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Abstract

Let D be a connected region inside a simple polygon, P . We define the
angle hull of D, AH(D), to be the set of all points in P that can see two
points of D at a right angle. We show that the perimeter of AH(D) cannot
exceed in length the perimeter of D by more than a factor of 2. This upper
bound is tight. Our result can be generalized to angles different from 90◦,
and to settings where region D is surrounded by obstacles other than a
simple polygon.
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1 Introduction

In on-line navigation algorithms for autonomous robots, analyzing the length of
the robot’s path is often a complicated issue. Sometimes, only the discovery of
certain structural properties has lead to a reasonably sharp analysis; see [1, 4, 5, 6]
and Rote [7].

In this paper we provide a new result of this type. It is crucial in analyzing
the performance of an on-line strategy for exploring unknown simple polygons
presented in Part I of this paper [3]. Yet, the hull construction presented here is
independent of the exploration problem, and it seems to be interesting in its own
right.

Let D be a bounded, connected region in the plane. For convenience, we shall
assume that D is a simple polygon; but our results can easily be generalized to
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curved objects by approximation. Now suppose that a photographer wants to
take a picture of D that shows as large a portion of D as possible, but neither
white space nor obstacle walls. The photographer is using a fixed angle lens. For
now, we assume that the angle equals 90◦; later, in Section 5, we show how to
generalize to arbitrary angles.

Before taking the picture, the diligent photographer walks around D and
inspects all possible viewpoints. We are interested in comparing the length of the
photographer’s path to the “extension” of the object, D.

In the simple outdoor setting there are no obstacles that can obstruct the
photographer’s view of D; this situation is depicted in Figure 1. At each point

AH(D)

D

Figure 1: Drawing the angle hull AH(D) of a region D.

of the path, the two sides of the lens’ angle touch the boundary of D from the
outside, in general at a single vertex each. Only such vertices can be touched
that are situated on the convex hull of D. Consequently, the photographer’s path
depends on the convex hull, CH(D), of D, rather than on D itself.

While the right angle is touching two vertices, v and w, of D, its apex describes
a circular arc spanned1 by v and w, as follows from Thales’ theorem.

1The smallest circle containing two points, v and w, is called the circle spanned by v and w.
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All points enclosed by the photographer’s path, and no other, can see two
points of D at a 90◦ angle; we call this point set the angle hull of D and denote
it by AH(D).

More complicated is the indoor setting where D is contained in a simple
polygon P whose edges give rise to visibility constraints. The photographer does
not want any wall segments to appear in the picture; thus, the viewing angle can
now be constrained in different ways: Either side may touch a convex vertex of D
that is included in the angle, as before; or it may touch a reflex vertex2 of P that
is excluded; see Figure 2. Any combination of these cases is possible.

AH(D)

P

D

Figure 2: The angle hull AH(D) inside a polygon P .

As a consequence, the photographer’s path contains circular arcs spanned by
vertices of D and of P ; in addition, it may contain segments of edges of P that
prevent the photographer from stepping back far enough; see Figure 2.

Formally, we define the angle hull, AH(D), of D with respect to P to be the
set of all points of P that can see two points of D at a right angle. Its boundary
equals the photographer’s path.

In the indoor setting, the angle hull AH(D) depends only on the relative
convex hull,3 RCH(D), of D. We are interested in an upper bound to the length
of the photographer’s path around D in terms of the length of the perimeter of
RCH(D).

In Section 2 we show that, in the indoor setting, the angle hull may have
twice the perimeter of D, in the limit. Then, in Section 3, we prove that this
is the worst that can happen: the angle hull’s perimeter cannot exceed twice

2A vertex of a polygon is called reflex if its internal angle exceeds 180◦, as opposed to convex.
3The relative convex hull of a subset D of a polygon P , RCH(D), is the smallest subset of P

that contains D and, for any two points of D, the shortest path in P connecting them; see the
dotted line in Figure 2.
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the perimeter of the relative convex hull. This remains true if we have several
obstacles instead of one surrounding polygon. For the outdoor setting an even
smaller bound of π/2, which is also tight, can be established in Section 4. In
Section 5 we show how to generalize these bounds to angles different from 90◦.

As a spin-off result we obtain a tight upper bound to the length of a graph, G,
of a non-negative real valued function f satisfying f(0) = 0, f(1) = 0, in terms
of the minimum angle with apex on G whose sides intersect with the X-axis but
not with G.

Finally, we mention some open problems concerning the functorial properties
of the angle hull constructor.

2 The lower bound

We start with the proof that the angle hull of a set D contained in a polygon P
can be twice as long as the perimeter of D. Our construction is rather simple, D
is a line segment and P is a jagged halfcircle.

Lemma 1 Let ε > 0. There is a polygon, P , and a relatively convex region, D,

inside P , for which the boundary of the angle hull AH(D) with respect to P is

longer than 2 − ε times the boundary of D.

Proof. As our region D, we take a horizontal line segment of length 1. Let p0,
. . . , pn be equidistant points on the halfcircle spanned by D, where p0 and pn are
the endpoints of D; see Figure 3. From each point pi we draw the right angle to
the endpoints of D. Let P be the concatenation of the upper envelope of these
angles and its reflection at D. Then we have P = AH(D) by construction. Let
us analyze the upper envelope.

We will show that the length of the jagged line from p0 to pn is less than 2,
but comes arbitrarily close to 2, as n increases. Let qi be the intersection of the
segments p0 pi+1 and pi pn. If we rotate, for all i, the ascending segments qi pi+1

about p0 onto D, see the dotted arcs in Figure 3, these segments cover disjoint
pieces of D, so the total length of all ascending segments is always less than 1.
By symmetry, the same bound holds for the descending segments. It remains to
show that the ascending length can come arbitrarily close to 1.

Consider the triangle pi qi p
′
i, where p′i is the orthogonal projection of pi onto

p0 qi. Point p0 is closer to p′i than to pi, so for the distances from p0 to pi and
to qi we have

|p0 qi| − |p0 pi| ≤ |p0 qi| − |p0 p′i| = |p′i qi| = |pi qi| sin π

2n
.

The total length of all ascending segments is therefore 1 minus the following rest.
∑

i

(|p0 qi| − |p0 pi|) ≤ sin
π

2n

∑
i

|pi qi| ≤ sin
π

2n
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Figure 3: The boundary of the upper envelope of the right angles is less than 2|D|.

For n → ∞, this tends to 0. The last inequality holds because
∑

i |pi qi| ≤ 1 is
the length of all descending segments. 2

The proof also works for non-equidistant points as long as the maximum
distance between subsequent points tends to 0. We are obliged to R. Seidel [8]
for this elegant proof of Lemma 1.

3 The upper bound

Interestingly, the same jagged lines as used in the proof of Lemma 1 are also very
useful in the proof of the upper bound. For any circular arc C we can construct
a jagged line by distributing auxiliary points along C and by taking the upper
envelope of the right angles at these points whose sides pass through the two
spanning vertices of C; see Figure 4. We denote with jagged length, J(C), of C
the limit of the lengths of these jagged lines as the maximum distance between
subsequent points tends to 0. This limit is well-defined, i. e., it does not depend
on how the points are chosen. In the proof of Lemma 1 we have already seen how
to determine this length by separately estimating the lengths of the ascending
and descending segments. For the jagged length of a circular arc with diameter 1
from angle α to angle β, see Figure 4, we obtain analogously to the proof of
Lemma 1

J(C) = sin β − sin α − cos β + cos α

which can also be written as

J(C) =

β∫
α

(cos γ + sin γ) dγ .

5



C

1

γβ

sin γ

cos γ

α

Figure 4: Analyzing the jagged length, J(C), of a circular arc C.

Lemma 2 The jagged length of an arc is always greater than the arc length

itself.

Proof. Consider a circle with diameter d and a circular arc a on its boundary.
Two lines from an arbitrary point on the boundary through the endpoints of the
arc always intersect in the same angle φ, by the generalized Thales’ theorem. For
the length of a, we have |a| = φd; see Figure 5.

a

2φ
φ

φ
d

Figure 5: |a| = φd.

So the arc length of the arc C in Figure 4 equals β − α, and we have

J(C) =

β∫
α

(cos γ + sin γ) dγ ≥
β∫

α

1 dγ = β − α ,

the inequality follows from cos γ + sin γ ≥ 1 for γ ∈ [0, π
2
]. 2
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The integral form for the jagged length also has a geometric interpretation.
Let us consider a right angle with slope γ contained in the halfcircle, as shown
in Figure 4. The length of the two sides of the right angle equals cos γ + sin γ. If
we define

Cγ :=




length of the right angle if its apex is contained in C

0 otherwise

we obtain the nice form

J(C) =

π
2∫

0

Cγ dγ .

This form is used in the proof of the next lemma.

Lemma 3 Let D be a line segment, and let P be a surrounding polygon such

that P and the angle hull AH(D) with respect to P touch only in some of P ’s

vertices; see Figure 6. Then the arc length of AH(D) with respect to P from one

endpoint of D to the other is less than 2|D|.

P

γ

B

D

Figure 6: For a line segment D we have J(AH(D)) = J(B) = 2|D|.

Proof. By Lemma 2, the arc length of AH(D) is certainly shorter than the
jagged length of AH(D), i. e., the sum of the jagged lengths of all circular arcs
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of AH(D), and we obtain

length(AH(D)) ≤ J(AH(D)) =
∑

C∈AH(D)

J(C)

=
∑

C∈AH(D)

π
2∫

0

Cγ dγ =

π
2∫

0


 ∑

C∈AH(D)

Cγ


 dγ .

But for any angle γ the sum over the lengths of the right angles of slope γ
which are contained in the halfcircles of the different circular arcs of AH(D) is
equal to the length, Bγ , of the big right angle in the halfcircle B spanned by the
two endpoints of D, which means that

π
2∫

0


 ∑

C∈AH(D)

Cγ


 dγ =

π
2∫

0

Bγ dγ = J(B) = 2|D| .

2

Note that in the proof of Lemma 3 the halfcircle B does not depend on P and
J(AH(D)) = J(B) therefore means that the jagged lengths of the angle hulls
of D for different surrounding polygons P are all identical! We may also say
that we have bounded the length of the angle hull with respect to a surrounding
polygon P by the jagged length of the angle hull without obstacles.

Lemma 4 The statement of Lemma 3 remains true if D is a convex chain

instead of a line segment.

Proof. We consider a convex chain, D, and a surrounding polygon, P , such
that P and the angle hull AH(D) with respect to P touch only in some of P ’s
vertices.

We make a construction similar to the proof of Lemma 3. For an angle γ we
find the tangent to D with that slope. Starting with the touching vertex we go
into direction γ until we hit an arc of the angle hull, then we turn by a right angle
and go to the vertex of P (or D) that co-spans the current arc. Here we turn back
to the original direction and continue accordingly to obtain a connected chain of
right angles, see Figure 7.

This chain has the same length as the two sides of the “unfolded” big right
angle of slope γ which generates the angle hull without obstacles. As before, this
shows that the jagged length of the angle hull does not depend on P .

Now it is not difficult to see how long it really is. Consider the set of halfcircles
spanned by the segments of D. Analogouly to the previous construction, we can
construct the chain of right angles of slope γ below these halfcircles which again
has the same length. But these right angles represent the jagged lengths of the
isolated segments, and each of them equals twice the length of the segment, by
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AH(D)

D

P

γ

Figure 7: Three chains of right angles which are all of the same length.

Lemma 3. Therefore the total length of the angle hull of D is less than twice the
length of D. 2

To obtain our main result we need to consider an arbitrary surrounding poly-
gon P that influences the angle hull not only with acute reflex vertices but also
with its edges.

Theorem 1 Let P be a simple polygon containing a relatively convex polygon D.

The arc length of the boundary of the angle hull, AH(D), with respect to P is

less than 2 times the length of D’s boundary. This bound is tight.

The bound also holds if there are several obstacles instead of P that influence

the angle hull and also if their boundaries consist of arbitrary curves.

Proof. Each convex chain of D can be treated separately because the angle hull
must pass through the reflex vertices of D.

First, we consider the angle hull AH1(D) with respect to only the vertices
of P as obstacle points. Its arc length is less than 2|D|, by Lemma 4.

Now also the edges come into play. The angle hull AH2(D) with respect to
the whole of P contains circular arcs and some pieces of P ’s edges, for an example
see Figure 2. The circular arcs of AH2(D) are also part of AH1(D).

For every piece of an edge which contributes to AH2(D), the piece’s two
endpoints are also on the boundary AH1(D). Therefore, AH2(D) can only be
shorter than AH1(D).
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The bound is tight by Lemma 1.
The proof easily generalizes to the case of several obstacles around D that

influence the angle hull instead of P . In fact, we have never really used the fact
that the parts of P that are touching the angle hull are connected by edges of P .
And if we have several obstacles, we can always connect them to a single one by
edges which do not influence the angle hull.

The proof carries over to arbitrary curves by approximation of these curves
with polygons. 2

The following variation of Theorem 1 for an “incomplete angle hull” is used
for analyzing the exploration strategy in Part I of this paper [3].

Corollary 1 Consider a convex chain, D, from s to t and its angle hull from s

to some point g. The jagged length of this part of the angle hull is bounded by

twice the length of the shortest path around D from s to g.

Proof. Let m be the last segment of D and let α be the angle between m and
the last segment of the shortest path from s to g; see Figure 8.

D

m

L
m cos α

s

g

tα

Figure 8: The cut of r1 is reached at point g.

The jagged length of the angle hull from g to t equals m(1 + sin α − cos α).
The path, L, from the base point to g can therefore be estimated in the following
way, using Theorem 1.

L ≤ 2|D| − m(1 + sin α − cos α)

= 2(|D| − m + m cos α) + m(1 − cos α − sin α)

≤ 2(|D| − m + m cos α)

The last inequality holds because of 0 ≤ α ≤ π
2
. But |D|−m+m cosα is exactly

the length of the shortest path from the base point to g. 2
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4 The angle hull in the plane

For the sake of completeness we now consider the outdoor setting, i. e., when
the photographer’s path and the visibility is not obstructed by a surrounding
polygon. Here we get a smaller ratio between the angle hull and the perimeter
of D.

Lemma 5 For a convex polygon, D, the boundary of its angle hull, AH(D), is

at most π
2

times longer than the boundary of D.

Proof. As described before, the boundary of AH(D) is the locus of the apex of
a right angle which is rotated around D while the angle’s two sides touch D from
the outside. It consists of circular arcs, each one spanned by two vertices of D.

Consider a circle with diameter d and a circular arc a on its boundary. Two
lines passing through the endpoints of the arc and an arbitrary third point on
the boundary always intersect in the same angle α, by the “generalized Thales’
theorem”. For the length of a, we have |a| = αd.

As we have seen in the proof of Lemma 2 and Figure 5, the length of one such
circular arc of AH(D), a, is the distance between the two spanning vertices, d,
times the angle, α, by which the right angle rotates to generate a; see Figure 9.

d

α

a

D

AH(D)

e1
e2

e4

Figure 9: The length of arc a equals αd ≤ α(|e1|+ · · ·+ |e4|); edge e2 contributes

only to the arcs above the horizontal line.

The distance, d, is clearly not greater than the length of the boundary of D
between the two spanning vertices. The length, L, of the whole boundary of
AH(D) is the sum over all such circular arcs ai and we get a formula of the
following form.

L =
∑

i

ai ≤
∑

i

αi(eis + eis+1 + · · ·+ eit)
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Here, αi is the corresponding angle for arc ai and eis , . . . , eit denote the edge
lengths of D between the two spanning vertices of ai. Each ej contributes only
to the part of the boundary of AH(D) that is separated from D by the line
through ej ; see edge e2 in Figure 9. In order to generate this boundary part, the
right angle rotates by exactly 90◦. Thus, after re-ordering the sum on the right
hand side we have

L ≤ ∑
j

ej(αjs + · · ·+ αjt),

where the angles αjs, . . . , αjt belonging to edge ej add up to a right angle. Thus,
we obtain

L ≤ π

2

∑
j

ej

which concludes the proof. 2

For D being a line segment, AH(D) is a circle with diameter D, so the upper
bound of π

2
= 1.571 . . . is tight. Other examples with this property are triangles

with only acute angles, or rectangles.

5 Generalizations

Now let’s figure out what happens if the photographer changes the lens and uses
one with fixed angle φ. The generalized angle hull, AHφ(D), of a set D still
consists of circular arcs and it is obvious that it will be the bigger the smaller φ
is. Its perimeter will tend to ∞ if φ approaches 0, at least for the unrestricted
case, and tends to the perimeter of RCH(D) if φ comes close to 180◦.

Without obstacles, we can still make use of the generalized Thales’ theorem.
We only have to deal with the length of the chord of a circle instead of its
diameter. The length of one circular arc of AHφ(D) is the distance between the
two spanning vertices, d, times α/sin φ, where α is the angle by which the fixed
angle φ rotates to generate the arc. For the perimeter, L, of AHφ(D) we now
obtain

L ≤ ∑
j

ej
αjs + · · ·+ αjt

sin φ
=

π − φ

sin φ

∑
j

ej

in the same way as before. Remark that the angle φ rotates by π−φ to generate
the circular arcs contributed by a certain edge ej .

The factor (π − φ)/sin φ is tight, since it is attained in the case of D being a
line segment.

The generalization in the indoor setting is not more difficult. For the jagged
length of a circular arc C spanned with fixed angle φ by a chord of length 1 from
angle α to angle β we have

Jφ(C) = (sin β − sin α − cos β + cos α)
cos φ + 1

sin2 φ
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from which a tight factor of 2(cos φ + 1)/ sin2 φ follows.

The following interesting mathematical result is a direct consequence of the
generalized factor.

Theorem 2 Let f : [0, 1] → R+ be a continuous and rectifiable function satis-

fying f(0) = 0 and f(1) = 0. For a point p on the graph G of f let φp denote

the maximum angle with apex p whose sides intersect with the X-axis but not

with G; see Figure 10. Let φ = inf
p∈G

φp. Then the arc length of G is not greater

than 2(cosφ + 1)/ sin2 φ. This bound is tight.

0

p

φp

1

G

Figure 10: The arc length of a curve can be bounded in terms of its smallest

photographer’s angle from below.

6 Conclusions

We have introduced a new type of hull operator that is interesting in its own
right and suits us well in analyzing the on-line exploration strategy for simple
polygons presented in Part I of this paper [3].

Here we have analyzed the perimeter of the angle hull, AH(D), in terms of
the perimeter of the region D. A number of interesting questions remain open:
If we consider a subset of D, is the perimeter of its angle hull always shorter
than the perimeter of AH(D)? Does the iterated construction of the angle hull
approximate a circle? How can angle hulls be generalized, and analyzed, in three
dimensions?
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