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Abstract

We present an optimal strategy for searching for a goal in a street which achieves
the competitive factor of

√
2, thus matching the best lower bound known before. This

finally settles an interesting open problem in the area of competitive path planning
many authors have been working on.
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1 Introduction

In the last decade, the path planning problem of autonomous mobile systems has received
a lot of attention in the communities of robotics, computational geometry, and on-line
algorithms; see e. g. Rao et al. [21], Blum et al. [4], and the upcoming surveys by Mitchell [20]
and Berman [3].

Among the basic problems is searching for a goal in an unknown environment. One is
interested in strategies that are correct, in that the goal will always be reached whenever
this is possible, and in performance guarantees that allow us to relate the length of the
robot’s path to the length of the shortest path from start to goal, or to other measures of
the complexity of the scene.

It is well known that there are some differences between the outdoor setting, where the
robot has to circumnavigate a set of compact obstacles in order to get to the target, and
the indoor setting where the obstacles are situated in a—not necessarily rectangular—room
whose walls may further impede the robot; see e. g. Angluin et al. [1]. Therefore, it is
reasonable to study the indoor problem in its most simple form, that is, where the walls of
the room are the only obstacles the robot has to cope with.

Suppose a point-shaped mobile robot equipped with a 360◦ vision system is placed inside
a room whose walls are modeled by a simple polygon. Neither the floorplan nor the position
of the target point are known to the robot. As the robot moves around it can build a partial
map of those parts that have so far been visible. Also, it will recognize the target point on
sight.

It is quite easy to see that in arbitrary simple polygons no strategy can guarantee a
search path at most a constant times as long as the shortest path from start to goal. In
fact, imagine a hall from which m straight corridors of equal length give on to smaller
chambers. The robot cannot but inspect these chambers one by one, moving forth and
back through the corridors. In the worst case, the target point is contained in the chamber
inspected last; then the robot’s path is 2m − 1 times as long as the shortest path from the
hall to the target.
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The question arose if there are subclasses of polygons for which a constant performance
ratio can be achieved. At FOCS ’91, Klein [13] introduced the concept of streets. A polygon
P with two distinguished vertices s and t is called a street if the two boundary chains leading
from s to t are mutually weakly visible, i. e. if each point on one of the chains can see at
least one point of the other; see Figure 1 for an example. Equivalently, from each s-to-t
path inside P each point of the polygon is at least once visible.

s

t

SP

L

R

Figure 1: A street.

In [13, 14] Klein provided the first competitive strategy for searching for the target
point, t, of a street, starting from s. He proved an upper bound of 5.72 for the ratio of the
length of the robot’s path over the length of the shortest path from s to t in P . Also, it
was shown that no strategy can achieve a competitive ratio of less than

√
2 ≈ 1.41. This

lower bound applies to randomized strategies, too.
Since then, the street problem has attracted considerable attention. Some research was

devoted to structural properties. Tseng et al. [24] have shown how to report all pairs of
vertices (s, t) of a given polygon for which it is a street; for star-shaped polygons many of
such vertex pairs exist. Das et al. [6] have improved on this result by giving an optimal
linear time algorithm. Datta and Icking [9] introduced generalized streets, a concept further
generalized by Datta et al. [8] and by López-Ortiz and Schuierer [18]. Ghosh and Saluja [10]
have described how to walk an unknown street incurring a minimum number of turns.

Other research addressed the gap between the
√

2 lower bound and the first upper bound
of 5.72 known for the class of street polygons. The upper bound was lowered to 4.44 in
Icking [11], then to 2.61 in Kleinberg [15], to 2.05 in López-Ortiz and Schuierer [17], to 1.73
in López-Ortiz and Schuierer [19], to 1.57 in Semrau [23], and to 1.51 in Icking et al. [12].
Further attempts were made by Dasgupta et al. [7] and by Kranakis and Spatharis [16].

But it has remained open, until now, if
√

2 is really the largest lower bound, and how to
design an optimal strategy for searching the target in a street; compare the open problems
mentioned in Mitchell [20].

In this paper both questions are finally answered. We introduce a new strategy and
prove that the search path it generates, in any particular street, is at most

√
2 times as

long as the shortest path from s to t. This result makes the street problem one of the few
problems in on-line navigation whose competitive complexity is precisely known (the only
other example we are aware of is the result by Baeza-Yates et al. [2] on multiway search).

One might wonder if this paper is but another small step in a chain of technical improve-
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ments. We do not think so, for the following reason. Unlike many approaches discussed in
previous work, the optimal strategy we are presenting here is not an artifact. Rather, its
definition is well motivated by backward reasoning.

The crucial subproblem can be parametrized by a single angle, φ. For each possible
value of φ a lower bound can be established, see Section 3.1. For the maximum value φ = π

the existence of a strategy matching this bound is obvious. We state a requirement in
Section 3.2 that would allow us to extend an optimal strategy from a given value of φ to
smaller values. From this requirement we can infer how the strategy should proceed; see
Section 3.3. The main difficulty is in proving that the strategy we arrive at does in fact fulfil
our requirement. This is done in Section 3.4, using well-known facts from planar geometry
and analysis.

After this work was finished, and made publicly available via Internet, we learned that
Schuierer and Semrau [22] have simultaneaously and independently studied the same strat-
egy. However, their analytic approach is quite different from our proof.

2 Definitions and known properties

We briefly repeat necessary definitions and known facts, mostly from [14].
A simple polygon P is considered as a room, the edges are opaque walls. Two points are

mutually visible, i. e. see each other, if the connecting line segment is contained within P .
As usual, two sets of points are said to be mutually weakly visible if each point of one set
can see at least one point of the other set.

Definition 1 A simple polygon P in the plane with two distinguished vertices s and t is
called a street if the two boundary chains from s to t are weakly mutually visible, for an
example see Figure 1. Streets are sometimes also denoted as LR-visible polygons [6, 24],
where L denotes the left and R the right boundary chain from s to t.

A strategy for searching a goal in an unknown street is an on-line algorithm for a
mobile system (robot), modeled by a point, that starts at vertex s, moves around inside the
polygon and eventually arrives at the goal t. The robot is equipped with a vision system
that provides the visibility polygon, vis(x), for the actual position, x, at each time, and
everything which has been visible is memorized. When the goal becomes visible the robot
goes there and its task is accomplished.

Compared to the shortest path, SP , from s to t inside P , it seems clear that most of
the time a detour is unavoidable. Our aim is to bound that detour.

Definition 2 A strategy for searching a goal in a street is competitive with factor c (or
c-competitive, for short) if its path is never longer than c times the length of the shortest
path from s to t.

The shortest path from the startpoint s to the goal t inside a simple polygon P , which
only turns at reflex1 vertices of P , is a useful guide for any strategy. At each time, either
the next vertex on the shortest path to t is known and there is no question where to go.
Or there is some uncertainty, but we will see that only two candidates remain for the next
vertex on the shortest path to t. Each part of the polygon which has never been visible is
called a cave, and each cave is hidden behind a reflex vertex. Such a reflex vertex v that
causes a cave is called left reflex vertex if its adjacent segments on P lie to the left of the
ray from the actual position of the robot through v, and analogously for right vertices.

1A reflex vertex is one whose internal angle exceeds 180◦.
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First, we consider the situation at the beginning. From the startpoint s we order clock-
wise around s the set of the left and right reflex vertices, obviously they appear in the
same clockwise order on the boundary of P . As seen from s, let vl be the clockwise most
advanced left reflex vertex and vr the counterclockwise most advanced right reflex vertex,
see Figure 2.

(i)

φ
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v2
l

SP
q
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vr=v1
r

vl=v1
l

v2
r

t

P ′
t
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E(el)

R

(ii)
s

Figure 2: Typical situations in streets.

If they exist, vertex vl belongs to the left chain L, and vr belongs to the right chain R.
Only the following situations occur. If both, vl and vr, exist, see Figure 2 (i), then the goal
has to be in one of the caves behind vr and vl, thus SP passes over either vr or vl. If there
is no vertex vr, see Figure 2 (ii), then the goal has to be inside the cave behind vl, and the
robot moves straight towards vl along SP . We proceed correspondingly if only vr exists.

To prove these properties assume that w. l. o. g. the goal is inside the cave behind a
left reflex vertex v0

l , see Figure 2 (ii), and v0
l appears before vl clockwise from s. Then

the boundary of P inside the cave P ′ behind vertex vl would belong to the right chain R.
The extension, E(el), of the invisible clockwise adjacent edge, el, of vl cannot hit the left
chain L. Therefore no point inside the cave P ′ can see a part of L, a contradiction to the
street property.

By the same arguments we can prove that the counterclockwise angle φ ≥ 0 between svr

and svl is always smaller than π, see Figure 2 (i). In other words, the situations in Figure 3
cannot occur. Therefore in the vicinity of s the robot should always walk into the triangle
vl s vr to avoid unnecessary detours to vr and vl.

Now we look at the general situation. We assume that a strategy has led the robot to
an actual position somewhere in the polygon. We will see that the properties discussed for
the start essentially remain valid. Vertices vl and vr are defined as before, i. e. vl ∈ L is the
clockwise most advanced left reflex vertex and vr ∈ R the counterclockwise most advanced
right reflex vertex.

There is no reason for a strategy to loose the current vl or vr out of sight, so we assume
that vl and vr are always visible, as long as they exist. As already discussed above, the
only non-trivial case is if both, vl and vr, actually exist. We call this a funnel situation.

4



vl

s

el

t

E(el)

φ

vr

φ
s

el

E(el)

t

vl

Figure 3: If the counterclockwise angle φ between vrs and svl at s is greater than or equal
to π then the polygon is not a street.

The angle, φ, between the directions from the actual position to vl and to vr is called the
opening angle, it is always smaller than π.

While exploring P in a funnel situation sequences of reflex vertices vl ∈ {v1
l , v2

l , . . . , v
m
l }

and vr ∈ {v1
r , v

2
r , . . . , v

n
r } occur until the funnel situation ends, see e. g. point q in Figure 2 (i).

If at this time only vl = vm
l exists (analogously for vr) then we know that the goal t is

contained in the cave of vl, we walk to vl, and the left convex chain v1
l v2

l . . . vm
l belongs

to SP .
So any reasonable strategy will proceed in the following way. If the goal is visible or only

one of vl and vr exists, then walk into that direction. Otherwise we have a funnel situation,
we choose a walking direction within the opening angle, i. e. between vl and vr, and repeat
this continuously until the first case applies again.

It is important to note that at the robot’s current position is a vertex of the shortest
path SP whenever a funnel situation newly appears and when the next vertex has been
reached after the funnel situation was solved. For example, at point q in Figure 2 (i) it is
clear that we have to go to vertex v2

l ∈ SP where the next funnel situation starts. Therefore,
if a strategy achieves a competitive factor c in each funnel situation (i. e. compared to the
shortest path between the two visited vertices of SP) then it achieves the same factor in
arbitrary streets.

vl

tr

φ
tl

vr

s

φ0

Figure 4: A funnel.

As a consequence, we can restrict our attention to very special polygons, the so-called
funnels. A funnel consists of two chains of reflex vertices with a common start point s, see
Figure 4 for an example. The two reflex chains end in vertices tl and tr, respectively, and
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the line segment tl tr closes the polygon. A funnel polygon represents a funnel situation
in which the goal t lies arbitrarily close behind either tl or tr, and the strategy will know
which case applies only when the line segment tl tr is reached. For analyzing a strategy,
both cases have to be considered and the worse of them determines the competitive factor.
Other funnel situations which end with a smaller opening angle or where the goal is further
away from tl or tr will produce a smaller detour.

Since the walking direction is always within the opening angle, φ is always strictly
increasing. It starts at the angle, φ0, between the two edges adjacent to s and reaches,
but never exceeds, 180◦ when finally the goal becomes visible. By this property, it is quite
natural to take the opening angle φ for parameterizing a strategy.

We can further restrict ourselves to consider only funnels with initial opening angle
φ0 ≥ 90◦. As was shown in [12, 23], any strategy which achieves a factor ≥ √

2 for all
funnels with φ0 ≥ 90◦ can be adapted to the general case without changing its factor in
the following way. First, we start with a simple walk along the ’static’ angular bisector of
the first pair vl and vr until an opening angel of π/2 is reached. Then we proceed with the
given strategy.

3 A strategy which always takes the worst case into account

3.1 A generalized lower bound

We start with a generalized lower bound for initial opening angles ≥ 90◦. For an arbitrary
angle φ, let

Kφ :=
√

1 + sinφ .

Lemma 3 Assume an initial opening angle φ0 ≥ π
2 . Then no strategy can guarantee a

smaller competitive factor than Kφ0.

Proof. We take an isosceles triangle with an angle φ0 at vertex s, the other vertices are tl
and tr; see Figure 5.

φ0

s

m trtl

Figure 5: Establishing a generalized lower bound.

The goal becomes visible only when the line tl tr is reached. If this happens to the left
of the midpoint m then the goal may be to the right, and vice versa. In any case the path
length is at least the distance from s to m plus the distance from m to tl. For the ratio, c,
of the path length to the shortest path we obtain by simple trigonometry

c ≥ cos
φ0

2
+ sin

φ0

2
=
√

1 + sinφ0 = Kφ0 . 2

For φ0 = π
2 , we have the well-known lower bound of

√
2 stemming from a rectangular

isoceles triangle [14].
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Remark also that the bound Kφ0 also applies for any non-symmetric situation, since at
the start the funnel is unknown except for the two edges adjacent to s and it may turn into
a nearly symmetric case immediately after the start. This means in other words that for
an initial opening angle φ0 a competitive factor of Kφ0 is always the best we can hope for.

In the following we will develop a strategy which achieves exactly this factor.

3.2 Sufficient requirements for an optimal strategy

In a funnel with opening angle π the goal is visible and there is a trivial strategy that achieves
the optimal competitive factor Kπ = 1. So we look backwards to decreasing angles.

Let us assume for the moment that the funnel is a triangle, and that we have a strategy
with a competitive factor of Kφ2 for all triangular funnels with initial opening angle φ2.
How can we extend this to initial opening angles φ1 with π ≥ φ2 > φ1 ≥ π

2?
Starting with an angle φ1 at point p1 we walk a certain path of length w until we reach

an angle of φ2 at point p2 from where we can continue with the known strategy; see Figure 6.
The left and right reflex vertices, vl and vr as defined in Section 2, do not change.

vl vr

w

φ2

φ1

p1

p2

l1

r2
l2

r1

Figure 6: Getting from angle φ1 to φ2.

Let l1 and l2 denote the distances from p1 resp. p2 to vl at the left side and r1 and r2

the corresponding distances at the right. If t = vl then the path length from p1 to t is
not greater than w + Kφ2l2. If now Kφ1l1 ≥ w + Kφ2l2 holds and the analogous inequality
Kφ1r1 ≥ w + Kφ2r2 for the right side, which can also be expressed as

w ≤ min(Kφ1l1 − Kφ2l2, Kφ1r1 − Kφ2r2) , (1)

then we have a competitive factor not bigger than Kφ1 for triangles with initial opening
angle φ1.

Note that condition (1) is additive in the following sense. If it holds for a path w12

from φ1 to φ2 and for a continuing path w23 from φ2 to φ3 then it is also true for the
combined path w12 + w23 from φ1 to φ3. This will turn out to be very useful: if (1) holds
for arbitrarily small, successive steps w then it is also true for all bigger ones.

Now let us go further backwards and observe what happens if the current vl or vr change.
We assume that condition (1) holds for path w from p1 to p2 and that vl changes at p2; see
Figure 7. The visible left chain is extended by l′2. Nothing changes on the right side of the
funnel, and for the left side of the funnel we have

w ≤ Kφ1l1 − Kφ2l2 = Kφ1l1 − Kφ2l2 + Kφ2l
′
2 − Kφ2l

′
2 ≤ Kφ1(l1 + l′2) − Kφ2(l2 + l′2) . (2)

The last inequality holds because Kφ =
√

1 + sinφ is decreasing with increasing φ. Here,
l1 + l′2 and l2 + l′2 are the lengths of the shortest paths from p1 and p2 to v′l, respectively.
But (2) in fact means that (1) remains valid even if changes of vl or vr occur.
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Figure 7: When p2 is reached, the most advanced visible point to the left jumps from vl

to v′l.

Under the assumption that (1) holds for all small steps where vl and vr do not change
we can make use of the additivity of (1) and obtain the following for the path length, W ,
from an initial opening angle φ0 to the point pend where the line segment tl tr is reached;
see Figure 7.

W ≤ min
(

Kφ0(length of left chain) − Kπlend,

Kφ0(length of right chain) − Kπrend

)
But, since Kπ = 1, this inequality exactly means that we have a competitive factor not
bigger than Kφ0. It only remains to find a curve that fulfills (1) for small steps.

3.3 Developing the curve

One could try to fulfill condition (1) by analyzing, for fixed p1, φ1, and φ2, which points p2

meet that requirement. To avoid this tedious task, we argue as follows. For fixed φ2, the
point p2 lies on a circular arc through vl and vr. While p2 moves along this arc, the length l2
is strictly increasing while r2 is strictly decreasing. Therefore, we maximize our chances to
fulfill (1) if we require

Kφ2l2 − Kφ1l1 = Kφ2r2 − Kφ1r1

or the equivalent
Kφ2(l2 − r2) = Kφ1(l1 − r1) . (3)

In other words: if we start with initial values φ0, l0, r0, we have a fixed constant
A := Kφ0(l0 − r0) and for any φ0 ≤ φ ≤ π with corresponding lengths lφ and rφ we want
that

Kφ(lφ − rφ) = A . (4)

In the symmetric case l0 = r0 this condition means that we walk along the bisector of vl

and vr.
Otherwise condition (4) defines a nice curve which can be determined in the following

way. We choose a coordinate system with horizontal axis vl vr, the midpoint being the
origin. We scale such that the distance from vl to vr equals 1.
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W. l. o. g. let l0 > r0. For any φ0 ≤ φ < π the corresponding point of the curve is the
intersection of the hyperbola

X2(
A

2Kφ

)2 − Y 2(
1
2

)2 −
(

A
2Kφ

)2 = 1

and the circle

X2 +
(
Y +

cotφ

2

)2

=
1

4 sin2 φ
.

Solving the equations gives, after some transformations, the following solutions.

X(φ) =
A

2
· cot φ

2

1 + sin φ

√(
1 + tan

φ

2

)2

− A2 (5)

Y (φ) =
1
2

cot
φ

2

(
A2

1 + sin φ
− 1

)
(6)

Since A <
√

1 + sinφ holds, the functions X(φ) and Y (φ) are well defined and continuous
and the curve is contained in the triangle defined by φ0, l0, r0.

Figure 8 shows how these curves look like for all possible values of φ and A and also for
l0 ≤ r0. All points with an initial opening angle of π

2 lie on the lower half circle.

-0.5

0

Y

-0.5 0.5
X

Figure 8: The curves fulfilling condition (4) for all values of φ and A. This figure was created
by using the computer algebra system Maple [5] which was also very helpful in checking the
transformations of the formulae in Sections 3.3 and 3.4.

Two cases can be distinguished. For A ≤ 1 the curves can be continuously completed
to an endpoint on the line vl vr with X(π) = ±A

2 and Y (π) = 0 where also (4) is fulfilled.
For A > 1 the curves end up in vl and vr, resp., with parameter φ = arcsin

√
A2 − 1 < π.

The curves for the limiting case A = 1 are emphasized with a thick line in Figure 8.
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3.4 Checking the requirements

We want to check that the given curve fulfills condition (1). Because of the additive property
of (1) it is sufficient to verify this for very small intervals. The arc length of the curve from
angle φ to φ + ε has to be compared to the right side of (1). Because of (3) the min can be
dropped.

For l0 = r0 we trivially have equality in (1). Otherwise we check if
√

X ′(φ)2 + Y ′(φ)2 < −(Kφlφ)′ . (7)

Here, X ′(φ) and Y ′(φ) denote the derivatives of X(φ) and Y (φ) from (5) and (6). Then
by integration we have

∀ε > 0
φ+ε∫
φ

√
X ′(φ)2 + Y ′(φ)2 dφ ≤ Kφlφ − Kφ+εlφ+ε .

This is what we need. For the hyperbola, we have

lφ =
1
2
A

2Kφ

X(φ) +
A

2Kφ
and therefore Kφlφ =

K2
φ

A
X(φ) +

A

2
.

This can be used in (7), and after squaring the following remains to show.

F (φ, A) < 0 for all
π

2
< φ < π and 0 < A <

√
1 + sinφ where

F (φ, A) :=
X ′(φ)2

A2
(A2 − (1 + sin φ)2) − cos2 φ

A2
X(φ)2

−2
cos φ(1 + sinφ)

A2
X(φ)X ′(φ) + Y ′(φ)

We insert the values of the derivatives into F (φ, A). Using trigonometric identities we
simplify F (φ, A) in such a way that a factor of 1

4 cot2 φ
2 can be extracted and only even

powers of A remain in the rest.
Substituting A2 by B, we define

G(φ, B) := F (φ, A)
(1 + tan φ

2 )2 − A2

1
4 cot2 φ

2

.

This does not change the sign since A2 < 1 + sinφ < (1 + tan φ
2 )2. As a polynom in B,

G(φ, B) has degree 2 and can be written in the form

G(φ, B) = (V (φ)B + H(φ))B .

Since B > 0, G(φ, B) can only become 0 if B = −H(φ)/V (φ), but B < 1 + sinφ and

−H(φ)/V (φ)− (1 + sin φ) simplifies to −sin φ cosφ

cos φ + 2
> 0, which proves that G(φ, B) 6= 0 for

all π
2 < φ < π and 0 < B < 1 + sin φ. So the sign of G(φ, B) is constant, i. e. constantly

negative, as one can verify. This proves (7) and therefore (1) for the curves of Section 3.3.
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3.5 The main result

To summarize, our strategy for searching a goal in an unknown street works as follows.

Strategy WCA (worst case aware):

If the initial opening angle is less than 90◦ walk along the angular bisector of vl

and vr until a right angle is reached; see the end of Section 2.

Depending on the actual parameters φ0, l0, and r0, walk along the corresponding
curve from Section 3.3 until one of vl and vr changes. Switch over to the curve
corresponding to the new parameters φ1, l1, and r1. Continue until the line tl tr
is reached.

Theorem 4 By using strategy WCA we can search a goal in an unknown street with a
competitive factor of at most

√
2. This is optimal.

The proof is contained in Sections 3.1 through 3.4.

4 Conclusions

We have developped a competitive strategy for walking in streets which guarantees an
optimal factor of at most

√
2 in the worst case, thereby settling an old open problem.

Furthermore, the strategy behaves even better for an initial opening angle φ0 > 90◦ in
which case an optimal factor Kφ0 =

√
1 + sin φ0 between 1 and

√
2 is achieved.

The idea for this strategy comes from the generalized lower bound in Lemma 3 and from
the two conditions (1) and (3), which are not strictly necessary for the optimal competitive
factor but turn out to be very useful. Therefore, we do not claim that this is the only
optimal strategy. It would be interesting if there are substantially different but also optimal
strategies.
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