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Abstract — In this paper we describe a vision-based
mapping system for mobile robot navigation that is
fast, simple and requires very modest computational
resources. The system comes in two parts: a visual
range subsystem and a map building subsystem. The
visual range subsystem acts as a kind of ‘virtual range
sensor’: it takes as input a stream of images and pro-
duces as output a stream of range-and-bearing mea-
surements, comparable to that produced by a scan-
ning laser range finder. The map building subsystem
then fuses this data stream into a coherent grid-based
representation of the environment. The system has
been implemented and extensively tested on Robot J.
Edgar, a small mobile robot that roams the corridors
of an unmodified office building.

I INTRODUCTION

One of the key difficulties facing any mobile robot is ob-
taining accurate, relevant and timely maps of the envi-
ronment it inhabits. Over the years, a great many sens-
ing modalities have been applied to this task, including
vision-based systems such as geometric modelling, stere-
opsis and structured lighting, and non-vision systems such
as sonar, radar and time-of-flight laser range-finders [1].
Unfortunately, vision-based systems have generally been
distinguished by low speed and enormous computational
requirements, whilst non-vision systems have been distin-
guished either by poor resolution (in the case of sonar) or
high cost (in the case of radar and laser range-finders).
In this paper, we describe a vision-based mapping system
that is fast, simple and requires relatively modest compu-
tational resources. The system comes in two parts: a vi-
sual range subsystem and a map building subsystem. The
visual range subsystem acts as a kind of ‘virtual range sen-
sor’, which takes as input a stream of images and produces
as output a stream of range-and-bearing measurements.
The map building subsystem then fuses this data stream
into a coherent grid-based representation of the environ-
ment, known as an ‘occupancy map’ [2]. The motivation
for this design arises from the observation that very good
environment maps can be obtained by combining scanning
laser range finders with grid-based data fusion techniques
[3]. In our system, the laser range finder is replaced with a
vision-based virtual range sensor that produces compara-
ble output. The system uses standard vision components
— a camera, frame grabber and computer — and as such is
low cost. For example, the results presented in this paper
where obtained using a inexpensive monochrome camera

fitted with a plastic lens, a 10-year-old frame grabber and
33MHz 486-based computer.

In order to make the visual mapping problem compu-
tationally tractable, we have made use of certain assump-
tions about the environment the robot inhabits (these as-
sumptions are detailed in Section IT). While these as-
sumptions hold true for most indoor environments, they
are violated in natural, outdoor environments. The visual
mapping system presented in this paper is therefore only
suitable for use in indoor environments. In addition, we
exploit the fact that the output of the visual range sub-
system does not need to be entirely error free: during the
map building process, measurements from multiple view-
points are combined in such a way that errors tend to get
‘washed out’. As a result, the visual range subsystem can
afford to take a ‘dumb-but-fast’ approach to image pro-
cessing, in which some degree of accuracy is sacrificed for
the sake of speed.

The visual mapping system described in this paper has
been implemented on Robot J. Edgar, a small mobile
robot that roams the corridors of an unmodified office
building. Robot J. Edgar is shown in Figure 1. The
robot uses the generated occupancy maps for both ob-
stacle avoidance [4] and landmark recognition. Note that
in addition to its single camera, Robot J. Edgar can be
equipped with a rotating sonar head. The range data from
this head can be fused by the same map building subsys-
tem [5]. Generally, however, the data rate from the sonar
sensor is so low that it can be discarded without any loss
of performance. Robot J. Edgar displays remarkably ro-
bust behaviour, having seen many hours of service without
significant failure of the visual mapping system.

The structure of the paper is as follows. In Section II
we make explicit the assumptions we have made about the
robot’s environment. In Sections IIT and IV we describe,
first in general terms and then in detail, the two subsys-
tems that make up the visual mapping system. Finally,
in Section V, we present results from experiments with
Robot J. Edgar.

II PROPERTIES OF THE ENVIRONMENT

The visual mapping system described in this paper was
designed for use in indoor environments. As has been
noted previously [6], such environments generally have a
number of properties, which we will list as assumptions:

e Ground plane assumption. There exists a well defined
ground plane.



Fig. 1: (a) Robot J. Edgar. (b) Image of a doorway taken with Robot J. Edgar’s camera. The while circles mark the location of the
carpet boundary. Note the mislocated boundary point, due to a scrap of paper on the floor. (c¢) Calibration image. The dark lines of the
calibration pattern are placed at 20 cm intervals on the floor. The white lines show the calculated calibration pattern.

e Projection assumption. The ground is covered by car-
pet (or some similar floor covering), such that all car-
peted areas are traversable by the robot. Conversely,
all non-carpeted areas are obstacles.

o Texture assumption. The carpet has a relatively even
texture.

The ground plane assumption recognises that indoor
environments rarely have uneven floors; rather, they are
made up of one or more well defined planes connected by
lifts or stairs. This assumption allows the environment to
be modelled by a set of two-dimensional maps.

The projection assumption allows us to transform
the very difficult problem of locating arbitrary three-
dimensional obstacles into the much simpler problem of
locating non-carpet areas. Of course, this assumption
does not always hold true. For example, a piece of pa-
per placed on the carpet will be treated as an obstacle,
when strictly speaking, it is not. Similarly, the boundary
between dissimilar floor coverings must be regarded as an
obstacle. This does lead to some difficulties on Robot
J. Edgar, which cannot detect the doorways connecting
carpet-covered corridors with linoleum covered laborato-
ries.

Another possible violation of the projection assumption
arises whenever overhanging objects, such as tables and
chairs, are present. For example, the area beneath a ta-
ble or a chair may be carpeted, but this space is only
traversable if the robot is shorter than the table. It is
apparent that the projection assumption is really an as-
sumption about the combined robot/environment system.
The height of Robot J. Edgar is such that it will fit com-
fortably beneath an ordinary table, so the projection as-
sumption is not violated in this case. The robot is not
short enough to pass beneath chairs, however, leading to
a violation of the projection assumption. Fortunately, this
particular violation makes no functional difference (i.e. it
does not affect robot behaviour). Chair legs will be de-

tected as obstacles, and since they are too closely spaced
for the robot to fit between, the robot will never attempt
to move under a chair.

The final assumption is the texture assumption. This
is used by the visual range subsystem to simplify the task
of classifying carpet and non-carpet areas. In areas with
highly textured floor coverings, such as tiles or patterned
carpet, the visual range subsystem will fail.

IIT VIisuAL RANGE SUBSYSTEM

A Overview

In principle, the task of the visual range subsystem is to
determine the range-and-bearing of any obstacles in the
robot’s environment. In practice, what the visual range
subsystem really determines is the location of the carpet
boundary. While the former task is conceptually difficult
and computationally intractable, the latter task is quite
straight-forward. Furthermore, if the projection assump-
tion noted in the previous section holds, the tasks are
equivalent.

Given an image, the visual range subsystem must first
locate the carpet boundary in the image. Many techniques
could be applied to this problem, such as texture analysis
or region growing, but we have chosen to employ an edge-
based method for the sake of speed and simplicity. The
method works as follows. Consider Figure 1, which is an
actual image acquired by J. Edgar’s camera. Inspecting
any column of pixels in this image, it is apparent that the
variation in pixel intensity in the carpeted areas is quite
low. At the carpet boundary, however, there is a sharp
discontinuity. This boundary can therefore be located by
applying a one-dimensional edge filter to each pixel col-
umn, starting from the bottom, and recording the location
of the first significant edge. Note that this procedure does
not work if we apply the edge-filter to pixel rows; here,
the edges may correspond either to the carpet boundary



or to an occluding surface, such as a doorframe. On pixel
columns, the procedure will always work, so long as there
are no overhanging objects and the texture assumption
holds true.

Note also that the bottom row of pixels in the image
must correspond to carpet. If, for example, the robot is
extremely close to an obstacle, such that there is no carpet
visible, the location of the boundary will be incorrectly
determined. As a result, this method tends to work best
when the camera is tilted downwards, looking at the carpet
directly adjacent to the robot.

Given the location of the carpet boundary in the image,
the next step is to determine the location of the carpet
boundary in the world. If the ground plane assumption
holds, then the geometry of the camera dictates that each
pixel in the image corresponds to exactly one point on
the ground plane. Therefore, it is possible to establish
(through a calibration procedure) a function that maps
each point in the image to a point on the ground plane.
These points will naturally be camera-centered. Given
the location of the carpet boundary in the image, this
function can be applied to determine the camera-centered
coordinates of the carpet boundary.

The overall behaviour of the visual range subsystem is
to produce, for each input image, a set of camera-centered
points describing the location of the carpet boundary.
There will, of course, be errors is the data due to noise in
the image or occasional features in the carpet. However,
since the map building subsystem uses a Bayesian data
fusion scheme to combine data from multiple viewpoints,
such errors tend to get ‘washed out’. Our test-bed, Robot
J. Edgar, typically experiences error rates of the order of
10% (that is, 10% of boundary points are not correctly
located) and must combine measurements from at least
three frames to produce reliable maps.

B Algorithm

Finding the entire floor boundary on a full 512 x 512 or
256 x 256 image is computationally expensive, so the vi-
sual range system settles for finding a limited number of
boundary points. A number of pixels columns are used to
‘sample’ the image. The following algorithm is applied to
each of the selected columns:

1. Apply a one dimensional edge filter, starting from the
bottom of the image.

2. Record the image location the first significant edge.

3. Using a lookup table, convert the image location to
camera-centered coordinates.

Note that the rate at which boundary points are found de-
pends purely on the structure of the input images (close
boundaries will be found more quickly than distant bound-
aries) and on the processing power available to perform the
edge filtering process. For example, the visual range sub-
system could inspect 1 image frame per second, and find
200 boundary points, or it could inspect 10 frames per sec-
ond, and find 20 boundary points in each. In either case,
the rate at which boundary points are located is the same

— 200 points per second. To ensure that the information
being generated by the visual range system is up-to-date,
we generally choose to process a large number of frames
per second (10 frames per second is typical), and extract
only a small number of points from each. With a 33Mhz
486 PC, rates of 320 boundary points per second can be
easily achieved, with enough processing power left over to
attend to other tasks, such as map building.

The one dimensional edge filter that is applied to each
column is chosen for its speed. In general, for some filter
F, the filter response R(n) of the n*" pixel on in a column
can be calculated as follows:

+4

> F(i)I(n+1i).

i=—0

R(n) = (1)

I(n) is the intensity of the n'" pixel. The particular filter
used has the following form:
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For this filter, it is straight-forward to show that the re-
sponse at R(n + 1) can be calculated from the response at
R(n) as follows:

R(n+1)=Rn)—  L{I(n)—I(n+1)+

In—¥8)+In+d+1)}.

(3)
(4)

Thus, instead of re-evaluating the filter response for each
point (which involves inspecting 2§ pixels), the filter re-
sponse can be computed incrementally (inspecting at most
4 pixels for each point). Use of this incremental technique
yields a significantly faster algorithm.

The first pixel for which the absolute value of R(n) ex-
ceeds some preset filter threshold will be classified as a
boundary point. Appropriate values for this threshold,
together with the filter size, must be determined experi-
mentally.

Once a boundary point has been located in the image,
the location of the corresponding boundary point in the
world must be determined. The visual range subsystem
makes this determination using a lookup table and linear
interpolation. Specifically, a lookup table lists the camera-
centered coordinates of each of a number of equally spaced
image points. Intermediate points points are calculated
from these values using linear interpolation. The lookup
table is constructed during a calibration process, in which
an image of a known calibration pattern is used to esti-
mate the lookup table entries. Figure 1 shows a typical
calibration image, in which the estimated calibration pat-
tern (calculated from the lookup table entries) is super-
imposed on the real calibration pattern. The variation
between these patterns is never greater than 2cm, which
is sufficiently accurate for mapping purposes. Note that
we have chosen not to use the standard pinhole camera
model, as this allows for greater flexibility in lens selec-
tion. Robot J Edgar, for example, uses a wide-angle lens
to which the pinhole model does not apply.



Fig. 2: Occupancy maps generated at a number of different locations. Occupied areas are indicated by dark pixels, unoccupied areas by

light pixels and unknown areas by gray pixels.

IV MAP BUILDING SUBSYSTEM

A Overview

The map building subsystem fuses the data from the vi-
sual range subsystem to form an occupancy map of the
robot’s environment [2, 7]. The occupancy map is a grid-
based map in which each cell has some value indicating
the probability that it is occupied, i.e. that there is some
obstacle at that location. A fast log-likelihood formulation
of Bayes Law is used to fuse the incoming data to arrive
at a single probability value for each cell. The map build-
ing subsystem may construct either a global map, which
is fixed to the environment and through which the robot
moves; or it may construct a local map, which is fixed to
the robot, and around which the environment moves. The
only difference between these two maps is the way in which
data from multiple viewpoints is combined. In either case,
however, the correspondence between different viewpoints
is determined using odometric data. Figure 2 shows some
typical occupancy map constructed by Robot J. Edgar.
The procedure for updating the map is as follows. Given
a set of points that describes the location of the carpet
boundary in camera-centered coordinates, the map build-
ing subsystem must first transform these points into map
coordinates. The specific transformation used will depend
upon the nature of the map being constructed. For global
maps, the transformation must consider the robot’s abso-
lute pose, wherease for local maps, only changes in pose
need to be considered. With a set of points in map coor-
dinates, the map building subsystem can update the rele-
vant cells within the map. Cells that lie along the carpet
boundary are updated to reflect the fact that these cells
are probably occupied; cells that lie between the robot and
the carpet boundary are updated to reflect the fact that
they are probably unoccupied (otherwise the boundary
would not be where it is); and cells that lie beyond the
boundary are ignored — the data carries no information
about the occupancy state of these cells. The logic of this
update scheme is exactly the same as that for updating

the map with sonar or laser range finder data [2, 5].

The log-likelihood formulation of Bayes Law (defined
in the next section) can be thought of as a simple ev-
idence accumulator: every measurement indicating that
a cell is occupied increases the cell’s accumulator, whilst
every measurement indicating the opposite decreases the
accumulator. The fusion process can be ‘tuned’ by select-
ing different increment and decrement values: big values
indicate high confidence in each measurement, small val-
ues indicate low confidence. If, for example, the visual
mapping subsystem produces very noisy data, low values
should be chosen. The robot will then have to make a
great many measurements before it can be confident as to
whether or not a particular cell is occupied. One conse-
quence of this is that the robot will have to move quite
slowly, lest it crash into an obstacle before it has decided
whether or not the obstacle is real. On the other hand, if
the error rates from the visual range subsystem are low,
the increment and decrement values can be large, few mea-
surements will be required to determine whether or not a
particular cell is occupied, and the robot can move much
faster.

B Algorithm

The occupancy map is implemented as a two-dimensional
array in which each cell represents some small region of the
environment. We typically let each cell represent a region
4cm square. The occupancy value of all cells is initially
set to zero, which corresponds to a prior probability of
0.5 (see below). Given a carpet boundary point from the
visual range subsystem, the map update algorithm is as
follows:

1. Using the robot’s odometrically determined pose, deter-
mine the map coordinates of both the robot and the carpet
boundary point.

2. Increment the occupancy value of the cell corresponding
to the carpet boundary point.



3. Decrement the occupancy value of all the cells between
the robot and the carpet boundary point.

Note that, strictly speaking, only those cells that lie in
the region that can be seen by the camera should be up-
dated. That is, areas that are too close to the robot to
be seen by the camera should not be updated. Such an
update scheme can be implemented in a straight-forward
manner by making use of the camera calibration data to
determine which cells lie within the camera’s field-of-view
at any given time, and only updating those cells.

This very simple algorithm is based on a log-likelihood
formulation of Bayesian data fusion [8]. In this formu-
lation, the occupancy value of a cell interpreted as the
logarithm of the likelihood that the cell is occupied, i.e.

(5)

Where L(o) is the occupancy value and p(o) is the prob-
ability that the cell is occupied. While probabilities are
bounded on the domain [0, 1], log-likelihoods take values
on the domain [—00, +00], with 0 corresponding to a prob-
ability of 0.5. With this definition, it is straight-forward
to show that the standard Bayesian update rule, which
gives the probability that a cell is occupied, given some
measurement m:

p(m|o)

p(m) ©)

plojm) = p(o),

becomes

L(o|m) = L(mlo) + L(o). (7)

The advantage of this rule is that cells can be updated
with a single addition, rather than multiplication; no nor-
malisation is required. Positive values of L indicate that
there is some evidence that the cell is occupied; negative
values indicate that there is some evidence that the cell is
unoccupied.

V EXPERIMENTS

The visual mapping system described in this paper has
been implemented on Robot J. Edgar. This is a small
mobile robot with twin drive wheels, a 33MHz 486-based
computer, a monochrome camera with wide-angle lens, a
pan head, a frame grabber and miscellaneous supporting
hardware. The robot is entirely autonomous and has suf-
ficient battery power to operate continuously for over an
hour. The visual mapping system is written in C++. A
typical set of performance characteristics are as follows:

Visual range subsystem
Input rate
Output rate
Processing time (ave)
Map building subsystem
Map size
Map resolution
Processing time (ave)

10 frames/second
320 points/second
50 ms/frame

384 x 384 cm
4 cm
< 0.02 ms/point

At this frame rate, the visual mapping system is using
about 50% of the total CPU capacity, leaving ample time
for other subsystems to execute. In separate experiments
[4], we have found that the visual mapping subsystem can
support reliable autonomous obstacle avoidance at speeds
of up to 30cm/s, which is the maximum speed achievable
by Robot J. Edgar.

Figure 2 shows a typical set of occupancy maps gener-
ated during a global navigation experiment in the corridors
of an unmodified office building. Doorways and intersec-
tions are clearly resolved in these map. Note that some
maps have a slight ‘bending’ effect. This is a result of
cumulative drift in the odometry data used to compute
the robot’s pose. No attempt has been made to correct
this effect, since Robot J. Edgar’s navigation systems are
immune to such errors [9].

VI CONCLUSION

The raw occupancy maps produced by the visual map-
ping system described in this paper provide an excellent
source of data for both low-level obstacle avoidance prob-
lems and high-level landmark recognition problems. The
system has in fact been used for both purposes on Robot
J. Edgar, where it has worked remarkably well. In the
future, we hope to explore some alternative visual ranging
algorithms that do not rely on the texture assumption,
and are therefore applicable to a somewhat wider range of
environments, such as those with tiled-surfaces.
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