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Abstract

We present an on-line strategy that enables a mobile robot with vision to
explore an unknown simple polygon. We prove that the resulting tour is less
than 26.5 times as long as the shortest watchman tour that could be computed
off-line.

Our analysis is doubly founded on a novel geometric structure called the
angle hull. This structure is presented in Part II of this paper [13].
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1 Introduction

In the last decade, the path planning problem of autonomous mobile systems has

received a lot of attention in the communities of robotics, computational geometry,

and on-line algorithms; see e. g. Rao et al. [17], Blum et al. [4], and the upcoming

surveys by Mitchell [15] in Sack and Urrutia [18] and by Berman [3] in Fiat and

Woeginger [10]. We are interested in strategies that are correct, in that the robot

will accomplish its mission whenever this is possible, and in performance guarantees

that allow us to relate the robot’s cost to the cost of an optimal off-line solution or

to other complexity measures of the scene.

In this work we are addressing a basic problem in this area. Suppose a mobile

robot has to explore an unknown environment modeled by a simple polygon. The
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robot starts from a given point, s, on the polygon’s boundary. It is equipped with a

vision system that continuously provides the visibility of the robot’s current position.

When each point of the polygon has at least once been visible, the robot returns to s.1

In the on-line polygon exploration problem we ask for a competitive exploration

strategy that guarantees that the robot’s path will never exceed in length a constant

competitive factor times the length of the optimum watchman tour through s, i. e.,

of the shortest tour inside the polygon that contains s and has the property that

each point of the polygon is visible from some point of the tour. This approach to

evaluating the performance of an on-line strategy goes back to Sleator and Tarjan [19].

A priori it is not clear whether a competitive exploration strategy exists.

Even the off-line version of the polygon exploration problem is not easy. Here

we are given a simple polygon and have to compute the optimum watchman tour

through a specified boundary point, s. Initially this problem has been suspected to

be NP-hard. Chin and Ntafos [7] were the first to provide a polynomial time solution.

They have shown how to compute the optimum watchman tour in time O(n4), where

n denotes the number of vertices of the polygon. Later, their result has been improved

on to O(n2) by Tan and Hirata [20].

Carlsson et al. [6] have proven that the optimum watchman tour without a speci-

fied point s can be computed in time O(n3). Furthermore, Carlsson and Jonsson [5]

proposed an O(n6) algorithm for computing the shortest path inside a simple polygon

from which each point of the boundary is visible, when start and end points are not

specified. In these papers it is always assumed that the range of the robot’s visibility

is unbounded. Some authors have also studied the case of limited visibility, e. g. Arkin

et al. [2] and Ntafos [16].

As to the on-line version of the polygon exploration problem, Deng et al. [8] were

the first to claim that a competitive strategy does exist. In their seminal paper they

discussed a subproblem, incurring a competitive factor of 2016. For the rectilinear

case, they gave a complete, and elegant, proof in [9]; here a simple greedy strategy

can be applied that performs surprisingly well.

The first proof for the more difficult case of non-rectilinear simple polygons has

been given in our conference paper [11]. There we have provided an on-line exploration

strategy and sketched a proof that the tour it generates in any polygon is shorter than

133 times the length of the optimum watchman tour. One of the main difficulties with

this analysis was in establishing reasonably sharp length estimates for robot paths of

complex structure, and in relating them to the optimum watchman tour.

1In the absence of holes, the robot has seen each point inside the polygon as soon as it has seen
each point on its boundary.
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The present paper contains the first complete presentation and analysis of an ex-

ploration strategy for simple polygons. As compared to the conference version [11],

this full paper has been greatly simplified, and describes a new analysis that is built on

an interesting geometric relation between the robot’s path and the optimum watch-

man tour. This relation is expressed in terms of the angle hull, a novel geometric

structure introduced in Part II of this paper [13]. With these improvements we are

able to show that an unknown polygon can be explored, from a given boundary point,

s, by a tour at most 26.5 times as long as the shortest watchman tour containing s.

To be a little more precise, our former exploration strategy was based on a certain

subdivision of the polygon into subpolygons called rooms. The robot had to explore

these rooms one by one; but in doing so it would often enter neighbouring rooms.

This made for a complicated and lossful analysis. The strategy presented in this

paper avoids this difficulty. Rather than rooms, it uses groups of vertices that are

naturally related to the robot’s behaviour. As a consequence, local exploration paths

can now be charged more easily to the local parts explored.

Our analysis greatly benefits from a new geometric structure we propose to call

the angle hull. Let D be a simple polygon contained in another simple polygon, P .

Then the angle hull, AH(D), of D consists of all points in P that can see two points

of D at an angle of 90◦; see Figure 1. The boundary of AH(D) can be described as

the path of a diligent photographer who uses a 90◦ angle lens and wants to take a

picture of D that shows as large a portion of D as possible but no walls of P . Before

taking the picture, the photographer walks around D, in order to inspect all possible

viewpoints.

AH(D)

P

D

Figure 1: The angle hull AH(D) with respect to a polygon P .

How long is the photographer’s path in terms of the perimeter of her model, D?

The following upper bound plays a crucial role in our analysis.
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Theorem 1 Let P be a simple polygon containing a simple polygon D. The arc

length of the boundary of the angle hull, AH(D), with respect to P is less than 2

times the length of D’s boundary. This bound is tight.

Since the angle hull is independent of the robot exploration strategy, and inter-

esting in its own right, we are discussing it separately in Part II of this paper [13];

there we will prove Theorem 1.

The organization of Part I is as follows. Section 2 contains a hierarchical descrip-

tion of the strategy and of its analysis. In Section 2.1 we first discuss how to explore

a single corner, that is, a single reflex2 vertex one of whose adjacent edges has not yet

been visible. The robot explores these corners in a sophisticated order: Of all reflex

vertices that touch the visible area from the right the robot attempts to explore the

one that is clockwise first on the polygon’s boundary, as seen from the starting point,

s. However, the vertex hereby specified may change as the robot moves. From The-

orem 1 we obtain a bound to the length of the resulting path in terms of the length

of the shortest path that leads to the final position.

Then, in Section 2.2, we use this technique for efficiently exploring groups of right

reflex vertices in clockwise order. The length of the resulting local tour is shown to

be bounded by the perimeter of the relative convex hull3 (= RCH) of certain base

points, times a constant.

In Section 2.3 we show how the robot recursively detects, and explores, an ex-

haustive system of groups of right and left reflex vertices. Groups of vertices that

are on sufficiently different recursive levels give rise to base point sets whose RCHs

are mutually invisible. Therefore, the sum of their hull’s perimeters is less than the

perimeter of the RCH of their union. Since all base points are contained in the angle

hull of the optimum watchman tour, Wopt, the perimeter of their RCH must be less

than the perimeter of the RCH of AH(Wopt), which in turn can only be less or equal

to the perimeter of AH(Wopt) itself. Now we can apply Theorem 1 a second time

and obtain an upper bound to the total length of all local exploration tours in terms

of the length of Wopt.

2 The strategy and its analysis

Let P be a simple polygon and let s be a point on its boundary. The shortest path

tree of s consists of all shortest paths from s to the vertices of P . Its internal nodes

are reflex vertices of P . Those vertices touching a shortest path from the right are

2A reflex vertex is one whose internal angle exceeds 180◦.
3The relative convex hull, RCH(D), of a subset D of a polygon P is the smallest subset of P that

contains D and, for any two points of D, the shortest path in P connecting them.
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called right reflex vertices, left reflex vertices are defined accordingly. If we follow

the shortest path from s to reflex vertex v, one of its adjacent polygon edges remains

invisible until v is actually reached. The extension into the polygon of this invisible

edge is called a cut of P with respect to s.

Exploring a polygon P is equivalent to visiting all of its cuts with respect to the

start point s. Figure 2 shows an example of the optimum watchman tour, Wopt, con-

taining a boundary point, s. Tan and Hirata [20] have provided an off-line algorithm

for computing Wopt within time O(n2), for a polygon of n edges.

s

Wopt

Figure 2: The optimum watchman tour visits all cuts of the polygon.

We say a vertex has been discovered after it has been visible at least once from

the robot’s current position. A vertex is unexplored as long as its cut has not been

reached, and fully explored thereafter.

In an unknown polygon, even exploring a single reflex vertex requires a little care.

For example, one cannot afford to go straight to the vertex in order to get to its cut:

The cut could be passing by the start point very closely, so that a much shorter path

would be optimal.

We avoid this difficulty as follows. Whenever the robot wants to explore a right

reflex vertex, r, visible from some local start point, p, it approaches r along the

clockwise oriented circle spanned4 by p and by r, denoted by circ (p, r). Consequently,

when the robot reaches the cut of r at some point c, the ratio of the length of the

circular arc from p to c over their euclidean distance is bounded by π
2
≈ 1.57.

4By the circle spanned by two points, a and b, we mean the smallest circle that contains these
points.
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One might wonder if the subproblem of exploring a single vertex can be solved

more efficiently by using curves other than circular arcs. This is, in fact, the case;

Icking et al. [14] have shown that an optimum ratio of ≈ 1.212 is achieved by curves

that result from solving certain differential equations. However, these curves are

lacking a useful property possessed by circular arcs: The intersection point, c, of the

circular arc with the cut is just the point on the cut closest to p, due to Thales’

theorem. This property turns out to be very helpful in our analysis.

In rectilinear polygons, the cut of each visible reflex vertex is known, and two

cuts can cross only perpendicularly. This makes it possible to apply a simple greedy

exploration strategy: The robot always walks to the cut of the next reflex vertex in

clockwise order one of whose edges is invisible; see Deng et al. [9].

For general polygons, this greedy approach is bound to fail, as Figure 3 illustrates.

The example polygon shown there suggests exploring left and right reflex vertices

separately. However, it is not really obvious how to do this in general, since e. g. the

existence of a left reflex vertex at the end of a long chain of right vertices is initially

not known to the robot. Therefore, it seems necessary to partition left and right reflex

vertices into compact groups that can be explored one by one.

s

Figure 3: Visiting cuts in the order in which their vertices appear on the boundary

does not lead to a competitive strategy.
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2.1 Exploring a single vertex

The essential subtask of the robot’s strategy is in exploring a single vertex. This is

handled by the following procedure ExploreRightVertex.

procedure ExploreRightVertex ( inout TargetList, inout ToDoList );

BasePoint := CP;

Target := First (TargetList);

if Target not visible then

walk on shortest path from BasePoint to Target

until Target becomes visible;

Back := last vertex before CP on shortest path from BasePoint to CP;

walk clockwise along circ (Back, Target)

while maintaining TargetList and ToDoList

whenever First (TargetList) changes let Target := First (TargetList);

whenever Back becomes invisible update Back;

exceptions for walking along the circle:

if the boundary of P blocks the walk on the current circle then

walk clockwise along the boundary

until the circular walk is again possible;

if Target is becoming invisible then

walk towards Target

until the blocking vertex is reached;

until Target is fully explored;

end ExploreRightVertex;

Procedure ExploreRightVertex works on two lists of vertices, TargetList and

ToDoList. On entry, TargetList contains a list of right vertices, sorted in clockwise

order along the boundary, that have already been discovered but not yet explored.

When ExploreRightVertex is called for the very first time, TargetList contains exactly

those right vertices that are visible from the start point, s, and have an invisible edge.

ToDoList can be thought of as a long-term agenda that is passed to ExploreRight-

Vertex; however, this procedure will only add to this list but not carry out one of the

tasks listed.

We are using the abbreviation CP to denote the robot’s current position. In

our pseudocode, CP is a global variable whose value can be changed only by walk

statements. The robot’s current position on calling ExploreRightVertex is called a

base point.
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The robot wants to explore the first vertex, Target, of TargetList. This vertex

may have been discovered at an earlier stage, so that it may no longer be visible from

the current position. In this case, the robot walks along the shortest path towards

Target until it becomes visible again; note that this shortest path is in fact known to

the robot.

Now the robot starts approaching Target along the circular arc spanned by the

base point and by Target. On the way, a new right vertex, r, may be discovered. If

one of its edges is invisible, r gets inserted into TargetList, provided that a certain

criterion is met. Namely, the shortest path from the current stage point—a vertex

defined one level up in the strategy—to r must not contain left turns. A right vertex

that violates this criterion is ignored for now. A precise definition of a stage point is

given in Section 2.2.

It may happen that the vertex r newly discovered and inserted into TargetList

comes before Target in clockwise order. In this case the robot ceases approaching

its old target and starts exploring, from its current position, vertex r. This way, the

vertex Target currently under exploration may repeatedly change.

It may also happen that the robot loses sight of the base point from which the

current execution of procedure ExploreRightVertex has started. In this case, the

exploration of the current Target no longer proceeds along the circle spanned by the

base point and by Target; instead, it switches to the circle spanned by Target and

by the last vertex on the shortest path from the base point to the current position,

excluding CP itself. In the code, this vertex is named Back.

If the robot crosses the cut of a right vertex different from Target the former vertex

is removed from TargetList because it has been explored by the way. Eventually, the

target itself is deleted from the list when its cut has been reached.

When a right reflex vertex is explored, all of its children in the shortest path tree

have already been discovered. Those right vertices having a left child are inserted

into ToDoList, as candidates for future stages, together with references to their left

children.

Finally, there are some exceptional events procedure ExploreRightVertex needs to

take care of. If the robot’s circular exploration path hits the boundary of the polygon,

the robot follows the boundary until a circular path again becomes possible. If the

robot’s view of the target vertex is about to be blocked, the robot walks straight to

the blocking vertex and continues from there on a circular path.

For ease of reference we summarize the rules by which ExploreRightVertex pro-

ceeds.

1. The current target vertex, i. e., the vertex whose cut we are intending to reach

at the moment, is always the clockwise first among those right reflex vertices
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that have been discovered but not yet fully explored, i. e., the first element of

TargetList. Only such right vertices can be in TargetList whose shortest paths

from the stage point make only right turns.

2. To explore a right reflex vertex, r, we follow the clockwise oriented circle spanned

by r and by the last vertex before CP on the shortest path from the base point

to CP.

3. When the view to the current target vertex gets blocked (or when the boundary

is hit) we walk straight towards the target (or follow the boundary) until motion

according to rule 2 becomes possible again.

Figure 4 demonstrates how this strategy works. Initially, r3 is the only right vertex

visible; consequently, TargetList contains only r3, and the robot’s path begins with a

circular arc spanned by s and by r3. At point a, right vertex r2 becomes visible. It

is situated before r3 on the boundary; therefore, the robot switches to exploring r2,

according to rule 1. Note that the circle spanned by s and by r2 is passing through a,

too, so that it is in fact possible to apply rule 2 at this point.

h

t
d

c

e

s

r2

R

r3

l

f

E

a

r1

b

Figure 4: While executing ExploreRightVertex, the target vertex is initially r3, then

changes to r2 and finally to r1.

At point b, vertex r2 would become invisible if the robot were to follow the circular

arc. But now rule 3 applies, causing the robot to walk straight to the left reflex

vertex l. From there, a circular motion is again possible; but the shortest path from s
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to CP now contains vertex l. By rule 2, the robot continues its approach to r2 along

the arc spanned by l and by r2.

Notice that at vertex l, also the right vertex h becomes visible, but it is ignored

because its shortest path from s makes a left turn at l.

From c on, the shortest path to s is the line segment. Since the circle spanned by s

and by r2 is passing through c the robot has no difficulties in applying rule 2. At d,

the shortest path to s changes again; now it contains vertex r3. The robot changes its

path accordingly and gets to point e from which vertex r1 becomes visible. From here,

the robot explores r1. Its path follows the circle spanned by r3 and by r1, the former

changing to r2 at f . Eventually, the robot arrives at r1, thereby fully exploring r1.

Here procedure ExploreRightVertex terminates.

Now we provide an upper bound to the length of the resulting path. The crucial

observation is the following.

Lemma 2 Suppose procedure ExploreRightVertex terminates with the robot reaching

the cut of target vertex r1 at point c. Then the robot’s path is part of the boundary

of the angle hull AH(R) of the shortest path, R, from the base point to r1, except for

straight line segments leading to blocking vertices. Furthermore, point c is the point

of the cut closest to the base point.

Proof. Let t be a point on the robot’s path that is not contained on a straight line

segment. Assume that, at t, the robot is exploring right reflex vertex r2, as in the

example shown in Figure 4. Since r2 and r1 are in convex position relative to the base

point, vertex r2 lies on the shortest path, R, from the base point to r1.

Now consider the shortest path, T , from the stage point to t. As a consequence

of rule 2 and by Thales’ theorem, the last line segment, E, of T is perpendicular to

the line through t and r2. Since the backward prolongation of E is bound to hit R,

we know that point t can see two points of R at a right angle. Thus, t belongs to the

angle hull AH(R); it lies on the boundary because the angle’s sides are both touching

path R. 2

To estimate the length of the path from the base point to the cut we make use of

Theorem 1.

Lemma 3 The robot’s path from the base point to the cut of the target vertex explored

by procedure ExploreRightVertex is not longer than twice the length of the shortest

path.

Proof. If the robot’s path contains straight line segments leading to blocking vertices,

like the segment from b to l in Figure 4, these segments are replaced with circular arcs

in the angle hull AH(R). Thus, the robot’s path to the cut of r1 cannot be longer
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than the angle hull’s perimeter. If it ends at the point r1 itself, as in Figure 4, we can

apply Theorem 1 to the shortest path as D and obtain the desired upper bound.

If the robot reaches the cut of r1 at some point different from r1, we can arrive at

the same conclusion using the corollary to Theorem 1 that is stated in Part II of this

paper [13]. 2

It is important to note that procedure ExploreRightVertex ignores such vertices

as h in Figure 4, whose shortest paths from the current stage point include left turns.

Otherwise, it would not be clear how to apply Lemma 2.

There is a symmetric procedure ExploreLeftVertex which is identical to Explore-

RightVertex, except that left/right, and clockwise/counterclockwise are exchanged.

2.2 Exploring a group of vertices

Each exploration of a group of vertices starts from a stage point. The importance

of stage points lies in the fact that they are visited by the optimum watchman tour,

Wopt, too. The first stage point encountered is the robot’s start point, s. All stage

points are vertices of the shortest path tree of s; the shortest path from s to any

vertex of a group leads through the group’s stage point.

The exploration of a group of right vertices is performed by procedure Explore-

RightGroup.

procedure ExploreRightGroup ( in TargetList, out ToDoList );

StagePoint := CP;

ToDoList := empty list;

while TargetList is not empty do

ExploreRightVertex (TargetList, ToDoList );

(* CP is now on the cut, C, of the last target. *)

walk to closest point to StagePoint on C

while maintaining TargetList and ToDoList;

walk on the shortest path back to StagePoint;

end ExploreRightGroup;

The stage point of a right group is always a left vertex. Initially, ToDoList is empty,

whereas TargetList contains a sorted list of unexplored right vertices whose shortest

path from the base point makes only right turns. Among them are all unexplored

right vertices visible from StagePoint.
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Roughly, the group exploration proceeds by repeatedly calling procedure Explore-

RightVertex introduced in Section 2.1 until TargetList becomes empty. Afterwards,

all right vertices initially present in TargetList have been explored, together with

their purely right descendants in the shortest path tree of s.5 This set of vertices

constitutes a group, by definition.

On returning from a call to ExploreRightVertex the robot has just explored the

clockwise first vertex of TargetList and is now situated of this vertex’ cut. Before it

continues, the robot walks along this cut to the point closest to the stage point; this

will be the base point in the next execution of ExploreRightVertex. The reason for

this step will become clear in the proof of Lemma 6; essentially, it keeps the robot

closer to the optimum watchman tour.

Once the last vertex of TargetList has been explored, the robot walks back to the

stage point, thus completing the exploration of the group. Now ToDoList contains,

of all right vertices explored, those who have left children, together with references to

the latter.

For an example, see Figure 5. Point s is the stage point and also the first base

point, and ExploreRightVertex is called with First (TargetList) = r6. While explor-

ing r6, point r1 is discovered at point a and becomes First (TargetList). At CP = b

procedure ExploreRightVertex returns. Meanwhile, r2 and r5 have been added to

TargetList while r1 and r6 have been removed. Point b is also the closest point to s

on the current cut.

a

b

r6
r5

r4

r3

r2

c

r1

s

Figure 5: Exploring a group of right vertices.

5Vertex w is called a purely right descendant of vertex v in the shortest path tree of s if w is a
right vertex and if the path from v to w makes only right turns.
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As we continue with exploring First (TargetList) = r2, point r5 gets explored by

the way. Once the cut of r2 is reached, we walk to c, the closest point to s on the

cut. Similar for r3; while walking along the cut to the point closest to s, which is r3

itself, r4 gets explored and no unexplored right vertices remain.

As before with ExploreRightVertex, for ExploreRightGroup we also have a sym-

metric counterpart, ExploreLeftGroup.

First we prove a useful structural result.

Lemma 4 Suppose that procedure ExploreRightGroup generates the base points

b1, . . . , bm in m consecutive calls of subroutine ExploreRightVertex. Then the shortest

paths from the stage point to b1, . . . , bm are in clockwise order.

Proof. Let base point bi be situated on the cut of right reflex vertex vi. Since

each call to ExploreRightVertex explores the clockwise first right vertex that is still

unexplored, v1, . . . , vm appear in clockwise order on the boundary. The stage point

must be situated below the cuts of vi and vi+1 as these are unexplored right vertices.

The same holds for the last point, p, the shortest paths from the stage point to bi

and bi+1 have in common. Moreover, bi must be below the cut of vi+1 because the

latter is still unexplored when the robot reaches bi; see Figure 6. Since neither of

the shortest paths nor the cut between vi and bi can be penetrated by the polygon’s

boundary, the claim follows. 2

vi

vi+1bi+1

bi

p

Figure 6: As seen from p, the shortest path to bi runs to the left of the shortest path

to bi+1.
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Now we turn to analyzing the length of the path the robot spends on exploring a

group of vertices.

Lemma 5 The robot’s path between two consecutive base points is at most 3 times

as long as the shortest path.

Proof. Let us call the base points b1 and b2, and let c be the point where cut(v2) is

reached. Then c is also the cut’s closest point to b1, by Lemma 2. By Lemma 3, the

robot’s path to c is not longer than twice the length of the shortest path from b1 to c

and therefore is also not longer than twice the length of the shortest path from b1

to b2, see Figure 7.

s

b1

cut(v2) c b2 v2

Figure 7: Line segment c b2 must be shorter than the shortest path from b1 to b2.

It remains to account for the walk along the cut from c to b2. This line segment

can be orthogonally projected onto the shortest path from b1 to b2 and, therefore, it

must be shorter.

Observe that Figure 7 is in fact generic: As seen from s, the shortest path to b1

runs to the left to the shortest path to b2, by Lemma 4; base point b1 must be located

below the cut of v2; the shortest paths from b1 to c and from s to b2 cannot cross

because they are both shortest paths to this cut. 2

The next steps consist in comparing the length of a ExploreRightGroup tour with

the relative convex hull of the base points visited.

Lemma 6 The length of a path caused by a call to ExploreRightGroup does not

exceed 3
√

2 times the perimeter of the relative convex hull of the base points visited.

Proof. Let sp be the stage point and sp = b0, . . . , bm−1, bm = sp the sequence of

base points visited by ExploreRightGroup. Due to Lemma 4, b1, . . . , bm−1 appear in
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clockwise order as leaves of the shortest path tree from sp to b1, . . . , bm−1. So, even

factor 3 of Lemma 5 would apply if all base points bi were vertices of their relative

convex hull, RCH, in P .

Suppose that for i ≤ k− 2 the base points bi and bk are situated on the boundary

of RCH and the points bi+1, . . . , bk−1 in between are not. The shortest path from sp

to the cut of each of them must have a right angle to the cut because of Lemma 2;

see Figure 8.

bk

sp

bj−1

bj

rj

rj+1

bj+1

bi

rj−1

b′j

b′j+1

Figure 8: The cut of vertex rj containing the base point bj must not intersect the

shortest path from sp to bj−1.

For i < j < k, if base point bj were too close to sp then its cut would intersect

every possible path from s to bj−1, in particular the robot’s path, contradicting the

fact that vertex rj is explored after rj−1. Therefore, the cut of bj must pass above bj−1.

While maintaining these properties, we move the base points one after the other

such that the path bi, . . . , bk becomes even longer. For all vertices v of this path,

starting with bk−1 and going back to bi+1, we do the following. If the path makes a

left turn at v, like at bj+1 in Figure 8, then we move v to the point on the shortest

path from sp to v’s successor such that the left turn is a right angle, see b′j+1. Note

that every left turn must be an obtuse angle which again is due to the fact that the

cut of bj must pass above bj−1. In case of a right turn we do nothing. Eventually, we

end up with a path whose left turns are all right angles.

Now a maximal sequence of right turns, in the example the chain from bi to b′j+1,

can be replaced by one left turn of 90◦ which is clearly longer than the chain, see b′j
and the rectangle with vertices bi, b′j , and b′j+1. Finally, no right turn remains and

the new path makes only one left turn of 90◦ for which the claim is obvious. 2
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In relating the robot’s path to the optimum watchman tour, the following lemma

is crucial.

Lemma 7 All base points are contained in the angle hull AH(Wopt).

Proof. A base point b is, by definition, the closest point to s of a cut. The optimum

watchman tour Wopt connects the start point s to the cut. Let E be the last edge of

the shortest path from s to the cut, i. e. to b, as in procedure ExploreRightVertex.

In most cases, edge E is orthogonal to the cut. Then we have a right angle at b

whose one side goes along the cut and touches Wopt, while the other side K extends

edge E. Either the other endpoint of E equals s, so that K touches Wopt in s, or K

separates s and the cut, and Wopt must also be touched by K.

In the remaining case, when there is no right angle between edge E and the cut,

point b must be one endpoint of the cut, i. e., it is the target vertex itself or the

other endpoint. By similar arguments there is an angle of > 90◦ both of whose sides

touch Wopt. 2

2.3 Subdividing the polygon

Now we want to combine the exploration of several groups of vertices to finally explore

the whole polygon P . This is done by making the ExploreGroup-procedures recursive.

procedure ExploreRightGroupRec ( in TargetList );

ExploreRightGroup (TargetList, ToDoList ); (* ToDoList gets filled in. *)

Clean up ToDoList:

retain only those right vertices in ToDoList

which are highest up in the shortest path tree;

for all vertices v of ToDoList in clockwise order do

walk on the shortest path to v; (* connect stage points *)

ExploreLeftGroupRec( {all known left descendants of v in counterclw. order} );

end ExploreRightGroupRec;

The task of ExploreRightGroupRec is to explore, from the current position CP,

all vertices in the input parameter TargetList and everything behind.

ExploreRightGroupRec performs in three steps. The TargetList is handed over

to ExploreRightGroup, so CP is the new stage point, and after the exploration we

are back at this point. We are given a ToDoList of candidates for stage points in

recursive explorations.

The next step is a necessary cleanup for the ToDoList, which contains all purely

right descendants of the current stage point which have left children. Some of these
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right vertices are descendants of others in this list, they must be removed from the list.

Only maximal (highest up) right vertices are retained, these will become stage points

in further steps. To each of these future stage points we associate a list of all known

left descendants that were referenced in ExploreRightVertex and ExploreRightGroup.

Finally, the remaining vertices in ToDoList are visited in clockwise order, at each

vertex procedure ExploreLeftGroupRec is called to explore the list of all known left

descendants (as TargetList) from there. ExploreLeftGroupRec is the symmetric coun-

terpart of ExploreRightGroupRec with one particularity. In the for loop, the vertices

in ToDoList are also visited in clockwise order. The reason for this will become clear

in the proof of Theorem 11.

To conclude the bottom-up presentation of our strategy, we show the main pro-

gram. Its task is, of course, to explore a given polygon, P , starting at a boundary

point, s. First, in a call to the non-recursive ExploreRightGroup, the right vertices

visible from s are explored. The next target list contains all left children of the right

vertices just explored and the left vertices visible from s. All these, and everyting

behind, gets explored by a call to the recursive ExploreLeftGroupRec with this target

list.

procedure ExplorePolygon ( in P , in s );

ExploreRightGroup ( {clockwise list of all right vertices visible from s}, ToDoList );

TargetList := {all left children of the vertices of ToDoList};
Add all left vertices visible from s into TargetList and sort counterclockwise;

ExploreLeftGroupRec ( TargetList );

end ExplorePolygon;

Each call of ExploreRightGroup or ExploreLeftGroup generates a set of base

points, the first base point of the set is the stage point. For estimating the length of

the complete tour, we distribute all these sets into three categories.

The set of base points generated by the call of ExploreRightGroup in Explore-

Polygon belongs to category 0. For the remaining sets, we use their level of recursion

to determine their category: the set of base points generated by a call of ExploreRight-

Group or ExploreLeftGroup at total recursion depth i belongs to category (i mod 3).

For example, the very first call of ExploreLeftGroup belongs to category 1, and

the calls of ExploreRightGroup one level deeper belong to category 2. All calls of

ExploreLeftGroup have an odd level, and all calls of ExploreRightGroup an even

level.
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A key observation is the following.

Lemma 8 The relative convex hulls of two sets of base points of the same category

are mutually invisible, with a possible exception for their stage points.

Proof. The recursion depths of two sets of base points, B1 and B2, of the same

category differ by a multiple of 3, possibly 0, as explained above. Let s1 6= s2 be

the stage points of B1 resp. B2. We distinguish two cases depending on the shortest

paths from s to s1 and s2.

If stage point s1 is not on the shortest path from s to s2 and vice versa then let s0

be the vertex where the shortest paths from s to s1 and s2 separate. W. l. o. g. we

assume that s2 is a left vertex and that the clockwise order on the boundary is s0, s1,

s2. The left picture in Figure 9 shows such a situation.

s2

s0

s1

B2

s

B1

s

B2

s1

B1

s2

Figure 9: Base points in B2 can’t see B1, two cases.

The base points of B2 are on cuts of right vertices whose shortest paths from s0 all

pass through s2. Therefore, the shortest path from s0 to s2 is invisible from any point

of B2, except s2. But this shortest path separates B2 from B1, they are therefore

mutually invisible, except for s1 and s2. This argument easily extends to the convex

hulls as well.

Otherwise assume that s1 lies on the shortest path from s to s2. Then the recursion

depths of B1 and B2 differ by at least three, see the right picture in Figure 9. Similar

to the previous case, no point of B2 can see the shortest path from s2 to its parent

stage point, but this path definitely separates B1 and B2.
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Note that a difference of three levels is really necessary. If B2 is only two levels

deeper than B1 then the stage points s1 and s2 are of the same type and the parent

stage point of s2 can be a direct descendant of s1, and therefore it can very well be

contained in RCH(B1). 2

As a consequence, we conclude that the union of all base points of one category

has no shorter perimeter than the perimeters of all of its sets of base points together.

Let per(RCH(A)) denote the perimeter of the relative convex hull of set A.

Lemma 9 Let B1 and B2 be two sets of base points of the same category. Then we

have per(RCH(B1)) + per(RCH(B2)) ≤ per(RCH(B1 ∪ B2)).

As a consequence, we can estimate the path length caused by all calls of Explore-

RightGroup or ExploreLeftGroup in the same category.

Lemma 10 The path length caused by all calls of ExploreRightGroup and Explore-

LeftGroup in one category is less than 6
√

2 ≤ 8.5 times the length of Wopt.

Proof. Let the category consist of sets Bi, i = 1, . . . , of base points. By Lemma 6,

the length of the path created by one call of ExploreRightGroup or ExploreLeftGroup

with set Bi is not greater than 3
√

2 per(RCH(Bi)).

The relative convex hulls RCH(Bi) are mutually invisible (Lemma 8), hence we

conclude from Lemma 9 for the path length, L, caused by all calls of ExploreRight-

Group or ExploreLeftGroup of this category

L ≤ 3
√

2
∑

i

per(RCH(Bi)) ≤ 3
√

2 per(RCH(
⋃

i

Bi)).

All base points considered are contained in the angle hull of Wopt, as Lemma 7 has

shown, hence the perimeter of their relative convex hull is shorter than the perimeter

of RCH(AH(Wopt)).

The perimeter of RCH(AH(Wopt)) is not longer than the perimeter of the angle

hull of Wopt itself. By Theorem 1 this is not greater than twice the length of Wopt

and the claim follows. 2

As the main result for our complete strategy, we obtain a factor of 26.5.

Theorem 11 For a polygon, P , and a start point s on the boundary of P , a procedure

call ExplorePolygon (P, s) explores the polygon and returns to s. The total path length

used is less than (18
√

2 + 1) ≤ 26.5 times the length of the optimum watchman tour

from s.

Proof. Since we have three categories of base point sets, all ExploreRightGroup and

ExploreLeftGroup calls together cause a path length of less than 3 · 6√2|Wopt|.
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It remains to bound the path length caused by the walks during the for loops of

ExploreRightGroupRec and ExploreLeftGroupRec. They only connect stage points

by shortest paths, and all those stage points are visited in clockwise order along the

boundary of P , independently of whether this is done in ExploreRightGroupRec or

ExploreLeftGroupRec.

But all stage points are also visited by Wopt in the same order. Therefore, we

can be sure that all those walks together make up for an additional path length of at

most |Wopt|. 2

3 Conclusions

We have seen that a combination of suitable analysis techniques is necessary for

proving an upper bound for the competitive factor of a rather simple strategy. Still,

we believe that its actual performance, even in the worst case, is considerably better

than the proven bound. Establishing a lower bound for polygon exploration, higher

than the trivial (1 +
√

2)/2 ≈ 1.207, and closing the gap to the upper bound, seem

to be challenging problems.

There are many interesting variations and generalizations of the polygon explo-

ration problem. For example, one could study different cost models for the robot’s

motion. Also, the case of polygons with holes deserves investigation. Here the off-

line problem becomes NP-hard, by reduction from the traveling salesperson problem.

Recently, Albers et al. [1] have shown that in a rectilinear environment no better com-

petitive factor than O(
√

k) can be achieved for the on-line problem in the presence

of k rectilinear holes, what was known before only for general polygons.
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