
FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 1

Vision-Based Navigation Using Natural Landmarks

Andrew Howard

Department Of Computer Science

University of Melbourne

Parkville 3052

Australia

andrbh@cs.mu.oz.au

Les Kitchen

Department Of Computer Science

University of Melbourne

Parkville 3052

Australia

ljk@cs.mu.oz.au

Abstract

MYNORCA is a vision-based navigation sys-

tem for mobile robots, designed principally for

operation in indoor environments. The system

uses vision for detecting obstacles and locating

natural landmarks. In addition, it is able to

solve navigation problems in which the robot's

initial location is completely unknown. In this

paper, we present an overview of MYNORCA,

describe its implementation and present some

experimental results.

1 Introduction

MYNORCA is a vision-based navigation system for mo-

bile robots, designed principally for operation in indoor

environments, such as o�ce buildings. MYNORCA di-

vides the overall navigation problem into two parts: lo-

cal and global navigation. Local navigation is de�ned as

the immediate problem of detecting and avoiding obsta-

cles, whilst global navigation is de�ned as the problem of

reaching distant goals. This division of responsibilities

has a double bene�t: global navigation can be treated as

a fairly abstract planning problem, since all the messy

details of actually detecting and avoiding obstacles can

be delegated to the local navigation subsystems; and lo-

cal navigation can be treated as a reactive problem, in

which no long-term planning required.

MYNORCA makes use of a global model containing

two di�erent kinds of information. Firstly, it contains

landmarks, such as walls and doorways, which can be

matched to observed landmarks to help determine to

robot's location. These are natural landmarks; no mod-

i�cation of the environment is required. Secondly, the

model contains connections, which indicate how di�er-

ent parts of the environment are connected to each other.

This information is used to plan paths. Presently, the

global model must pre-de�ned.

MYNORCA also adds a twist to the standard navi-

gation problem. Normally, this problem is stated in the

following terms: `given a robot that is at some known

initial location, plan and execute a series of actions that

will take the robot to the goal'. The important assump-

tion here is that the robot's initial location is known.

Unfortunately, in practice, robots tend to get lost, usu-

ally as a result of sensor noise. Under these circum-

stances, the robot may have to execute a complex series

of actions in order to `re-localise' itself. Although re-

localisation algorithms do exist [Dudek et al., 1995], we

have chosen instead to restate the navigation problem.

Our version is as follows: `given a robot that is at some

unknown initial location, plan and execute a series of

actions that will take the robot to the goal'. That is,

we attempt to develop an single algorithm that can be

used for both re-localisation and navigation; one that

does not make any distinction between these two pro-

cesses [Howard and Kitchen, 1996]. Such an algorithm

incorporated into MYNORCA, and is described in this

paper.

This paper is intended as an overview only. In the

following sections, we describe each element of the sys-

tem and how they work together as a whole. We also

discuss the implementation of MYNORCA on Robot J

Edgar and present some experimental results showing

the system in action.

2 System Overview

MYNORCA employs a highly modular agent-oriented

control system, inspired in part by the subsumption ar-

chitecture approach [Brooks, 1986]. Each agent is re-

sponsible for a speci�c task and communicates with

other agents via a message passing mechanism. Agents

are grouped into layers, with lower layers carrying out

routine hardware-oriented tasks, such as image acquisi-

tion, and higher layers carrying out more abstract tasks,

such as navigation. There are two key advantages to

this design. Firstly, agents can be developed and tested

independently, greatly simplifying the development pro-

cess. Secondly, the system can be distributed, with some

agents running on the mobile robot and others running



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 2

GbFeature

HwAcquire HwMotors

LcObstacle LcMap LcNav

Hardware layer

Local layer

Robot

Global layer

GbNavGbLoc

GbModel

(a) (b)

Figure 1: (a) System overview. Each agent is represented by a box, with arrows indicating the 
ow of information

between agents. (b) Robot J Edgar

on a remote host or hosts. This minimises the computa-

tional requirements of the robot's on-board processor.

Figure 1 shows the various agents that make up

MYNORCA. The agents are divided into hardware, local

and global layers as follows.

� The hardware layer is responsible for low-level tasks,

such as motor control, odometry and image acqui-

sition. It presents an abstracted interface to higher

layers so that, in principle, MYNORCA can be im-

plemented on any platform that supports the re-

quired hardware functionality.

� The local layer is responsible for tasks involving the

local environment (the area within a few meters of

the robot). Agents in this layer carry out tasks such

as obstacle detection, avoidance and map building.

� The global layer is responsible for tasks involving

the global environment. Agents in this layer carry

out tasks such as determining the robot's location

and navigating to distant goals.

Since the hardware layer has only very simple tasks to

perform, it will not be discussed further in this paper.

The local and global layers are described in more detail

in the following sections.

3 The Local Layer

The local layer has three agents: LcObstacle, LcMap

and LcNav. Collectively, these agents are capable of car-

rying out local navigation tasks. The basic process is as

follows. The LcObstacle agent analyses images to de-

termine the location of obstacles. This information is

fed into the LcMap agent, where it is used to form a

set of local maps. These maps are used by the LcNav

agent to determine collision free paths. This layer can

very reliably navigate the robot down corridors, through

doorways and around rooms.

3.1 Obstacle Detection

The LcObstacle agent processes images to detect obsta-

cles. In order to achieve reasonable speed (at least 10

frames per second on a Pentium-class computer), cer-

tain assumptions must be made. Speci�cally, we have

assumed that the robot is operating in an indoor envi-

ronment in which all carpeted areas can be regarded as

free-space, and all non-carpeted areas can be regarded

as obstacles. This is a common assumption with vision-

guided robots [Horswill, 1993] and works reasonably well

in most indoor environments. The methods employed by

the LcObstacle agent are described in detail in [Howard

and Kitchen, 1997].

3.2 Mapping

The LcMap agent combines the obstacle data produced

by LcObstacle to form an occupancy map of the robot's

local environment. This is a grid-based map in which

each cell has a value indicating the probability that it is

occupied, i.e. that there is some obstacle at that loca-

tion [Howard and Kitchen, 1997] [Elfes, 1990] [Moravec,

1988]. Figure 2 shows an occupancy map generated dur-



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 3

(a) (b) (c)

Figure 2: Local maps. (a) Occupancy map. Black cells are probably occupied, white cells are probably unoccupied,

grey cells are unknown. (b) Upper proximity map. The lines indicate contours of equal proximity. (c) Lower

proximity map. The lines indicate contours of equal proximity.

ing an experimental run. In this map, cells which are

probably occupied are black, cells which are probably

unoccupied are white, and cells whose occupancy state

is unknown are grey.

Since the raw occupancy map is not particularly useful

for navigation tasks, the LcMap agent produces another

kind of map: a proximity map. This is a grid-based

map that lists, for each cell, the distance to the nearest

obstacle (a proximity map can be thought of as a gen-

eralised con�guration space map [Lozano-Perez and Ma-

son, 1984]). Forming the proximity map requires knowl-

edge of the location of each and every obstacle in the

robot's local environment; knowledge which is, in prin-

ciple, encoded in the occupancy map. Unfortunately, in

practice, the occupancy map will always contain regions

whose occupancy state is unknown. This may be the

result of occlusion (by a wall, for example), or it may be

that the robot has simply failed to point the camera at

these regions. It is not possible to form a single, unique,

proximity map from such incomplete data.

It is possible, however, to generate an upper and lower

bound on the proximity. The LcMap agent therefore gen-

erates two proximity maps. The �rst lists the distance

to the nearest occupancy map cell that is de�nitely oc-

cupied. The second lists the distance to the nearest cell

that may be occupied. In e�ect, the �rst map assumes

that unknown cells are unoccupied and generates a prox-

imity map on that basis, whilse the second map assumes

that unknown cells are occupied. The true proximity

value must lie somewhere between these two extremes.

Figure 2 shows the two proximity maps generated during

an experimental run.

3.3 Navigation

The LcNav agent is responsible for reaching local goals.

It looks for a sequence of in-place turns and straight-line

motions that lead from the robot's current location to

the goal location. Collision free paths are determined by

analysing the proximity maps generated by the LcMap

agent: the robot cannot enter into any cell whose prox-

imity value is less that the robot's maximum radius. Of

course, since there are two proximity maps, representing

upper and lower bounds on the true proximity value, we

must chose which map to use. The lower bound will pro-

duce very conservative behaviour (the robot will not go

anywhere unless it is absolutely sure that there are no

obstacles in its path), while the upper bound will pro-

duce very optimistic behaviour (the robot will zoom o�

into areas where there may of may not be obstacles).

Agents in the global layer can switch the LcNav agent

between these two modes of behaviour, depending upon

the circumstances in which the robot �nds itself.

In addition to its goal-seeking behaviour, LcNav has

an information-seeking behaviour. In this mode, the

agent attempts to acquire information about the robot's

local environment. It continually analyses the occupancy

map, looking for unknown regions that are not occluded.

When such a region is detected, the agent temporarily

suspends its goal-seeking behaviour, stops the robot and

points the camera at the detected region. This behaviour

ensures that the occupancy map always contains as much

information as is possible. Agents in the global layer,

which look for landmarks in the local map, rely on this

behaviour to detect certain landmarks. If this behaviour

is disabled, landmarks such as doorways may be missed.

4 The Global Layer

The global layer contains four agents: GbModel,

GbFeat, GbLoc, GbNav. Collectively, and in associa-

tion with the agents in the local layer, these agents carry

out global navigation tasks. The process is as follows.

The GbLandmark agent extracts signi�cant landmarks,

such as doorways or intersections, from the local map.

These landmarks are passed to the GbLoc agent, which

compares them with landmarks in a global model to de-



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 4

LOCATION Loc1 AT (0 0)

LOCATION Loc2 AT (0 260)

LOCATION Loc3 AT (340 0)

LOCATION Loc4 AT (0 -1400)

LOCATION Loc5 AT (600 0)

LOCATION Loc6 AT (0 -550)

LOCATION Loc7 AT (+1900 0)

LOCATION Loc8 AT (+1900 -1600)

CONNECT Loc1 Loc2

CONNECT Loc1 Loc3

CONNECT Loc1 Loc6

CONNECT Loc6 Loc4

CONNECT Loc3 Loc5

CONNECT Loc5 Loc7

CONNECT Loc7 Loc8

FEATURE Wall AT (0 0 0) SIZE (10000 10000 15)

FEATURE Wall AT (0 0 90) SIZE (10000 10000 15)

FEATURE Wall AT (0 0 180) SIZE (10000 10000 15)

FEATURE Wall AT (0 0 -90) SIZE (10000 10000 15)

FEATURE Int AT (0 0 0) SIZE (60 60 30)

FEATURE Tee AT (0 0 0) SIZE (60 60 30)

FEATURE Tee AT (0 320 -90) SIZE (60 60 30)

FEATURE Tee AT (0 -1480 +90) SIZE (60 60 30)

FEATURE Tee AT (400 -20 +150) SIZE (60 60 30)

FEATURE Tee AT (400 -20 +30) SIZE (60 60 30)

.

.

.

Figure 3: Global model of a section of corridor. Small boxes indicate the location of landmarks (principally doorways).

Circles indicate the end-points of connections. A textual description of this model is shown on the right.

termine the location of the robot. The GbNav agent

uses the location information maintained by the GbLoc

agent, together with information in the global model, to

plan and execute paths to the goal. The global model is

maintained by the GbModel agent.

Both the GbLoc and GbNav agents are complicated by

the fact that the robot's initial location is unknown: it is

merely assumed that it is somewhere within the model.

Consequently, at any given time, the robot may be at any

one of a number of possible locations that are compatible

with the landmarks that have been observed. The GbLoc

agent must therefore maintain multiple possible robot

locations, and the GbNav agent must be able to make

plans which are compatible with the robot being at any

of these locations.

4.1 The Global Model

The global model stores two types of objects: landmarks

and connections. Landmarks are used to localise the

robot. These are always local landmarks, that is, land-

marks that can be detected by the robot from a sin-

gle location. Thus, the model may store a wall-segment

landmark, representing a small section of a wall, but will

never store a landmark representing the wall in its en-

tirety. Other kinds of landmarks that the model may

store are doorways and intersections.

For each landmark, the model lists the landmark pose

(position and orientation) in a global coordinate sys-

tem. This system is arbitrary, but is useful for captur-

ing geometrical relationships between landmarks, such

as relative orientation. In addition, the model stores an

uncertainty value for both the landmark position and

orientation. This uncertainty value has two important

uses. Firstly, it allows the model to capture the fact that

certain landmarks have well determined positions, but

poorly determined orientations, or vice-versa. A wall-

segment landmark, for example, always has a well de-

termined orientation, but may have a poorly determined

position (since a single wall-segment may be used to rep-

resent an entire wall). Secondly, it allows the precision

of the model to be varied: in some areas, we may wish

to know the exact pose of every doorway; in others, it

may su�ce to indicate that there are doorways `in the

general area'.

The model also stores connections, which are used for

navigation. A connection is a declaration that two points

are connected by some action. For each connection, the

model stores the start and end points and an action that

connects the points. These actions are local actions, that

is, actions that can be sent to the LcNav agent for exe-

cution.

Figure 3 shows a sample model, in both graphical and

textual format.

4.2 Landmark Extraction

The GbFeat agent extracts landmarks from the local

map generated by LcMap. The agent has a set of pre-

de�ned templates, corresponding to landmarks such as

wall-segments and doorways, and uses these templates

to search for landmarks in the local map. Empirically,

we have found that a small set of relatively abstract tem-

plates can capture useful information about the environ-



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 5

ment. For example, there is no single template corre-

sponding to a `corridor intersection'; rather, each par-

ticular intersection can be represented by a collection of

simpler landmarks.

The template matching procedure is straight-forward.

Each template consists of a set of sample points which

list a location (relative to the template origin) and a

match criterion. The match criterion is used to evalu-

ate the match error, and is usually framed in terms of a

condition on the proximity value. For example, a sample

point that is meant to correspond to part of a wall may

specify that the proximity must be less than 10cm. On

the other hand, a sample point that is meant to corre-

spond to an opening might specify that the proximity

value must be greater than 40cm. In the �rst case, the

match error is lowest for small proximity values; in the

second it is lowest for large proximity values. The match

error for the template as a whole is given by the sum of

the individual sample point error terms.

To locate a landmark, the GbLandmark agent places a

template at a randomly chosen initial location and orien-

tation, then uses gradient descent to minimise the match

error. A landmark is detected whenever the match error

drops below some threshold. Once found, the landmark

can be `tracked' with minimal computational cost. Fig-

ure 4 shows a series of local map snapshots taken from

an experimental run, with the detected landmarks indi-

cated by open circles.

The only complicating factor in this procedure is that

the proximity value is always uncertain: only the bounds

on the proximity value (as expressed by the two proxim-

ity maps) are known. We do not want the GbLandmark

agent to report landmarks that might be present; we only

want those landmarks which are present. Consequently,

the GbLandmark agent has been designed to evaluate

worst-case matches. If, for example, a sample point spec-

i�es that the proximity value must be less than 10 cm,

the upper proximity bound will be used to evaluate the

match error. On the other hand, if a sample point spec-

i�es that the proximity value must be greater than 40

cm, the lower proximity bound will be used.

4.3 Localisation

The GbLoc agent attempts to keep track of the robot's

global pose. Recall, however, that we have assumed that

the robot's initial pose is unknown. Therefore, rather

than maintaining a single pose estimate, the GbLoc

agent maintains a set of pose estimates. This set is up-

dated whenever a landmark is detected, or the robot

moves.

The detection of a landmark will generally eliminate

some of the pose estimates. The detected landmark can

be compared with similar landmarks in the global model

to determine which of the current pose estimates are in-

compatible with the observed landmark. For example, if

the robot observes a nearby doorway, all those estimates

that do not place the robot near a doorway can be elim-

inated. This works for orientation also. If, for example,

the robot detects a wall segment oriented in a particu-

lar way, all those pose estimates that do not indicate a

nearby wall segment at the appropriate orientation can

be eliminated.

The pose estimates will also change as the robot

moves. Whereas the detection of a landmark will re-

duce the number of pose estimates, the uncertainties as-

sociated with robot motion (i.e. odometric errors) will

increase the number of estimates.

Note that the GbLoc agent does not use the absence

of landmarks to eliminate pose estimates. This is for the

sake of robustness: it is quite likely that the GbLand-

mark agent will fail to detect some landmarks (because

of noise in local map, for example), but quite unlikely

that it will detect landmarks that are not really present.

That is, the probability of false negatives is far higher

than the probability of a false positives. A natural gen-

eralisation to the localisation technique described here

would be to quantify these probabilities and use them

to maintain a probability distribution over a global pose

space. We have avoided this particular generalisation

because it is di�cult to �nd e�cient implementations.

By using using only the presence of landmarks, and

not their absence, the GbLoc agent can also cope with

changing environments (at least in a limited sense). If

landmarks are carefully selected, changes in the environ-

ment will manifest themselves not as new landmarks,

but as the failure to detect an old one. The canonical

example is a doorway : when open, a doorway landmark

will be detected; when closed, nothing will be detected.

In the former case, the GbLoc agent will be able to elim-

inate some pose estimates; in the latter, the set of pose

estimates will remain unchanged.

Occasionally, a landmark will be detected for which

there are no compatible pose estimates. This may be

the result of an false positive error on the part of the

GbLandmark agent, or it may indicate that the global

model is incomplete in some way. In either case, the

robot is e�ectively `lost'. Presently, we handle this sit-

uation by resetting the set of pose estimates to include

all possible poses; i.e. we assume that the robot could

be anywhere. This works reasonably well (the robot will

always reach the goal sooner or later), but better re-

sponses are possible [Howard and Kitchen, 1996]. This

area remains the subject of ongoing research.

Finally, note that this localisation scheme can make

use many di�erent kinds of landmarks, not just those ex-

tracted from the local map by GbLandmark. The colour,

brightness or even the smell of a place could be stored

in the global map and used for localisation purposes.



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 6

4.4 Navigation

The general navigation problem that must be solved by

the GbNav agent is quite complex. The robot's initial

pose is complete unknown, so it cannot simply plan and

execute a series of actions that lead from the initial robot

location to the goal location. Instead, it must plan and

execute a series of actions at whose conclusion all of the

remaining possible robot poses correspond to the goal

location. In other words, it is not su�cient for the robot

to reach the goal; the GbNav agent must know that it

has reached the goal.

In principle, the optimal series of actions can only be

found by considering all possible poses the robot might

have, all possible actions it might take, and all possible

outcomes of these actions. If e�ect, the optimal series

of actions can only be found by searching the space of

all possible sets of pose estimates, using the information

stored in the global model to determine the connectiv-

ity of points in this space. Clearly, this space is vast

and such a search would require vast computational re-

sources. Therefore, we have devised a sub-optimal nav-

igation strategy that will enable the robot to reach the

goal location in a reasonable amount of time, on most

occasions, in most environments.

The strategy is as follows. The GbNav agent chooses,

at random, one candidate pose from among those that

are possible. It then plans and executes a series of ac-

tions that will take the robot to the goal location, if the

robot is truly has this pose. These actions are in a form

that can be passed on to the LcNav agent for execution.

As the robot moves, the candidate pose is shifted so that

it remains consistent with the robot's motion. There are

two possible outcomes of this process: either a point will

be reached where the candidate pose corresponds to the

goal location, or else some landmark or landmarks will

be observed that causes the GbLoc agent to conclude

that the candidate pose is not a possible pose. In either

case, the GbNav agent can pick another candidate pose

and repeat the process. This procedure only terminates

when all possible poses correspond to the goal location.

There are certain environments in which this strategy

will fail. The GbNav agent can become locked into an

in�nite loop, in which the robot shuttles back and forth

between two locations, unable to determine which is the

true goal. Detecting and coping with this circumstance

is the subject of ongoing research. There are also patho-

logical environments in which this strategy will work,

but will take a great deal of time. Such environments

are usually characterised by large repeating units. An

multi-storey car park, in which every 
oor except for the

�rst and last has an identical layout, is a good example

of such an environment.

Note that the approach we have taken with this nav-

igation strategy does not emphasise localising the robot

before attempting to reach the goal. Rather, localisa-

tion is seen as the natural outcome of such an attempt.

In practice, most environments are constructed in such

a way that all but a few possible robot poses will be

quickly eliminated; most of the time is spent deciding

which of the few remaining poses is the correct one, and

physically moving the robot to the goal.

5 Implementation and Experiments

MYNORCA has been implemented and tested on a

medium-sized mobile robot which goes by the name of

J Edgar. This robot has a pair of independent drive

wheels, a pan head and a single monochrome camera.

It has an on-board computer with a frame-grabber and

is able to communicate with a base-station via a UHF

data-link. Both the on-board computer and the base-

station are Pentium-class PC's.

All agents have been implemented in C++. A num-

ber of other languages, including Java, were considered,

but in the end C++ was chosen because of its matu-

rity, relative portability, and speed. Hardware layer

agents execute on the robot, as does the obstacle de-

tection agent, LcObstacle. All other agents execute on

the base-station. This particular distribution of agents

was chosen because it minimises data-link bandwidth re-

quirements. The LcObstacle agent is able to encode the

information it extracts from each image into less than

128 bytes, whereas transmitting the raw image back to

the base-station would require many kilobytes. With a

maximum transfer rate of 115 kb/s, the data-link is able

to transmit data faster than the LcObstacle agent can

generate it. Currently, the system can handle up to 10

frames per second, and is limited by the speed of the

frame-grabber, not the speed of the data-link.

There are a number of signi�cant advantages to having

most of the agents executing on the base-station. Firstly,

it greatly simpli�es debugging { rather than having to

employ program traces and the like, standard interac-

tive debugging tools can be used. Secondly, it is possi-

ble to construct sophisticated user-interfaces that allow

real-time monitoring of agent state. We have found that

the ability to distribute and debug agents in this way

has greatly reduced development time and improved the

overall reliability of the system. It also reduces the com-

putational requirements of the robot's on-board proces-

sor, where CPU power is at a premium.

Figure 4 shows a series of snapshots taken during an

experimental run. In this experiment, the robot was

place in a corridor and given the task of reaching a rela-

tively close goal (about 10m from it's starting position).

The �rst series images shows the local map at various

times, with the robot's motion and the detected land-

marks indicated. The second series of images shows the

global pose estimate. At t = 0 seconds, the robot's pose



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 7

t = 0 sec t = 10 sec t = 40 sec t = 50 sec

t = 80 sec t = 100 sec t = 120 sec t = 135 sec

t = 0 sec t = 10 sec t = 40 sec t = 50 sec

t = 80 sec t = 100 sec t = 120 sec t = 135 sec

Figure 4: Experimental run. The upper set of images is a series of snapshots of the local occupancy map. The robot's

current location and path is also indicated. The lower set of images is a series of snapshots showing the evolution of

the global pose estimate. The cross-hatched region indicates possible robot locations in the global model.



FSR'97 International Conference On Field And Service Robotics, Canberra, Australia 1997 8

is entirely unknown (the robot does not even know which

direction it is facing). However, the detection of a door-

way at time t = 10 seconds eliminates all but two pos-

sibilities: the robot is either next doorway D1, heading

north, or else it is next to doorway D2, heading south.

The robot assumes that the former is true and heads

north, towards the goal. Another doorway is detected

at time t = 40 seconds, but unfotunately this does not

add any new information. It is the detection of an in-

tersection at time t = 80 seconds that allows all but one

possibility to be rejected. From this point, the robot

proceeds directly to the goal. The maximum speed of

the robot over this run was 20 cm/s, with an overall av-

erage speed of 7 cm/s. The low average speed is mainly

due to the fact that the robot must stop to inspect both

doorways and the intersection.

In other experiments, we have found that system copes

well with presence of humans. If people keep moving,

the system will ignore them (the mapping system is too

slow to pick up a person walking at normal speed). If

people insist on standing still, the robot will simply move

around them. Occasionally, the presence of a human

will cause the robot to detect a landmark that is not

really there and the robot may become lost. The system

generally recovers, but may spend a great deal of time

doing so. We plan to quantify this recovery behaviour

in the near future.

6 Conclusion

Although we have not yet conducted systematic tests,

the experiments that have been conducted to date indi-

cate that MYNORCA is a very reliable navigation sys-

tem. We have identi�ed two key factors required to pro-

duce this level of reliability. Firstly, the local map must

be accurate. Failure to detect an obstacle can lead to a

collision, or the detection of a false landmark. Secondly,

the global model must be both accurate and complete.

If this is not the case, the robot may become perpetually

lost.

There are many extensions to this system that are the

subject of ongoing research. We will mention just two

here. Firstly, the system is being extended to cope with

changing environments. In its current form, the system

can successfully localise the robot in a changing envi-

ronment (to some extent), but cannot generate e�ective

navigation strategies. Secondly, we would like the sys-

tem to be able to learn global models. Currently, models

must be hand-coded. We are working on a procedure

whereby the robot can be trained by an operator, but in

the long run would like the system to be able to acquire

models in an autonomous fashion.

References

[Brooks, 1986] Rodney Brooks. A robust layered control

system for a mobile robot. IEEE Journal of Robotics

and Automation, RA-2(1):14{23, 1986.

[Dudek et al., 1995] Gregory Dudek, Kathleen Ro-

manik, and Sue Whitesides. Localizing a robot with

minimum travel. In Proceedings of the 6th ACM-SIAM

Symposium on Discrete Algorithms, 1995.

[Elfes, 1990] Alberto Elfes. Occupancy grids: A stochas-

tic spatial representation for active robot perception.

In Proceedings of the Sixth Conference on Uncertainty

in AI. Morgan Kaufmann Publishers, Inc, July 1990.

[Horswill, 1993] Ian Horswill. Polly: a vision-based ar-

ti�cial agent. In Proceedings AAAI-93, 1993.

[Howard and Kitchen, 1996] Andrew Howard and Les

Kitchen. Navigation without localisation: a reac-

tive network approach. In Proceedings of the Fourth

International Conference on Control, Automation,

Robotics, and Vision, pages 873{877, 1996.

[Howard and Kitchen, 1997] Andrew Howard and Les

Kitchen. Fast visual mapping for mobile robot navi-

gation. In Proceedings of the IEEE International Con-

ference on Intelligent Processing Systems, page to ap-

pear, 1997.

[Lozano-Perez and Mason, 1984] T Lozano-Perez and

M Mason. Automatic synthesis of �nre-motion strate-

gies for robots. International Journal of Robotics Re-

search, 3(1):3{24, 1984.

[Moravec, 1988] Hans Moravec. Sensor fusion in cer-

tainty grids for mobile robots. AI Magazine, pages

61{74, Summer 1988.


