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Abstract

FM sonar sensors have been used in mobility aids
for the visually-impaired. However, previous FM
sonar systems have generated continuous audio
signals and rely on the user interpreting them.
Our research work is carried out to solve the
problem of overloading users of FM sonar sys-
tem with excessive information by machine in-
terpreting the audio signal. The signal is sam-
pled and Fourier transformed to generate an FM
sonar image. Awutomatic computer analysis of
the FM sonar image is carried out to compress
and extract information for the purpose of object
recognition. A method is developed to classify
an object into one of the three groups: smooth
surfaces, repetitive objects and textured surfaces.
This method is based on the evaluation of the au-
tocorrelation function of a single raw FM sonar
image. A second method is also developed to re-
liably distinguish surfaces with varying degrees
of roughness. An FM sonar model is constructed
to predict FM sonar images of a rough surface
at different sensor orientations. Templates are
generated from the model and matched against
the real images. Surfaces with varying degrees of
roughness can therefore be identified.

1 Introduction

Ultrasonic rangefinders have been widely used for the
guidance of mobile robots (Borenstein & Koren 1989;
Bozma & Kuc 1994; Brown 1985; Elfes 1987). The
most commonly used type of ultrasonic (‘sonar’) de-
vice is the time-of-flight sensor, which emits a brief
pulse of ultrasound and measures the time until an
echo is detected at the transducer. This delay is pro-
portional to the distance travelled and can therefore
be used to measure the range of the nearest reflect-
ing object. Another type of sonar sensor, frequency-
modulated (FM) sonar, has not been used extensively
in robotics but has found some acceptance in mobil-
ity aids for the visually-impaired, such as the Sonic
Torch and the Sonic-guide. An FM sonar sensor emits
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a succession of ‘chirps’ in which the frequency of the
ultrasound changes between lower and upper limits.
The distance to a reflecting object is found by blend-
ing the echo with the transmitted signal and analysing
the resulting ‘beat’ frequencies. This technique will be
described in more detail later in this paper.

A potential advantage of FM sonar over simple time-
of-flight sonar is that the ‘beat’ signal contains infor-
mation about all of the reflecting objects, not just the
nearest one. In fact, the Sonic Torch and the Sonic-
guide simply present this signal to the user through an
earpiece or headphones. Some trained users can then
determine not just the distance to a number of objects
but also their texture. One difficulty with this direct
presentation of the beat signal is that it monopolises
the user’s sense of hearing, a vital source of information
for a blind person. It also requires a lengthy training
period before the signal can be well understood.

In this paper we describe an investigation into the
automatic analysis of the output from an FM sonar
sensor. It is hoped that a blind user could be given
the results of this analysis, possibly through synthetic
speech. This will decrease the amount of audible infor-
mation given to the user and will eliminate the need
for training.

Section 2 explains the principle of FM sonar in more
detail and describes the sensor which was used in this
investigation. Section 3 investigates the properties of
the ‘beat signal’. The beat signal can be transformed
to the frequency domain, allowing the reader to see
the type of information which is present in the signal.
Throughout this paper, we will refer this frequency
spectrum of the beat signal as the FM Sonar Image.
Two methods are developed in order to automatically
analyse the FM sonar images and to tackle the problem
of object recognition. Section 4 describes the method
based on analysing a single FM sonar image. Section
5 describes the alternative method based on analysing
multiple FM sonar images obtained at the same dis-
tance but with different sensor orientations.

The first method is fast and effective in recognis-
ing specific spatial geometric configurations, such as
walls and stairs. The second method can be used to



obtain robust surface texture information, such as dis-
tinguishing glass windows from rough brick walls. The
two methods can be combined together to achieve sat-
isfactory performance, depending on the user’s require-
ments. Section 6 summarises the research and presents
conclusions and finally closes the paper by considering
suitable topics for further research.

2 The Sensor

The FM rangefinder uses two ultrasonic transducers:
one transmitter and one receiver. In contrast to sim-
ple time-of-flight sensors, which transmit a single short
pulse of ultrasound, the FM sensor transmits a repeat-
ing pattern of varying frequency as shown in Figure 1.
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Figure 1: Frequency pattern of the FM sonar
The dotted line shows the frequency of the received echo if
an object is placed in front of the sonar.

Imagine a single object which reflects this signal back
to the receiving transducer. The received signal (echo)
will then have the same sawtooth frequency pattern
but it will be ‘out of step’ with the transmitted sig-
nal. After a delay during which the sound travels to
and from the object, there is a period of overlap dur-
ing which the frequency-ramped signal is being trans-
mitted and received simultaneously. The difference be-
tween the frequencies of the two signals, § F', is constant
during the overlap period. The value of 6 F' is propor-
tional to the delay between transmitting and receiving
the signal, a delay which is in turn proportional to the
distance to the reflecting object. The range can there-
fore be deduced from the value of 6 F'.

To find 6 F', a new signal is created which is the prod-
uct of the transmitted and received signals. This prod-
uct can be shown to have two additive components:
one has a frequency equal to the sum of the original
two frequencies; the other has a frequency equal to the
difference between the two frequencies, 6 F'. The value
of 6F can therefore be found by applying a Fourier
transform to the product signal. (In practice the other,
high frequency, component can not be detected at the
sampling rates used in this sensor.)

In experimental environments the sensor received
echoes from a number of environmental features, giving
rise to multiple peak frequencies in the Fourier trans-
form. Therefore, as will be demonstrated later, the
sensor is able to detect several objects simultaneously.

The sensor that was used in this investigation has

the characteristics as shown in Table 1. The sensor
is connected through an earphone socket to a laptop
PC. The PC has a PCMCIA-compatible card which
includes an 8-channel analogue-to-digital converter, 3
digital inputs and 3 digital outputs. The maximum
total rate at which the PC can drive the ADC is 25
kHz. One of the channels has been used to sample the
‘beat signal’. The third digital input channel has been
used as an external trigger for the sampling. (The first
stage in the frequency generation process in the sensor
is to create a square wave. This square wave has been
connected to the digital input and acts as a trigger.)

To make it easier to collect experimental data, two
buttons have been mounted on the sensor to provide
input to the remaining two digital input channels on
the PC. The state of these buttons can be read by the
PC, enabling the system to be controlled without using
the keyboard.

| Name | Meaning | Value ]
fl Lowest transmitted frequency 45 kHz
th Highest transmitted frequency 90 kHz
tl Time for which signal stays at fl | 24 ms
tr Time to ramp from fl to fh 160 ms

Table 1: Sensor Characteristics

3 The Properties of the ‘Beat Signal’

In the original guidance system, the FM sonar out-
put, i.e the beat signal, was directly presented to the
user through an earpiece or headphone. Users were
required to interpret information contained within the
beat signal themselves. In our work, the beat signal is
sampled and transformed for the purpose of automatic
analysis. Before describing the automatic analysis, we
first examine the properties of this beat signal.

3.1 The Sampling Effect

The discrete Fourier transform determines the frequen-
cies present in the beat signal by taking a set of sam-
ples. The sampling process itself can lead the Fourier
transform to detect component frequencies which were
not present in the original signal. The following two
examples will make this clear.

Figure 2(a) shows a computer-generated example in
which the wavelength of the signal was chosen to be
an exact fraction of the total number of sample points.
The sample therefore includes a whole number of cy-
cles of the signal and the frequency distribution shows
a single sharp peak. In contrast, Figure 2(b) shows the
results when the wavelength is not an exact fraction of
the number of sample points. In this case the sample
ends part-way through one of the cycles of the signal.
The Fourier transform then generates additional fre-
quency components to describe the discontinuity. The
peak in the frequency distribution is then less sharp.
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Figure 2: Illustration of the sampling effect
The beat signal is sampled and transformed to the fre-
quency domain. The horizontal axis is the frequency 6 F
which is proportional to the range. The vertical axis shows
the strength of the beat signal which is called ‘Echo Ampli-
tude’. We call this frequency representation an FM sonar
image.

This characteristic shape will be seen in the experimen-
tal results presented in the remainder of this paper.

3.2 Compensation for Loss of Signal
Power

The further the sound has to travel before it reaches
the receiving transducer, the weaker the echo will be.
Two factors contribute to the loss of power:

e Dispersion of the signal. The transmitted sig-
nal forms part of a spherical wavefront. The signal
power therefore decreases with the square of the dis-
tance from the transducer. If the signal is reflected
from a flat specular surface the signal power contin-
ues to decrease as the square of the total round-trip
distance. If, on the other hand, the signal is reflected
as a diffuse echo from, for example, a convex corner,
then the signal power decreases as the fourth power
of the distance to the object.

e Attenuation of the signal. As the sound travels
through the air, it loses power because of factors such
as the viscosity of the air. This attenuation takes the
form of exponential decay over distance. The rate of
decay is higher for higher-frequency sound.

Some time-of-flight ultrasonic rangefinders include a
variable-gain amplifier in the receiving electronics to
compensate for this loss of signal power; the longer
the echo takes to arrive, the higher the gain of the
amplifier. Such an approach is reasonable for time-of-
flight sensors because the transmitted signal is short
and one is usually only interested in the first echo.
However, the situation is different with the FM sensor.
At any moment the received signal could be a mixture
of multiple echoes, each with its own signal power and
frequency. A superficially-tempting approach is to ap-
ply a frequency-dependent amplifier to the results of
the FFT of the beat signal. The lower the frequency
in the beat signal, the nearer the reflecting object and
the less signal power will have been lost. Unfortunately
this situation is complicated by the variation of atten-
uation rate with signal frequency. A single frequency

in the beat signal will be caused by echoes at a range
of frequencies, each with its own attenuation rate.

Given the difficulty of finding an effective amplifica-
tion function, it was decided not to implement a time-
or frequency-dependent amplifier. Instead the display
software on the PC and the graphs in this paper simply
scale the display of the beat signal and the frequency
spectrum so that the largest measured value achieves
a full-scale deflection.

3.3 Crosstalk and Minimum Range

The crosstalk problem is significant when the FM sonar
is used to measure a distant object, as illustrated in
Figure 3. Figure 3 shows the frequency spectrum for
a distant object, a bookcase at a range of about 3.5
metres. Two distinct peaks can be seen, correspond-
ing to the front of the bookcase and the wall behind
it. But even more noticeable is the number of low-
frequency components, which would be interpreted as
range readings of less than 300 mm. However, there
were no obstructions close to the sensor in practice.
These low-frequency values are caused by direct trans-
mission of the signal from the transmitter to the re-
ceiver within the sensor itself.
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Figure 3: A bookcase at 3.5 metres

As the echo from the detected obstacle becomes
weaker, the low-frequency components begin to dom-
inate the frequency spectrum and restrict the auto-
scaling process, making it harder to detect distant ob-
jects. To prevent this, it was decided to discount com-
ponents of the frequency spectrum which correspond
to a specified minimum range, which was taken to be
300 mm. The auto-scaling process can then magnify
the weaker signals from more distant objects.

4 Object Recognition with a Single
FM Sonar Image

The capability of FM sonar has already been demon-
strated by users of guidance systems. Users of the
Sonic Guide (which includes two sensors, one placed
on each side of a pair of spectacles) report extraor-
dinary ability to discriminate between environmental
features by listening to the stereo audio output from
the FM sonar sensor (Kay 1985): A user one of the
authors met recently could detect the difference be-
tween conifers and deciduous trees. Recently, Harper
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Figure 4: FM sonar images of common objects
Plot (a) shows the image of multiple targets including a mesh, a bar fence and a brick wall. Plot (b) shows the image of
stone steps. Plot (c) shows the image of a rubbish bag. Plot (d) shows the image of an overhanging tree branch.

and McKerrow reported their experiment in classify-
ing plant species with the aid of an FM sonar using
a neural network (Harper & McKerrow 1995). How-
ever, despite its sensing capability, there are problems
associated with using Sonic-guide. The problems are
twofold:

e Training Requirement The user of Sonic-guide is
normally required to be trained for a lengthy period
before he(she) can well understand the audio signal.

e Information Overloading The continuous audio
signal output can overload the user and sometimes
become irritating.

In order to solve the problems mentioned above, ma-
chine interpretation of the FM sonar output is neces-
sary. By automatically analysing the FM sonar out-
put, we aim to compress the FM sonar output and
extract some of the most important information such
as the object types and texture from the raw FM sonar
output. Fortunately, recent fast increases in computa-
tional power make it feasible to interpret FM sonar
outputs and process them in real time.

Two methods are developed to automatically anal-
yse the FM sonar image for the purpose of object recog-
nition. The first method is described in this section
and it is based on analysing a single FM sonar im-

age. This method is fast and effective in recognising
spatial correlation in a group objects (e.g walls and
steps). However, this method is not robust when it is
used to examine rough surfaces, because the FM sonar
image also depends on the sensor orientation in this
case. To solve the problem, a second method is de-
veloped and it is described in Section 5. This method
is based on analysing multiple FM sonar images ob-
tained by sweeping the sonar across the surface being
examined. The second method is much more complex
and time-consuming, but it gives reliable surface tex-
ture discrimination (e.g distinguishing a glass window
from a rough brick wall). The two methods may be
combined together to give satisfactory performance.
4.1 FM Sonar Images of Objects in an
Urban Environment

Before we proceed with our machine interpretation of
a FM sonar image, we examine some typical FM sonar
images of a variety of objects which are likely to be
encountered on town streets (Figure 4). It is shown
in Figure 4 that the sensor is able to detect multiple
reflecting surfaces simultaneously, and the image ei-
ther shows a number of objects or gives an indication
of the texture or shape of the object. The sensor can



‘see through’ certain objects in Figure 4(a), where the
sensor was pointing at 2 c¢m square wire mesh at 1.5
metres, behind which was a metal bar fence at 2.2 me-
tres and a brick wall of building at 3.2 metres. All three
objects were clearly detected. On the other hand, Fig-
ure 4(b) shows the characteristic periodicity associated
with steps. Finally in Figure 4(c) and (d) we show typ-
ical images resulted from clusters of objects. It is clear
that the echo energy is spread over a large group of
ranges. Figure 4 shows that each object generates its
own specific pattern in the FM sonar image.

4.2 An Automatic Analysis System

An FM sonar image can be mostly characterised by its
first two statistical moments, the mean and variance.
The mean shows the average echo energy, i.e the aver-
age intensity of the FM sonar image. The variance de-
scribed by the autocorrelation is more important, since
it describes the spatial correlation of the FM sonar im-
age. Based on the evaluation of the autocorrelation
function (ACF) of the image, we have developed an
automatic analysis system, which is able to categorise
an object into one of the following three groups:

e Smooth surfaces
e Repetitive objects (stairs or step-like objects)
e Textured surfaces or a group of objects (clusters)

The system is illustrated in Figure 5.
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Figure 5: The automatic analysis system

Features are first extracted from the image by
thresholding the whole image, and picking out those
area(s) with amplitudes above an adaptive threshold.
The adaptive threshold is chosen as a percentage of
the mean intensity of the FM sonar image. The early
returns from the sonar (corresponding apparently to
short ranges) resulted from the crosstalk are not in-
cluded in the processing. A minimum range for valid
results is set to remove these components.

Each extracted feature is then enhanced through rec-
tification. The mean amplitude of each feature is com-
puted. Amplitudes exceeding the mean value are as-
signed a value of 1 and amplitudes below the mean
value are assigned a value of 0. The resulting image

is binary. Such a process can be regarded as a crude
low-pass filtering process which not only provides a sig-
nificant reduction in the effects of noise but also speeds
up the evaluation of the ACF.

The ACF is evaluated by:
S0y’ SiSitg
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(1)
where $; is the echo amplitude at range 7 in the rec-
tified FM sonar image, j is the spatial correlation dis-
tance, and N is the maximum range of the image. Per-
forming the ACF evaluation on FM sonar images of
wall, steps, rubbish bag and overhanging branches in
Figure 4, we can obtain their corresponding ACFs as
plotted in Figure 6.
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Figure 6: ACFs of various objects
Plot (a) shows the ACF of a brick wall. Plot (b) shows the
ACF of stone step. Plot (c) shows the ACF of a rubbish
bag. Plot (d) shows the ACF of overhanging tree branch.

It is shown that periodicity can be detected and that
stairs can be distinguished as shown in Figure 6(b). Al-
though at first sight the image for the branches looks
as if there may be periodicity here (Figure 4(d)), it is
clear from its autocorrelation function that such peri-
odicity if any, is very weak (Figure 6(d)). The rate of
decay of the ACF describes the characteristics of the
surface, with smooth surfaces showing a fast rate of de-
cay (Figure 6(a)), while the rate of decay of the ACF
for other clusters is much slower (Figure 6(c) and (d)).

The result from the ACF evaluation is used for the
purpose of matching and classification. The periodicity
of the ACF is examined first. The first local minimum
and local maximum are extracted from the ACF. A
stair or step-like object is recognised if the minimum
falls below its threshold and the maximum exceeds its
threshold. Both threshold values are determined from
experiments. If the periodicity of the ACF is not de-
tected in the ACF, the decay rate of the ACF is then



examined. The distance where the correlation falls be-
low 10% is estimated. A smooth surface is recognised
if the distance is small, otherwise a texture surface
(or clusters) is recognised. The result after matching
and classification is finally communicated to the user
through a speech generator.

Experiments were repeatedly carried out to examine
different types of object with different sensor position
and orientation. It is found that the system works suc-
cessfully and it is able to interpret and categorise most
of the objects in a real world consistently. However
errors were encountered while the FM sonar was used
to examine rough surfaces. The system was not able
to categorise a rough surface consistently. The system
classifies a rough surface either as a smoother surface
or a textured surface depending on the specific orien-
tation of the sensor. This problem is further described
and tackled in the next section.

5 Surface Recognition Using Multiple
FM Sonar Images

In the previous section, we developed an object recog-
nition system. The system is based on analysing a
single FM sonar image, and is effective in categoris-
ing an object into one of the three groups. However
the system is not able to discriminate different surface
textures, since the FM sonar image of a rough surface
changes with different sensor orientations. The prob-
lem is illustrated in Figures 7 and 8.
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Figure 7: FM sonar images of a smooth wall
All images obtained at a normal distance of 1.55 metres to
the wall, but with different orientation to the wall. A zero
degree orientation means the FM sonar is directed normal
to the wall.

In Figure 7, images of a smooth surface were ob-
tained at the same distance but with different sensor
orientations. It can be seen that the shape of the FM
sonar image does not depend on the sensor orientation.
The images shows a single peak at the range equal to
the normal distance to the wall until it is lost in noise.

Echo Amplitude

Orientation (degree)

Range (metre)

Figure 8: FM sonar images of a rough wall
All images obtained at a normal distance of 0.5 metres to
the wall, but with different orientation to the wall. A zero
degree orientation means the FM sonar is directed normal
to the wall

The same experiment was carried out for a rough sur-
face and the images are plotted in Figure 8. It can
be seen that the basic shape of a rough surfaces image
varies significantly with varying sensor orientation. As
the orientation is large, echo energy is spread much
wider. On the other hand, as the orientation is close
to zero, echo energy is more concentrated on the spec-
ular direction, and the image has the same shape as
that of the smooth surface. Because the image of a
rough surface changes significantly with different sen-
sor orientations, surface texture recognition based on
a single FM sonar image is not reliable. Note that a
rough surface is visible to the FM sonar for a much
larger angular interval than a smooth surface.

The problem is tackled by analysing multiple images
simultaneously. By performing scattering analysis and
modelling a rough surface as a Gaussian distributed
process, we can construct a model which is able to pre-
dict FM sonar images for surfaces with varying degrees
of roughness. By matching the templates generated
from the model with FM sonar images, we can dis-
criminate different surface textures, and estimate the
texture parameter in terms of the mean height devia-
tion and the spatial correlation constant of the surface.

5.1 Model Construction

When the FM sonar is used to examine the texture
of a rough surface, the transmitted wave of the FM
sonar can be considered as a collection of rays as shown
in Figure 9. Each ray is directed towards the surface
and backscattered from it. The backscattered ray is
received by the FM sonar and results in an echo am-
plitude value at the range d = do/cos™ @ in the FM
sonar image, where dy is the normal distance to the
surface and 6 is the incident angle of an individual ray.
Therefore, we can describe our FM sonar image < of a
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Figure 9: Examining a surface using the FM sonar

surface as an ensemble of echo components, where each
echo component is associated with the ray of incident
angle #, and the amplitude of each is described by:

Se = ppbs

where pps is the scattering coefficient of the surface
in the backward direction, and g is the sonar beam
strength defined from the sonar directivity. Once the
scattering property of a rough surface and the directiv-
ity of the sonar are known, the FM sonar model can be
constructed and the FM sonar image can be predicted.
The theoretical derivation of this model is cumber-
some and it is not presented here. The reader is re-
ferred to (Kao 1996) for more details. Here, we only de-
scribe one of most important procedures during model
construction: the statistical surface modelling.
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Figure 10: Simulated surfaces using a Gaussian model.
The roughness of the surface is described by the height de-
viation o. Plot (a), (c) and (e) show surfaces with increas-
ing o. The surface irregularity is described by the spatial
correlation constant 7. The heigh deviation of surfaces in
plot (b), (d) and (f) are same as those in plot (a), (c) and
(e) respectively, but their spatial correlation constant 7" are
increased.

Our rough surface is modelled as a Gaussian distri-
bution (Bozma & Kuc 1994; Beckmann & Spizzichino
1963). In this model, a Gaussian distribution of the
surface height is assumed with zero mean and stan-
dard deviation o. o describes the surface roughness.
If o is small comparing with the wavelength, the sur-
face is smooth. If ¢ is large, then the surface is rough.
The distribution of the valleys and hills on the surface
is modelled by a spatial correlation constant 7. T is

small if the surface is irregular and 7" is large if the
surface is regular.

5.2 Template Matching

The sonar model is expressed in terms of the ratio of
the surface correlation constant to the mean surface
height deviation: T'/o (Kao 1996). The ratio T'/c de-
scribes the surface texture. T'/o is small if the surface
isrough. T'/o becomes larger if the surface is smoother.

A template can be generated from the model to pre-
dict FM sonar images of a rough surface at different
sensor orientations. Several templates can be gener-
ated from the model using different values of T'/c. Let
us use IMJ to denote each of the templates. The tem-
plate is matched against the true FM sonar images
denoted by S7 obtained from the experiment. We
use the correlation coefficients to examine the match-
ing (mismatching). The correlation coefficient for each
template is given by

. N M
M, _ 2352221 Si 4505
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where element-to-element multiplication is performed
between a true image and a predicted image from the
template. The product is summed for the whole im-
age size N. The summation is repeated for all images
at different sensor orientations 3. The denominator
provides a normalising factor to generate a correlation
coefficient v™7 between 0 and 1. A perfect matching is
obtained if ¥Mi = 1, a mismatching is obtained if v
is close to zero.

v

[ T/o v |
5 0.75
2.0 0.82
25 0.84
3.0 0.82
35 0.78
7.0 0.73

Table 2: Correlation coefficients

The correlation coefficient is evaluated for each tem-
plate with different value of T'/o. The template which
gives the maximum correlation coefficient is declared
as the matched model. Table 2 shows the correlation
coefficients for the rough surface plotted in Figure 8.
The correlation coefficient is found to be a maximum
of 84% where the ratio T'/¢ is 2.5. Therefore the tem-
plate with T'/c is declared as the matched model. Tt
can be seen from Figure 11 that the prediction from
the sonar model fits the experimental results very well.
As predicted, the maximum amplitude drops and the
acoustic energy spread wider as the sensor orientation
increases.
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Figure 11: Matched FM sonar images of a rough wall
The matched prediction obtained from the sonar model
with T'/o = 2.5 is superimposed on the true images from
Figure 8.

6 Conclusion

In this paper, we have described methods for auto-
matic analysis and interpretation of FM sonar output
to assist a visually impaired person. The basic method
based on analysing a single image is very efficient and
effective in identifying smooth surfaces and stairs, and
this method can be further compensated by analysing
multiple images to discriminate and identify different
surface texture. The results in classification suggest
that the FM sonar is a promising device for low cost,
fast discrimination between a number of features useful
for navigation in a street scene.

One of the ongoing themes in the future research is
how far information should be abstracted before it is
presented to the user. People are far better than com-
puters at recognising patterns, but the presentation of
large amount of raw data can overload the sensing sys-
tems available to the blind. The early work on the FM
sonar is encouraging but it is too early still to know
whether a sufficient range of features can be included,
either with the sonar alone or in conjunction with an-
other sensor such as vision.
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