
Navigation without Localisation: A Reactive Network

Approach

Andrew Howard, Les Kitchen

Computer Vision and Machine Intelligence Laboratory

Department of Computer Science

University of Melbourne, Victoria 3053

Australia

andrbh@cs.mu.OZ.AU, ljk@cs.mu.OZ.AU

Abstract

In this paper, we address the following problem: given

a robot which is at some unknown location in a known

environment, how does the robot go about reaching its

goal? In resolving this problem, we have abandoned

the notion of localisation and instead developed the

concept of a reactive network. A reactive network is

simply a specialized kind of �nite state machine whose

states correspond to actions and whose transitions cor-

respond to observations. We show that it is possible to

generate reactive networks that can be used to reach a

particular goal from any initial location, and hence to

solve the problem of reaching a goal from an unknown

location. In this paper, we develop the reactive net-

work concept, describe how they can be constructed

and use simulation to assess their performance.

1 Introduction

One of the principal problems facing any mobile robot

is that, sooner or later, the robot will become lost. If we

wish to construct robots that can operate unattended

for long periods of time, these robots must have some

technique that enables them to determine that they

are lost and to take steps towards recovery. Conven-

tional approaches, which are based on localisation and

path-planning, do not address this problem well. With

a few notable exceptions [1], most attempts at mak-

ing systems more robust have concentrated on increas-

ing the reliability of the localisation process, either by

physically altering the environment [2]; by using so-

phisticated sensor fusion and map registration tech-

niques [3][4][5]; or by using planning techniques that

consider localisation issues [6]. In e�ect, the emphasis

has been on making sure the robot does not become

lost at all. The problem these approaches are address-

ing can be stated as follows: given a robot which is at

a known location in a known environment, construct a

plan that will enable the robot to reach the goal. In

this paper, we address a somewhat di�erent problem:

given a robot which is at some unknown location in a

known environment, construct a plan that will enable

the robot to reach the goal. That is, we assume that

the robot is lost to begin with, and address the problem

of how it can reach the goal under these circumstances.

Our solution involves two important steps. Firstly, we

abandon the notion of localisation: we show that a

plan framed entirely in terms of actions and observa-

tions can be used for navigation. Secondly, we show

that it is possible to construct a single plan that will

enable the robot to reach the goal from any initial lo-

cation, and hence will solve the problem of reaching

the goal from an unknown location. Such plans can be

encoded by a specialized kind of �nite state machine

we call a reactive network.

In the following sections, we develop the idea of a

reactive network and show how it can be used; we de-

scribe a fast, simple algorithm for generating networks;

and we use simulation to assess the performance of re-

active networks, particularly in the presence of noise.

We will also see that reactive networks can implicitly

encode some very complex behaviour, including be-

haviour that is directed towards knowledge aquisition.

2 Navigation using Reactive

Networks

Consider the simple o�ce corridor environment de-

picted in Figure 1. We assume that we have a robot

equipped with a set of sensors and a compass such that

it is able to make basic classi�cations of its local en-

vironment. For example, the robot can distinguish a

north-south corridor from an east-west one. We further

1

6

543

7

12111098

2

N

EW

S

1

Figure 1: Simple o�ce corridor environment

assume that the robot can move in any of the cardinal

compass directions: north, south, east or west. Given

these constraints, this environment can be modelled

as set of locations (each of which has a classi�cation)

connected by actions. The model can be expressed in

tabular form, as follows:

Loc Class
"

!

L1 L6 L2

L2 L3 L1

L3 L7 L4 L2

L4 L5 L3

L5 L4

L6 L1 L8

L7 L3 L10

L8 L6 L9

L9 L10 L8

L10 L7 L9 L11

L11 L12 L10

L12 L11

Each row in this table describes a location; each of the

columns describes the e�ect of taking an action. Note

that not all locations can be uniquely determined by

their classi�cation; there are, for example, four di�er-

ent locations which are classi�ed as east-west corridors.

The problem we wish to solve is as follows: given

that the robot's initial location is unknown, construct

a plan that will enable the robot to reach the goal. Tra-

ditionally, such plans are framed in terms of locations

and actions. Consider the following plan for reaching

location L12 in Figure 1:

Loc Action Loc Action

L1
! L7
#
L2
! L8
!
L3
L9
!
L4
 L10
!
L5
 L11
!
L6
L12
!

If, for example, the robot starts at location L6, it will

execute the path fL6; L8; L9; L10; L11; L12g. Similarly,

one can verify that the robot will reach the goal from

any other initial location. This plan encodes paths

from all possible starting locations to the goal. The

problem with this plan, of course, is that the robot's

location must be known at all times. Sometimes this

is not a problem: the corner L1, for example, has a

unique classi�cation; a robot initially placed at L1 can

easily determine its location. However, for other initial

locations (such as the corridors in this environment)

unambiguous localisation is not possible. Under these

circumstances, plans such as the one above will fail.

As an alternative, we propose an approach in which

the robot's location does not need to be determined at

any time. To see how this can be achieved, imagine

placing a robot at L6 and giving it the following plan:

� Step 1: move south until you reach a corner, go to

step 2.

� Step 2: move east, past an intersection, until you

reach dead-end, go to step 3.

� Step 3: stop, you are at the goal.

Despite the fact that this plan contains no in-

formation about location at all, it is nevertheless

easy to verify that the robot will execute the path

fL6; L8; L9; L10; L11; L12g to reach the goal. In fact,

we can generalise this plan so that it works for any ini-

tial location. Such a plan can be written compactly as

follows:

S;A(S)

S1,
 S2 S2 S3 S5 S3 S4 S4
S2,
! S2 S2 S3 S5 S4
S3,
S3 S3 S4 S4
S4,
! S4 S6 S4 S4
S5,
 S5 S3 S5 S4
S6,
 S6

Each of the rows in this table corresponds to a step or

a state, each of which has an associated action. The

columns specify the next state, given some particular

observation. Clearly, this a special kind of �nite state

machine; we use the term reactive network to describe

plans of this sort. The plan always starts at state S1
and terminates at state S6; if the robot reaches S6, it

should be at the goal.

To show how the above plan works in practice, we

will consider two examples. First, imagine once again

that the robot is placed at the north-south corridor L6.

We can write down a `trace' of the robot's activity as

S1 S3 S4 S6
L6 L6; L8 L8; L9; L10; L11; L12 L12

In this trace, the plan state is associated with the loca-

tions the robot is traversing. It should be read as fol-

lows: the robot starts at at location L6 in state S1; it

observes that it is in an east-west corridor and changes

state to S3; the associated action for S3 is `move south',

which the robot does until it comes to the corner at

L8, at this point it changes state to S4; and so on.

Inspecting the trace, we can see that the robot moves

from starting state state S1 to the goal state S6, whilst

simultaneously moving from location L6 to the goal lo-

cation L12. In this case, we say that the plan encodes

the path fL6; L8; L9; L10; L11; L12g. This is, in fact,

the shortest path to the goal.

Consider next the case when the robot starts at the

goal location. The trace is

S1 S5 S4 S6
L12 L12; L11; L10 L10; L11; L12 L12

That is, the robot �rst heads away from the goal, then

returns to it. The ambiguity in location forces the

robot to take steps to `con�rm' that it is at the goal; in

e�ect, it checks to make sure it is not at the similar lo-

cation L5. The encoded path, fL12; L11; L10; L11; L12g,
is far from being the shortest path to the goal (which

is of zero length); it is, however, the shortest path that

will enable the robot to know that it is at the goal.

Thus the plan encodes both steps for reaching the goal

and steps for aquiring knowledge. This results in some

quite startling robot behaviour, particularly in large

environments with a high degree of self-similarity. The

robot appears to be exploring its environment, gath-

ering knowledge, when in fact it is simply working its

way through a �nite state machine. This complex be-

haviour has been encoded into the plan, where it be-

comes implicit rather than explicit.

In the previous discussion, we have been concerned

exclusively with navigation in the absence of noise. In

the real world, of course, noise introduces errors into

both sensing and motion. Fortunately, with reactive

networks such errors will almost always manifest them-

selves sooner or later as a plan failure. A plan failure

occurs whenever the classi�cation for the current loca-

tion does not match any of the entries for the current

plan state. For example, if the robot reaches state S5
of the plan, but detects that it is in a corner, then

the robot must have made an incorrect classi�cation

at some point. Having detected the failure, the robot

can employ a failure resolution strategy. The simplest

failure resolution strategy is to reset the plan and start

the whole process again: after all, the plan is supposed

to work for any initial location. More complex failure

resolution strategies can also be implemented, one of

which is described in Section 4. Unfortunately, it is im-

possible to guarantee that all errors will be detected.

There is always a chance that the plan will be followed

to completion, but that the robot will merely be at a

location that looks like the goal. In Section 4 we show

that such failures are rare, even when error rates are

high.

3 Creating Reactive Networks

There are many algorithms one can employ to create

reactive networks. It is possible, for example, to con-

struct the space of all possible reactive networks, then

search that space to �nd the network which is optimal

for some particular goal. Optimality in this case might

be de�ned strictly as some function of path lengths en-

coded by the plan, or it might also include measures of

plan size and comlexity. This approach is, of course,

computationally expensive. In this paper, we abandon

considerations of optimality and instead describe a fast,

simple algorithm for generating at least one solution.

The algorithm we employ makes use of the plan fail-

ure mechanism (noted in the previous section) to build

plans incrementally. Imagine that we have some plan

P which is known work for some particular starting lo-

cation La. Using the environment model, this plan can

be tested against another possible starting location Lb.

There are four possible outcomes of such a test:

1. The robot will reach the goal.

2. The plan fails { the robot will make an observation

that is not in the plan.

3. The robot will enter an in�nite loop and travel in

circles.

4. The robot will reach a place that looks like the

goal, but is not.

If the plan fails, we have an opportunity to extend the

plan so that is does work for the starting location Lb.

Basically, the plan will fail with the robot at some lo-

cation Lc, so we can take a plan that is known to work

for Lc and append it to the plan P at the point of fail-

ure. The resultant plan will work for both La and Lb.

Proceeding in this manner through all initial locations,

it is possible to build up a the desired general plan. Of

course, if the plan already works for a particular initial

location, there is no need to extend it.

On the other hand, there are two failure modes that

cannot be resolved by plan extension. If the robot

reaches a false goal, or enters an in�nite loop, the plan

cannot work for this initial condition. In this case we

have no choice but to discard the plan and repeat the

process with a new one. Fortunately, the chances of

the event occuring can be greatly reduced by applying

some appropriate heuristics to the testing algorithm,

and by careful construction of the plans. In�nite loops

can be avoided entirely if plans contain no `backward

transitions', that is, if the reactive networks are un-

rolled to form reactive `trees'. Likewise, the robot is

unlikely to reach false goals if we �rst try to generate a

plan which works for initial locations far from the goal.

In our experiments with a variety of environments of

varying size and complexity, the generation algorithm

that employs this heuristic has always worked on the

�rst attempt. At present, we are unable to prove that

this algorithm will always generate a solution; we sim-

ply note that we have not been able to �nd an example

for which it fails.

A detailed description of the algorithm is beyond

the scope of this paper, but it can be summarized as

follows:

1. Generate a specialized plan for each initial loca-

tion.

2. Combine the specialized plans into a single general

plan.

3. Compress the plan to form a smaller (but equiva-

lent) plan.

In the �rst step, a simple backward-chaining algorithm

is used to generate speci�c plans for each initial loca-

tion. These plans are then combined using the failure-

extension mechanism described above, starting with

the plans for locations farthest from the goal. The last

step is not strictly necessary, but the plans produced

in Step 2 are very large and highly redundant, so it

is useful to reduce them to smaller equivalent plans.

A modi�ed version of the �nite state machine com-

pression algorithm described in [7] is employed. The

complexity of this algorithm is no greater than O(n2),

where n is the number of locations, and the number of

states in the generated reactive networks is of order n

(i.e. they are quite compact).

4 Simulation results

We have used simulation to examine the properties

of reactive networks in a wide range of indoor envi-

ronments. Figure 3 depicts a simple grid-based envi-

ronment containing 512 locations (32 wide by 16 high)

which are either occupied or unoccupied. The simu-

lated robot can determine the occupancy of the adja-

cent cells and can move in any of the cardinal compass

directions: north, south, east or west. The goal lo-

cation is indicated by the small square at the top-left

of the �gure. Application of the algorithm described

in the previous section yields a reactive network with

Figure 3: Simulated environment

about 200 states, which is about the number of possi-

ble robot locations. The algorithm is implemented in

Java and takes a few seconds to run on a Sun Solaris

server.

The environment in Figure 3 has a high degree of

self similarity, so a robot placed initially at random

will �nd it very di�cult to determine whether it is in

the left or right half of this �gure. If, for example, the

robot is initially placed at the goal, it will execute a

very complex series of actions which take it well away

from the goal, simply to check whether or not it was

originally at the goal. Having performed this check,

the robot will return directly to the goal. Although

this is hardly the shortest path the the goal, it is in

fact the shortest path that can be executed that will

allow the robot to know that is has reached the goal.

In general, when the robot starts from locations close

to the goal, the encoded path will be much longer than

the shortest path. In contrast, when the robot starts

far from the goal, the encoded path will be close to

the shortest path. This re
ects both the nature of the

plan generation algorithm (which considers locations

far from the goal �rst) and the requirements of knowl-

edge aquisition.

The performance of the plan in the presence of noise

was evaluated by running multiple simulated trials in

which noise was present in the form of an error rate.

For example, an error rate of 10 percent implies that

noise in the sensors causes 10 percent of classi�cations

to be incorrect. In each simulated trial, the robot was

placed at some random initial location and the number

of locations traversed to reach the goal was recorded.

We also tested for false goals, i.e. the situation in which

the robot completes the plan, but is not at the goal. If

the naive failure resolution strategy described in Sec-

tion 2 is employed, the time taken to reach the goal

becomes very large, very quickly, even for low error

rates. Consequently, we employ a slightly more com-

plicated strategy based on the concept of `retries'. If

a plan failure is detected, a new set of sensor readings

is aquired and a new classi�cation generated. If the

new classi�cation does not result in a failure, the plan

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009

1.01

0 2 4 6 8 10 12 14 16 18 20

A
ct

ua
l p

at
h

le
ng

th
 /

E
xp

ec
te

d
pa

th
 le

ng
th

Error rate (percent)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20

Fa
ilu

re
 r

at
e

(p
er

ce
nt

)

Error rate (percent)

Figure 2: Performance of reactive network in the presence of noise.

proceeds. Otherwise, if the plan fails after a number of

retries (5 in this case), it is restarted. There are many

other strategies that could be employed, but this one

is simple and yields good results.

The results from 2 million trials are shown in Figure

2, where the ratio of the actual path length and the ex-

pected path length (i.e. the error free path length) is

plotted as a function of error rate, averaged over mul-

tiple trials. Thus, an average ratio of 1:0 means that

errors are having no e�ect on robot performance. It

is apparent from Figure 2 that average path lengths

increase monotonically as a function of error rate, but

that the rate of increase is modest. Even when 20

percent of classi�cations are incorrect, the robot's per-

formance is still very close to its error free performance

(within 1 percent). Also plotted in Figure 2 is the rate

at which false goals are reached. The rate increases as

a function of noise, but is never larger than 1 percent.

It is possible that a di�erent failure resolution strategy

could reduce this error even further, perhaps at the ex-

pense of average performance. It is clear, however, that

a reactive network with the failure resolution strategy

described above can yield very robust navigation in a

noisy environment.

5 Further work

We are currently testing the ideas presented in this pa-

per with a small mobile robot equipped with a rotating

sonar sensor and a simple vision system. In the future,

we intend to extend the reactive network concept to

environments which are both dynamic and probabilis-

tic.

References

[1] Gregory Dudek, Kathleen Romanik, and Sue

Whitesides, \Localizing a robot with minimum

travel", in Proceedings of the 6th ACM-SIAM Sym-

posium on Discrete Algorithms, 1995.

[2] Bernard J Hendrey, Ray A Jarvis, and Ian Bridger,

\An automated guided vehicle for industrial envi-

ronments", in Proceedings of the 1995 National

Conference of the Australian Robot Association,

July 1995.

[3] Raj Talluri and J K Aggarwal, \Position estima-

tion for an autonomous mobile robot in an outdoor

environment", IEEE Transactions on Robotics and

Automation, vol. 8, no. 5, 1992.

[4] Ingemar J Cox, \Blanche { an experiment in guid-

ance and navigation of an autonomous robot vehi-

cle", IEEE Transactions on Robotics and Automa-

tion, vol. 7, no. 2, 1991.

[5] Reid Simmons and Sven Koenig, \Probabilistic

navigation in partially observable environments",

in IJCAI, 1995.

[6] Haruo Takeda, Claudio Facchinetti, and Jean-

Claude Latombe, \Planning the motions of a mo-

bile robot in a sensory uncertainty �eld", IEEE

Transactions on Pattern Analysis and Machine In-

telligence, vol. 16, no. 10, 1994.

[7] Alfred V Aho and Je�rey D Ullman, Principles

of Compiler Design, pp. 101{102, Addison-Wesley,

1977.

