would
not contribute to its performance as an engineering
method for guiding the navigation of a robot.

We compared the new network to an established
grid-based mapping system, and to a feature-based
mapping system, and found that the representation
of walls by line segments is more coherent in the new
neural method than in the Bayesian method, and that
both the neural and Bayesian methods were faster at
building a map than the feature based method. Quan-
titative measures across a range of environments are
required to more completely differentiate the perfor-




mance of these methods (Harris and Recce, in prep).

The new method is based on the use of a single
layer of neurons, and if implemented on parallel neural
hardware, the map would updated one computational
time-step after the presentation of the new sensory
input.

The current model represents only the first step in
neural-based sonar mapping. The real strength of neu-
ral networks is their ability to learn using real world
data. The net we described here, however, has fixed
weights, and a large number of parameters whose val-
ues were not systematically optimised. Future work
will aim to incorporate learning into neural sonar map-
ping algorithms, and thereby reduce the number of
free parameters. However, even without learning, the
neural method described here produces results com-
parable with a leading Bayesian method.
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