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Abstract

Recently, many authors have considered the problem

of simultaneous localisation and mapping (SLAM).

The paper addresses a somewhat di�erent prob-

lem, that of cooperative localisation and mapping

(CLAM). Basically, the CLAM approach involves two

or more robots cooperating to build a map of the en-

vironment. This cooperation is not aimed at simply

increasing the speed with which the map is construc-

ted; rather, it is aimed at increasing the accuracy of

the resultant maps. This paper describes some early

work aimed at validating the CLAM concept.

1 Introduction

Recently, many authors have considered the problem

of simultaneous localisation and mapping (SLAM).

The paper addresses a somewhat di�erent prob-

lem, that of cooperative localisation and mapping

(CLAM).

The aim of SLAM, as opposed to CLAM, is to

build a map of an unknown environment and sim-

ultaneously localise the robot with respect to this

map. The map might be relational, or it might be

de�ned with respect to some coordinate system (the

latter is more common). If the robot has access to

some kind of global localisation sensor, such as satel-

lite GPS, this task is not very di�cult. The processes

of localisation and mapping are e�ectively de-coupled

{ the robot can use the GPS sensor to determine its

position, and use other sensor readings to construct

the map. Unfortunately, the robots used in many

applications (such as service robots, mining robots,

underwater vehicles, and so on) do not have access

to this kind of sensor. They must instead rely on a

mixture of odometry (or inertial navigation or dead-

reckoning) and landmark-detection. For these robots,

the processes of localisation and mapping are strongly

coupled { to determine its location, the robot must

have a map, but to build the map, the robot must

�rst know its location. This strong coupling is one of

the factors that makes SLAM di�cult.

When constructing a SLAM system, one must be

aware of two key problems.

� Odometry is subject to cumulative drift.

� Landmarks can be ambiguous.

Consider, for example, a robot that starts out near

a landmark such as a doorway, and takes an exten-

ded journey around the environment. Eventually, it

arrives at a doorway again. If there is any signi�cant

odometric drift (as there is bound to be, if the en-

vironment is large enough), it will be di�cult for the

robot to tell whether it has arrived at the original

doorway, or a di�erent one. Without this informa-

tion, the robot cannot construct an accurate map.

The concept of CLAM can be used to address both

of these problems. Imagine a group of robots moving

through an unknown environment. These robots can

operate much like a team of surveyors mapping out an

area, or a squad of soldiers moving through a hostile

environment:

� The robots can reduce odometric drift by `watch-

ing' each other.

� The robots can resolve landmark ambiguity by

acting as landmarks themselves.

Consider, for example, a scenario involving two ro-

bots. At any given point in time, only one robot is
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allowed to move (the explorer). The other robot (the

observer) watches the explorer and estimates its rel-

ative position. This estimate is combined with the ex-

plorer's own estimate (based on odometry) to obtain

an estimate that is more accurate than that obtained

with odometry alone. When the distance between the

robots becomes large, or when the robots are about to

become occluded, the robots swap roles { the explorer

becomes the observer and vice-versa. By proceeding

in this fashion, the robots can greatly reduce the un-

certainty in their location, and hence produce a much

more accurate map. Furthermore, if the robots de-

tect a pair of landmarks that may or may not be the

same, they can act cooperatively to resolve the ambi-

guity. For example, one robot can stay with the �rst

landmark, while the other sets out for the second.

If the robots subsequently meet up, they know that

there is in fact only one landmark. If they fail two

meet, they know that there are indeed two distinct

landmarks.

This paper describes some early work aimed at

exploring and validating the CLAM concept. This

paper outlines the theoretical foundations of the

CLAM concept, describes the basic implementation

and presents some preliminary experimental results.

It considers only the �rst of the problems described

above { how a pair of robots may coordinate their

activities to reduce odometric uncertainty whilst ex-

ploring an unknown environment. The key claim

made in this paper is that the maps produced in this

way are more accurate than those obtained using odo-

metry alone.

2 Related Work

While the problem of robot map building has received

much attention recently [9, 6, 2, 7], few authors have

explored the possibility of employing multiple robots

for this task. Notable exceptions are the work of

Yamauchi [11], Barth and Isiguro [1], and Yagi et al

[10], all of whom describe approaches to map building

using multiple robots. In each case, however, the em-

phasis is on increasing the speed with which maps are

built, not the accuracy. For a more comprehensive

review of these techniques (among others), see [5].

Figure 1: Tigger I and Tigger II. The robots can

locate each other using the coloured strips around

each robot's base (the strips are bright orange).

3 Theory and Implementation

The CLAM approach has been implemented on a pair

of small mobile robots { Tigger I and Tigger II (see

Figure 1). Each of these robots is capable of making

odometric measurements, and is equipped with a col-

our camera. The robots can recognise each other us-

ing coded tags, and can distinguish between obstacles

and the 
oor on the basis of colour.

The robots are in constant communication with a

host PC that coordinates their activities. The host

must manage three cooperative processes: localisa-

tion, map building and exploration. We will consider

each of these processes in the following sections.

3.1 Localisation

Two sources of data are available to help determine

the robots' locations:

� Odometric data, which allows each robot to es-

timate its own position.

� Visual data, which allows the robots to estimate

their position relative to each other.

Fortunately, these two sources of data complement

each other well: by combining odometry with vision,

it is possible to obtain an estimate of the robots' loca-
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Figure 2: Localisation example. The �rst robot has moved approximately one meter. The uncertainty in

the robot's subsequent location is indicated by the heavy polygon. (a) Uncertainty when using odometric

data only. (b) Uncertainty using visual data only. (c) Uncertainty using odometry and vision together.

tion that is better than that obtained using odometry

or vision alone.

Consider, for example, the series of images shown

in Figure 2. The �rst image shows the distribu-

tion of possible robot locations for a robot that has

moved 1m from its starting point. This distribution

is based entirely on odometric measurements and re-


ects the uncertainty associated with these measure-

ments. Note that there is relatively little uncertainty

in the distance the robot has moved; there is, how-

ever, a great deal of uncertainty in the direction it has

moved. This kind of distribution is typical of twin-

drive-wheel robots, such as Tigger I and Tigger II.

The second image shows the distribution of pos-

sible robot locations for the same scenario, but this

time using visual data obtained from the second ro-

bot. This time, there is relatively little uncertainty in

the bearing of the �rst robot (relative to the second),

but a great deal of uncertainty in its range. This un-

certainty in arises from the fact that, for a robot with

a single camera, the range must be determined from

perspective. A small uncertainty in the position of

the robot in the image will therefore correspond to a

large uncertainty in its range.

Th �nal image shows the distribution of possible

robot locations for combined odometric and visual

data. Note how the two forms of data complement

each other: the robot must lie at the intersection

of the two distributions, which yields a very good

estimate of the robot's location.

A detailed description of the theory underlying the

cooperative localisation mechanism is, unfortunately,

beyond the scope of this paper. A full description

can be found in [5].

3.2 Map Building

Maps are built using visual data obtained from the ro-

bots' cameras. A simple colour-based segmentation

routine is applied to the raw images to distinguish

between obstacles and the 
oor (the 
oor is assumed

to have a constant colour). The ground plane con-

straint is then used to infer the range-and-bearing of

obstacles. In this way, each camera acts as a kind

of `virtual' range sensor [4], whose output is similar

to that obtained by a (not very accurate) laser range

�nder.

The range-and-bearing data is used to form a

global occupancy map [3]. This is a simple grid-based

map in which cells may be in one of three states: oc-

cupied (meaning there is an obstacle at this location),

unoccupied and unknown. Bayesian inference is used

to determine the occupancy state of each cell, based

on the virtual range data provided by each robot.

Data from both robots is fused to form a common

map. A detailed description of this process can be

found in [5].

3.3 Exploration

In choosing an exploration strategy for the robots,

one must consider two factors: speed and accuracy.

In this paper, we will ignore the issue of speed and

instead focus entirely on accuracy. Unfortunately, at

this early stage of research, the optimal strategy is far
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from clear. We will therefore consider two di�erent

strategies, and assess their relative merits.

The two strategies in question are called the O1

and O2 strategies. They are de�ned as follows.

� O1: Each of the robots is assigned the role of

either explorer or observer. While the explorer

sets out to investigate the environment, the ob-

server sits still, watching the explorer. When the

explorer is about to leave the �eld-of-view of the

observer (or is about to become occluded) the

explorer stops and waits for the observer to re-

position itself. The exploration then commences

once again. Ideally, with this strategy, the ex-

plorer always remains visible to the observer.

� O2: The O2 strategy is identical to the O1

strategy, with the exception that the robots take

turns at being observer and explorer. When the

explorer is about to leave the �eld-of-view of

the observer, the two robots swap roles: the ex-

plorer now becomes the observer and vice-versa.

With this strategy, the robots e�ectively `leap-

frog' their way around the environment.

Note that both of these strategies are examples of

what human surveyors call an open traverse [8]. An

open traverse is one in which there are no �xed refer-

ence points, and as a result, open traverses are prone

to cumulative errors. For this reason, human survey-

ors tend to eschew open traverses and instead make

use of closed traverses. In a closed traverse, all meas-

urements are associated, either directly or indirectly,

with one or more �xed reference points. In surveying,

closed traverses are the norm, since they minimise the

e�ects of cumulative errors.

Within the context of CLAM, it is possible to

design strategies based upon closed traverses. For

example, one of the robots can act as the �xed ref-

erence point, while the other sets out to explore the

environment. The explorer can periodically return to

the �rst robot to perform a visual check of their rel-

ative position. Unfortunately, there are a number of

di�culties associated with such strategies. First and

foremost amongst these is that, unlike human survey-

ors, the robots do not know the topology of the envir-

onment a priori. Designing an appropriate sequence

of closed traverses is therefore quite di�cult. It is for

this reason that we have concentrated on strategies

based upon open traverses; we believe these strategies

can be implemented in a fairly straight-forward fash-

ion.

Note that, to date, neither of the strategies de-

scribed above has actually been implemented. In-

stead, experiments have been conducted using simple

scripts composed by a human operator. We hope to

proceed with actual implementation in the near fu-

ture.

4 Experiments

This section presents the results of some preliminary

experiments aimed at validating the CLAM concept.

All of these experiments were conducted in simula-

tion, and for a single environment; consequently, the

results should treated with some caution.

The experimental method is as follows. A pair of

robots is placed in a (simulated) environment con-

sisting of a simple room with a box in the middle.

The robots are allowed to explore this environment,

building a global occupancy map in the process. The

robots follow a simple script containing a sequence of

basic movement commands, such as: `move forward',

`turn left', `turn right', `wait', and so on. The script is

composed by a human operator, and di�erent scripts

are used for each of the navigation strategies O1 and

O2. Since this is a simulation, the e�ect of di�er-

ent kinds of errors can be investigated. For example,

we can evaluate the performance of a each strategy

in the presence varying amounts of odometric noise.

The results of these experiments are summarised in

Figure 3.

Figures 3(a) and 3(b) show the results for the O1

and O2 strategies respectively. The �rst map in each

row was produced using perfect odometry, and hence

should be regarded as the ideal or control case. The

dark regions of the map correspond to areas that

probably contain obstacles (the darker the area, the

more likely it is to be occupied). Note that the map

is less than perfect { these imperfections arise from

the fact that while the simulated odometry may be


awless, the simulated vision is not. The simulation

contains a ray-tracing algorithm for generating im-

ages as they would appear to the real robot. While

the `virtual' range sensor described in Section 3.2 is

very good at locating obstacles in these images, the
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Figure 3: Experimental results. The dotted lines show the actual path of the robots; the solid lines show

the estimated paths. (a) Results using strategy O1. (b) Results using strategy O2.

actual range of the corresponding obstacle must be

inferred from the ground-plane constraint. There is

an inherent uncertainty associated with this step { a

single pixel in the image may correspond to quite a

large area on the ground.

The second map in each row was produced using

less-than-perfect odometry; speci�cally, a small noise

term was added to the odometric measurements. Fur-

thermore, this map was produced using odometry

alone; that is, visual measurements where not used

for localisation. In this map, the dotted lines show

the actual paths followed by the robots; the solid

lines show the estimated paths. Note that the noise

term used in the simulation has both systematic and

stochastic components: the systematic component

represents uncertainties associated with the physical

dimensions of the robot (such wheel size), while the

stochastic component represents uncertainties associ-

ated with the physical properties of the environment

(such as uneven 
oors). Empirically, we have found

that both terms are required to accurately simulate

the properties of real odometry.

The third map in each row was produced under the

same conditions are the second, but this time using

both odometric and visual data for localisation. That

is, these are the maps produced using the full CLAM

approach.

Looking at the maps produced using odometry

only, the e�ect of the noise term is readily appar-

ent { there is a substantial disagreement between the

actual path followed by the robot and the estimated

path. As a result, the maps appear somewhat `bent'.

This is true for both strategies. However, when one

includes visual data in the localisation process, as in

the �nal set of maps, one observes a dramatic im-

provement in the results { the disagreement between

the actual and observed paths is greatly reduced, and,

as a result, the maps are much closer to the ideal.
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Thus, the CLAM approach appears to be working as

intended.

Interestingly, the O2 strategy appears to produce

better results than the O1 strategy. This is not sur-

prising if one considers the nature of the constraints

that are generated by each strategy. When the ob-

server watches the explorer, it generates a strong con-

straint on the explorer's position (relative to the ob-

server), but has nothing to say about the explorer's

orientation. On the other hand, the observer gener-

ates a strong constraint on its own orientation (relat-

ive to the explorer), but only a weak constraint on its

own position. In the O1 strategy, where the robots

have �xed roles, this means that errors can accumu-

late in the orientation of the explorer and in the po-

sition of the observer. In the O2 strategy, where the

robots swap roles, there exist strong constraints on

the position and orientation of both robots. Hence,

there is less opportunity for errors to accumulate.

5 Conclusion

The key conclusion to be drawn from the experi-

ments presented in the previous section is that, using

CLAM, one can generate better maps than are pos-

sible using odometry alone. Furthermore, the experi-

ments indicate that the quality of the results is quite

sensitive to the exploration strategy used.

Clearly, much work remains to be done. In par-

ticular, the system needs to be tested on real ro-

bots in a range of environments, and the explora-

tion strategies described in Section 3.3 need to be

implemented properly. Also, while the discussion in

the paper has considered the case of two robots only,

there is no reason why the overall approach could not

be generalised to larger numbers of robots. We sus-

pect (without proof), that the quality of the results

will improve signi�cantly as the number of robots is

increased.
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