Passive Distance L ear ning for Robot Navigation

Sven Koenig

Reid G. Smmons

School of Computer Science
Carnegie Mélon University
Pittsburgh, PA 15213-3890

skoenig@cs.cmu.edu

Abstract

Autonomous mobile robots need good model s of
their environment, sensors and actuators to nav-
igate reliably and efficiently. While this infor-
mation can be supplied by humans, or learned
from scratch through active exploration, such ap-
proaches are tedious and time-consuming. Our
approach is to provide the robot with the topo-
logical and geometrical constraintsthat are easily
obtainable by humans, and have the robot learn
the rest while in the course of performing its
tasks. We present GROW-BW, an unsupervised
and passive distancelearning algorithmthat over-
comes the problem that the robot can never be
sureabout itslocationif itisnot allowed toreduce
its uncertainty by asking a teacher or executing
localization actions. Advantages of GROW-BW
includethat the robot can be used immediately to
perform navigationtasksand improvesitsperfor-
mance over time, focusing its attention to routes
that are more relevant for its tasks. We demon-
strate that GROW-BW can learn good distance,
sensor, and actuator models with only a small
amount of experience.

1 Introduction

We are interested in providing the technol ogy for office or
hospital delivery robotsthat are autonomous. Assume that
you have just purchased such a delivery robot. Before it
can be used, it must gain some knowledge of its new en-
vironment. This can be achieved by either providing the
robot with the necessary information or letting it exploreits
environment autonomously. Both methods have disadvan-
tages. Providing the robot with the necessary information
suffers from the problem that some information is difficult
or impossibleto provide by humans. The sensor and actua-
tor model s of the robot, for example, depend not only on its
environment, but also on characteristics of the robot itself,
and one cannot expect consumersto befamiliar with details

reids@cs.cmu.edu

of their newly purchased delivery robots. Other data could
be provided by the consumers, but might be cumbersome to
obtain. If they do not know the exact lengths of their corri-
dors, for example, they have to measure them — a task that
the robot could do itself. Letting the robot explore its en-
vironment autonomously, a method that many researchers
have investigated [Kuipers and Byun, 1988] [Basye et al.,
1989] [Mataric, 1990] [Dean et al., 1992], suffers from the
problemthat the robot cannot be used immediately and, dur-
ing exploration, islikely to get into situations of confusion
or danger that require human intervention, since it has no
initial knowledge of itsenvironment. We therefore suggest
combining both methods: the robot is provided with some
information that is easily available to humans, and it then
autonomoudly learns the rest of the information needed for
reliable navigation while in the process of performing its
delivery tasks.

We start by supplying the robot with a topological map of
its environment. A topologica map specifies landmarks
(such as corridor junctions) and how they connect. Such a
map can easily be obtained from a sketch drawn by people
familiar with the environment. Figure 2 (center and right),
for example, shows a sketch of acorridor environment and
the corresponding topological map. Once equipped with a
topol ogical map, therobot could use landmark-based navi-
gationto perform delivery tasks. However, landmark-based
navigation techniques suffer from the problem that imper-
fect sensors occasionally miss landmarks and even perfect
sensors are not able to distinguish between al landmarks,
such ascorridor junctionsof the sametype (perceptua alias-
ing problem).

The reliability and efficiency of the robot can be improved
by adapting its sensor and actuator models to its environ-
ment and, a simpler task for people, by providing it with
distance information. However, people often err even with
respect to distances — unless they measure them. Although
the sketch of Figure 2 (center), for example, correctly spec-
ifies the topology, some of the arc lengths are incorrect. It
is therefore much more reliable and convenient to let the
robot learn the distance, sensor, and actuator models itself.

Figure 2: Corridor environment, sketch, and corresponding topol ogical map

We want the learning to be unsupervised (not to require a
teacher during learning, after it has been supplied with the
topological map) and passive (not to explicitly control the
robot’s actions). Unsupervised, passive distance learning
is not a trivial task, because the robot can never be sure
about itslocation: it has no distance information available
initially, its sensors and actuators are noisy, and it cannot
reduce the uncertainty about itslocation by asking ateacher
or executing localization actions. In fact, its positional un-
certainty may be quite significant. For example, Figures 1
(right) and 2 (left) show that after traveling some distance,
the robot is unsure about its location (the sizes of the cir-
cles are proportiond to the probability mass at each loca-
tion). On the other hand, unsupervised, passive learning
has the advantages that the robot can be used immediately
to perform delivery tasks (since it has a topologica map
available) and it does not require a separate training phase
or (ideally) any externa help. In addition, the robot never
stops learning: whenever it moves, it gains more and more
experience with its environment which it continually uses
to improve its distance, sensor, and actuator models and,
as a consequence, aso its navigation performance. Sinceit
gainsmoreinformation about routesthat the robot traverses
more often, learning focuses its attention to routes that are
more relevant for the delivery tasks.

In the next severa sections, we describe our algorithm for
learning distances, sensor models, and actuator models in

an indoor office environment. We conclude by presenting
experimenta results showing that the algorithm can learn
good model s with only a small amount of experience.

Our research iscarried out on Xavier and itssimulator (Fig-
ure 1). Xavier is built on an RWI B24 base and includes
bump sensors, sonars, alaser range sensor, and a color cam-
eraon apan-tilthead. Control, perception, and planningare
all carried out ontwo on-board, multi-processing 486-based
machines. Xavier roams the corridors of our building and
can be controlled by users worldwide via its experimen-
tal World Wide Web interface, that allows them to specify
goa locations and tasks that Xavier has to perform there.
The interface can be reached via Xavier's homepage at
http://www.cs.cmu.edu/~Xavier. Eventualy, Xavier will
be used to deliver memos, letters, and printouts between
the offices in our building.

2 Our Distance Learning Approach

We have developed GROW-BW, an unsupervised, passive
distance learning agorithm that uses an extension of the
Baum-Welch (BW) algorithm [Rabiner, 1986]. GROW-
BW is an efficient algorithm that does not affect the other
components of the robot system (except by making them
operate more reliably) and can tune the initial (“factory
programmed”) sensor and actuator models to better match
the environment of the robot while it learns the distances

Figure5: Corridor of length 2 to 4 meters

nigque that iteratively changes the structure of the POMDP
based on theresults of the extended Baum-Welch a gorithm
(@). It startswith asmall bound I nax(c) and growsit if nec-
essary until thereis a high probability that the real corridor
length is contai ned within the bounds.

3 ThePOMDP Model

POMDPs are popular models for optimal decision making
in uncertain conditions [Cassandra et al., 1994] [Parr and
Russell, 1995]. Our POMDP incorporates the distance un-
certainty and the sensor and actuator models of the robot.
It is specified as a finite set of states S, a set of actions
VA(S) C VA, for each state s € S that can be executed in
that state, transition probabilitiesp(s'|s,va) foral s,s € S
and va € VA(9) (the probability that the successor stateis
s if the robot executes action va in state s), and sensor
probabilities pys(f |s) for al vs e VS f € F(vs),andse S
(the praobability that sensor vs reports feature f when the
robot is in state s). Each state encodes both the location
and orientation of the robot. We discretize locationswith a
resolution of one meter and orientationsinto the four com-
pass directions (this assumes that corridors are straight and
perpendicul ar to each other). Right and |eft turn actionsare
defined for every state (Figure 4). Forward actions transi-
tion from location to location, but are not defined for states
that face walls. All actions are nearly deterministic, but
thereis a small chance that the robot ends up in any of the
three unintended orientations (not shown in the figures).

The POMDP is compiled automatically from a topological
map. The corridor part between two adjacent junctionsin
thetopol ogical mapismodeled as setsof parallel chainsthat
share their first and last states (Figure 5). Each chain cor-

responds to one of the possiblelengths| € [lin(C), I max(C)]
for that stretch of corridor c. From each junction, forward
actions have probabilistic outcomes according to the prob-
abilitiespc(l). Each forward transition after that is (nearly)
deterministic. Thus, our POMDP model explicitly models
distance uncertainty and differsin thisrespect from asimi-
lar model by [Nourbakhsh et al., 1995], that does not mode!
distances at all. It can therefore be quite large; the sizes of
our POMDPs are typicaly on the order of thousands of
dtates. It is possible, however, to reduce the number of
states required to model a corridor ¢ from being quadratic
iNlmax(€) — Imin(C) to being linear in 1 x«(C), a the cost of a
lossin model accuracy [Simmons and Koenig, 1995].

4 TheBaum-Welch Algorithm

The Baum-Welch algorithm [Rabiner, 1986] is a sim-
ple expectation maximization (EM) agorithm for learning
POMDPs from observations. It isbest known for itsappli-
cation to speech recognition and handwriting recognition,
but it has & so been applied inrobotics, for exampletointer-
pret tele-operation commands [Hannaford and Lee, 1991;
Yang et al., 1993]. In the following, we describe how
we use the Baum-Welch algorithm to improve the initial
POMDP,

Whenever the robot moves, a sensor interpretation module
converts its continuous motion into discrete action reports
and produces reports of high-level features from the raw
sensor data. In the case of Xavier, for example, the sen-
sor interpretation module integrates data from the wheel
encoders over time to produce a stream of discrete action
reports (going forward one meter, turning left ninety de-
grees, and turning right ninety degrees). Similarly, sonar
readings are bundled into three “virtual sensors’ that report
observations of walls and openings of various sizes (small,
medium, and large) in front of Xavier and to itsimmediate
left and right. An execution trace contains these action and
sensor reportsin chronological order.

We use the Baum-Welch algorithm to estimate a POMDP
that better fits the given execution traces, in the sense that
the probability with which the POM DP explains the sensor
reports (given the action reports) isincreased. The Baum-
Welch agorithm operates as follows: It first uses the given
POMDP and al information contained in the execution
traces to calculate, for every point in time, a probability
distribution over al statesthat represents the belief that the
robot was in a certain state at a certain point in time. It
then estimates an improved POM DP from these probability
distributions, using a maximum likelihood approach. This
estimation processisthen repeated with the same execution
traces and the improved POMDP until some termination
criterion is satisfied. The run time of each iteration of
the Baum-Welch algorithm is linear in the product of the
total length of the given execution trace and the size of the
POMDR , typically being on the order of secondsto minutes

for our application.

We have extended the Baum-Welch agorithm to address
memory constraintsand theproblem that collectingtraining
datais time consuming:

e The Baum-Welch algorithm has to run on-board the
robot and shares its memory with many other pro-
cesses that run concurrently. To decrease the amount
of memory that it requires, we useadiding “time win-
dow” on the execution trace. Time windows add a
small overhead to the run time and cause asmall loss
in precision of the improved POMDP, but allow the
memory requirementsto be dynamically scaled to the
available memory.

e Given the relatively slow speed with which mobile
robots can move, we a so want the Baum-Wel ch a go-
rithmto learn good model swith asfew corridor traver-
salsas possible. To reduce theamount of training data
that it needs to estimate good models, we extended
the learning agorithm to take advantage of available
prior knowledge, such as geometrical constraints that
can be deduced from the topol ogical map. One might
know, for example, that two corridors are the same
length, because both are intersected orthogonally by
the same pair of corridors. This decreases the number
of parameters that haveto be learned and thereforethe
amount of training data needed to prevent overfitting.

The origina Baum-Welch a gorithm uses frequency-based
estimates, but these arenot very reliablewhen the execution
traces are short. To understand why, consider the following
analogy: If afair coin isflipped once and comes up head,
the frequency-based estimate is that it always comes up
head. If thismodel were used to predict future coin flips,
one would be very surprised if the coin came up tails next
time — this would be inconsistent with the learned modd.
Our extended Baum-Welch agorithm solves this problem
by using Bayes rule (Dirichlet distributions) instead of
frequencies. For more details and an empirical evaluation
of the extended Baum-Welch algorithm, see [Koenig and
Simmons, 1996].

5 The GROW-BW Algorithm

The Baum-Welch agorithm improves the probabilities of
a POMDP, but never changes its structure (the number of
states and their connectivity). This poses a problem, be-
cause the distance model is partly encoded in the structure
of the POMDP: the possible lengths of a corridor are de-
termined by the structure, while the probability distribu-
tion over the possible lengths is determined by the prob-
abilities. Consequently, the Baum-Welch algorithm can-
not assign a positive probability pe(l) to corridor lengths
I € [Imin(C), Imax(€)] Nor can it change the bounds. Thus, it
cannot learn the real corridor length if the bounds are off
— but they might not be known. Guessing |in(C) is easy:

Figure 7: Example of myopic effects

length of the corridor.

GROW-BW is a hill-climbing agorithm and, thus, can
suffer from myopic effects. Consider the most myopic
version of GROW-BW, that uses the parameter values
X =Y =2Z=0 (Xisreated to the initia difference be-
tween | in(c) and | nax(C), Yisrelated to theranges of lengths
to consider when determining whether the model is “good
enough,” and Z isrelated to how much to grow themodel at
each step). To simplify our argument, assume that a robot
with (almost) perfect sensors and actuators moves back and
forthinthe environment showninFigure7(A). If | ax(C) = 4
for all corridor pieces, then the best fitting model isthe one
where al traversed corridor pieces are four meters long.
(The robot expects to see acorridor opening every four me-
ters, but sees them only every eight meters. Thus, it cannot
explain four observations on each round-trip, and no dis-
tance model whose corridors are at most four meters long
can do better.) This leads GROW-BW to increase |ux(C)
tofivefor all traversed corridor segments. However, at this
point themodel where all corridor segments are four meters
long is still among the models that, of all models consid-
ered, explain the observations best (another such model is
the one where adjacent corridor pieces of the main corridor
alternate between lengths three and five). If the Baum-
Wel ch agorithm learns this model, then GROW-BW stops
without having learned thereal corridor lengths.

Note that we have constructed this example artificially —
the problem does not show up if the robot encounters both
ends of themain corridor whileit moves forward and back-
ward. Despite the theoretical limitations of hill-climbing,
our experience with GROW-BW shows that it appears to
work well in practice. We attribute this to architectural
features of buildings — they are usualy constructed in a
way that prevents people from getting lost, which appears
to dampen myopic effects. However, it is possible that a
problem similar to the one described could show up in con-
junction with office doors along a corridor. We therefore
recommend using aless myopic version of GROW-BW by
setting the parameters X, Y, and possibly Z to values that
are larger than the typical distance between adjacent office
doors. Similarly, P (the probability threshold that triggers
growing the model) has to be chosen small enough to pre-
vent GROW-BW from terminating prematurely.

Other problemsarisewhentherea corridor lengthisgreater
than | nax(C), Since then the execution traces can beinconsis-
tent with the POMDP, in the sense that the model cannot ex-

Figure 8: Corridor with self-transitions

plain the experience. One problem thismight lead to isthat
the position estimation component of the navigation system
may ruleout al possiblelocations, leading the robot to be-
come totally uncertain asto whereit is. The robot then has
to explicitly relocalize itself, which may take afair amount
of time. Another problem is that learning can no longer
take place. Asan example, again consider the environment
shown in Figure 7 and assume that the robot traverses the
main corridor from beginning to end for a total distance
of 40 meters. This, however, isimpossible according to a
model that assumes |,(C) = 4 for al corridor pieces. We
avoid both these problems by having the POMDP compiler
add self-transitions (with a small probability Q) in both di-
rections of thelongest chain in the POMDP representation
of each corridor segment (Figure 8). In thisway, al cor-
ridor lengths | with lin(c) < | have positive probability.
This does not mean, of course, that the GROW-BW algo-
rithm is no longer needed. Using such a POMDP directly
with the Baum-Wel ch a gorithm would not work very well
if lreat(C) > Imax(C), because only the probabilities pe(l) for
Imin(€) < | < lmax(C) can be specified individualy. The
probabilities for [max(c) < | are exponentialy decreasing
according to the following formula:

pm):(l— >

Imin(0) <V’ <Imax(c)

mﬁ)ﬂ—@QMm”

6 Experiments

We usethe prototypical corridor environment showninFig-
ure 9(A) to illustrate the power of our learning algorithms.
Remember that they discretize the possible corridor lengths
with a precision of one meter. To match this assumption,
all corridor lengthsin thisenvironment are multiplesof one
meter. In many ways, the environment ismore complicated
than what we have available in our building. It has many
paralel corridors and indistinguishable junctions, which
amplifies the perceptua aliasing problem. The experiment

usesthereal-time Xavier simulator, ahighly realistic simu-
lation of Xavier including noisy sensors and actuators, that
has the exact same interface as Xavier itsdf, but allows
us to make the experiments repeatable. It is not based on
the POMDP model used for navigation and consequently
violates the independence assumptions made by POMDP
models (just like reality). The learning agorithms can be
used unchanged on Xavier itself. Inthiscase, the execution
traces are provided by Xavier instead of the simulator.

We do not inform the robot about its start |ocation or orien-
tation, itsroute, or itsdestination. Instead, welet it gain ex-
perience with the environment by guiding it through every
corridor once, usingtwo execution traceswith different start
locations. The only information that it has availableisthe
topol ogical map, the data from its sensors, and the follow-
ing obvious equaity constraints between corridor lengths:
(These constraints are not necessary for the learning ago-
rithms, but they increase the quality of the learned models
if the number of corridor traversals is small [Koenig and
Simmons, 1996].)

Ireal (C1) = Irea (C3) = lrea (C6) = lrear (C10)
Ireal (C2) = Ireal (C5) = lrea (Co)

lreal (C4) = lreat (C7) = lrea (Cs)

lreal (C11) = lrea(Ci3)

lreal (C12) = lrea(C1a) = lrear (C18) = lreal(C21)
lreal (C15) = lrea(C1o)

lreal (C17) = lrea(C20)

Given this information, the task of the robot is to annotate
the topol ogical map with distance information and to adapt
its initial sensor and actuator models to its environment.
Thislearning task is particularly hard, since we assume that
the robot does not even know itsapproximate start location
or orientation. As a consequence, severa different routes
can be consistent with the sensor data, especially since
the robot has noisy sensors and actuators and has no initia
estimates of thecorridor lengthsavailable. For example, the
probability that the left and right virtual sensors overlook a
corridor junctionis about fifty percent. Thisrelatively high
probability is due to the sensors being quite conservative:
they don’t report featuresuntil they have collected sufficient
evidence. Also, since the virtua sensors are implemented
as asynchronous processes, they sometimes do not report
featuresintime.

Our first experiment uses the extended Baum-Welch algo-
rithm directly. To make sure that it is able to learn the
real corridor lengths, we estimate the minimal and maxi-
mal corridor lengths cautioudly to guarantee that I e (C) €
[1in(C), Imax(€)]: we use Imin(c) = 2 meters and | ax(C) = 14
metersfor every corridor piecec. TheresultingPOMDP has
6672 statesand 80346 state transitions. Figure 9(B) depicts
the corridor lengths with the largest probability pc(l) in the
learned model: all 21 predicted corridor lengths correspond
to thereal corridor lengths.

Figure 9: Experimental results

Our second experiment uses GROW-BW with the param-
etersX=0,Y=0,Z=1,P =Q =0.05, and Imn(c) = 2
meters for al corridor segments. That is, the initial esti-
mate for every corridor segment islax(C) = 3 meters and,
if GROW-BW extends a corridor length, it increases it by
two meters. GROW-BW assumes a uniform probability
distribution over the possible corridor lengths. Given this
information, GROW-BW needs only four iterationsto con-
verge. Figure 9(C) shows lin(c) and lpax(c) for the fina
model. The corresponding POMDP has only 1176 states
and 16260 state transitions, and is thus much smaller than
the POMDP from our first experiment (the POMDPs used
in the first three iterations of GROW-BW are, of course,
even smaller). Thisisthe case, because GROW-BW stops
to expand the upper bound of a corridor length when it is
sufficiently surethat it islarger than thereal corridor length
(where the required amount of certainty is determined by
the parameters Y and P). Because of the small sizes of
the POMDPs, GROW-BW is 1.84 times faster than the ex-
tended Baum-Welch agorithm, athough it has to call the
extended Baum-Welch agorithm repeatedly. The proba
bilities pc(I) that GROW-BW learns are similar to those
learned in the first experiment, and the corridor lengths
with the largest probability pc(l) are even identical: again,
all corridor lengths are learned correctly.

We repeated both experiments eight more times with dif-
ferent robot routes. The resultsare summarized in Table 1.
Each corridor length that, after learning, does not have
the largest probability among all possiblelengths counts as
one mistake in the column “corridors.” If several corridor
lengthswere constrained to be identical, we count only one
mistake per corridor group in the column “groups.”

The POMDPs learned by GROW-BW were of the same
quality as the ones of the extended Baum-Wel ch algorithm:
Thelearned sensors and actuator modelswere similar when
we eva uated them according to a) how much they reduced
the positional uncertainty of the robot and b) how much

they increased the probability with whichthe POM DP could
generate (or, synonymoudly, explain) long simulator exe-
cution traces. Furthermore, both algorithms learned good
(although not perfect) distance model swith only onetraver-
sa of each corridor: in al cases, they erred by only one
meter when they made amistake. Ingeneral, they can learn
good distance model s with one to three corridor traversals,
depending on how confusing the corridor environment is.
Note that, although the dead-reckoning error of our robot is
not overly large, we cannot expect the learning algorithms
to learn al corridor lengths perfectly, because — for exam-
ple—the robot sometimes takes sharp and sometimes wide
turns around corners which affects the distances traveled
along the corridors.

The experiments show that the sizes of the POMDPs pro-
duced by GROW-BW are roughly between four and six
times smaller than the size of the POMDP that we used in
conjunction with the extended Baum-Welch algorithm. As
a result, GROW-BW is amost two times faster than the
extended Baum-Welch agorithm.* Thus, GROW-BW pro-
duces results similar to those of the extended Baum-Welch
algorithm, but works on much smaller POMDPs and there-
foreneedslessmemory and oftenlessruntime. Theeffectis
even more pronounced when the model s of our buildingare
used, since they are much larger than the model used here.
We could augment GROW-BW with apost-processing step
that prunesthe final POMDRP, thus making it even smaller.

The corridor environment used in this example was ex-
tremely small and thus one could have used distance learn-
ing methods with a runtime that is exponentia in the to-
ta length of the execution traces, such as methods that

The seventh experiment in Table 1 is an exception. It con-
tained a highly ambiguous execution trace and GROW-BW ex-
panded the upper bound of one corridor up to a length of 21(!)
meters, which required 10 iterations. We could not replicate this
phenomenon when we used execution traces that traversed each
corridor more than once.

Table 1: Comparison of GROW-BW with the extended Baum-Welch algorithm

match the routes probabilistically against the topological
map (possibly combined with branch-and-bound methods
to prune the search space). GROW-BW has two advan-
tages over such methods: First, the model that it learns (a
POMDP) can directly be used by our probabilistic plan-
ning and navigation methods. Thus, there is no need for
a mode transformation that might degrade the quality of
the model. Second (and more importantly), the run-time
of GROW-BW isonly linear in the length of the execution
trace. We have aso used GROW-BW to learn environ-
ments in which the successful execution of actions does
not provideany information about the position of the robot,
namely for learning the distances between adjacent office
doors and corridorsin along hallway that istraversed by a
robot that does not know its starting position.

7 Extensons

We have assumed that GROW-BW can be provided with
a correct topologica map. Although thisis aredigtic as-
sumption for many robot learning scenarios, weakening it
broadens the application area of our algorithm. Conse-
guently, we are working on extending GROW-BW to be
ableto correct dightly inaccurate topol ogical maps. We are
also investigating whether it can be combined with the pas-
sive topological map learning approach by [Engelson and
McDermott, 1992] to extend its applicability to scenarios
where a qualitativemap is not available at all.

8 Conclusion

In this paper, we have described GROW-BW, a distance
learning agorithm that annotates a given topological map
with distance information. GROW-BW uses an extension
of the Baum-Welch algorithm as a subroutine. It is an
unsupervised (does not require a teacher during learning)
and passive (does not need to control therobot at any time)
learning method. GROW-BW overcomes the problem that
the robot can never be sure about its location if it is not
allowed to reduce its uncertainty by asking a teacher or
executing localization actions. It hasthe advantage that the

mistakes of mistakes of improvement || improvement
ext. Baum-Welch GROW-BW in the number inruntime
corridors groups corridors groups of states
(out of 21) | (out of 8) || (out of 21) | (out of 8)
1 0 0 0 0 4.79x 1.80x
2 0 0 0 0 4.46x 1.76x
3 0 0 0 0 5.67x 1.67x
4 5 2 5 2 5.67x 2.08x
5 5 2 5 2 5.20x 1.99x
6 0 0 0 0 5.20x 1.97x
7 3 2 3 2 3.66x 0.53x
8 0 0 0 0 5.20x 1.78x

robot can be used immediately to perform navigation tasks,
and autonomously improves its performance over time as
it gains more experience with its environment, focusing
its attention to routes that are more relevant for its tasks.
It works transparently with the other components of the
robot system, can adapt thefactory programmed sensor and
actuator models to the environment of the robot while it
learns the distances, and is efficient. It uses diding “time
windows’ to minimizetheamount of memory required, and
as much or as little additional knowledge as is avail able to
minimize the amount of experience required to learn good
models. It can utilize, for example, equality constraintson
thelengthsof two corridors, boundson the possiblecorridor
lengths, or subjective probability distributions over them.
We demonstrated that GROW-BW can learn good distance
model s with only asmall amount of experience, often with
considerably less space and time than can the extended
Baum-Wel ch algorithm, by itself.

In conclusion, GROW-BW learns quantitative information
that is difficult to obtain from humans (distances as well as
sensor and actuator models), but is able to utilize a large
variety of quaitative (and quantitative) information that
humans can easily provide. In contrast, many other map
learning approaches in the literature attempt to learn maps
from scratch, not utilizing prior knowledge that is easily
available.

Acknowledgements

Thanks to Lonnie Chrisman, Richard Goodwin, Joseph
O’ Sullivan, and the rest of the Xavier group for hel pful dis-
cussionsonavariety of topics. Thisresearch was sponsored
by the Wright Laboratory, Aeronautical Systems Center,
Air Force Materiel Command, USAF, and the Advanced
Research Projects Agency (ARPA) under grant number
F33615-93-1-1330. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the officia policies, either ex-
pressed or implied, of the sponsoring organizations or the
U.S. government.

References

(Basye et al., 1989) Basye, K.; Dean, T.; and Vitter, J.S.
1989. Coping with uncertainty in map learning. In
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). 663-668.

(Cassandra et al., 1994) Cassandra, A.R.; Kadbling, L.P;
and Littman, M.L. 1994. Acting optimally in partially
observable stochastic domains. In Proceedings of the
National Conference on Artificial Intelligence (AAAI).
1023-1028.

(Chrisman, 1992) Chrisman, L. 1992. Reinforcement
learning with perceptua diasing: The perceptua dis-
tinctions approach. 1n Proceedings of the National Con-
ference on Artificial Intelligence (AAAI). 183-188.

(Dean et al., 1992) Dean, T.; Angluin, D.; Basye, K.; En-
gelson, S.; Kadbling, L.; Kokkevis, E.; and Maron,
0. 1992. Inferring finite automatawith stochastic output
functionsand an applicationto map learning. In Proceed-
ingsof the National Conferenceon Artificial Intelligence
(AAAI). 208-214.

(Engelson and McDermott, 1992) Engelson, S.P. and Mc-
Dermott, D.V. 1992. Error correction in mobile robot
map learning. In Proceedings of the |EEE International
Conference on Robotics and Automation. 2555 — 2560.

(Hannaford and Lee, 1991) Hannaford, B. and Lee, P
1991. Hidden Markov model analysis of force/torque
informationin tel emanipul ation. Thelnternational Jour-
nal of Robotics Research 10(5):528-539.

(Koenig and Simmons, 1996) Koenig, S. and Simmons,
R.G. 1996. Unsupervised learning of probabilistic mod-
els for robot navigation. In Proceedings of the Interna-
tional Conference on Robotics and Automation.

(Koenig et al., 1995) Koenig, S.; Goodwin, R.; and Sim-
mons, R.G. 1995. Robot navigation with Markov mod-
els: A framework for path planning and learning with
limited computational resources. In International Work-
shop on Reasoning with Uncertainty in Robotics.

(Kuipersand Byun, 1988) Kuipers, B.J. and Byun, Y.-T.
1988. A robust, qualitative method for robot spatia
learning. In Proceedings of the National Conference on
Artificial Intelligence (AAAl). 774—779.

(Mataric, 1990) Mataric, M.J. 1990. Environment learn-
ing using a distributed representation. In Proceedings
of the |EEE International Conference on Robotics and
Automation. 402-406.

(McCalum, 1995) McCallum, R.A. 1995. Instance-based
state identification for reinforcement learning. In Ad-
vances in Neural Information Processing Systems 7.

(Nourbakhsh et al., 1995) Nourbakhsh, I.; Powers, R.; and
Birchfield, S. 1995. Dervish: An office-navigating robot.
Al Magazine 16(2):53-60.

(Parr and Russdll, 1995) Parr, R. and Russell, S. 1995. Ap-
proximating optimal policies for partially observable
stochastic domains. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (1J-
CAl). 1088-1094.

(Rabiner, 1986) Rabiner, L.R. 1986. An introduction to
hidden Markov models. IEEE ASSP Magazine 4-16.

(Simmons and Koenig, 1995) Simmons, R. and Koenig, S.
1995. Probabilistic robot navigation in partially ob-
servable environments. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (1J-
CAl). 1080-1087.

(Stolcke and Omohundro, 1993) Stolcke, A. and Omohun-
dro, S. 1993. Hidden Markov model induction by
Bayesian model merging. In Advances in Neural In-
formation Processing Systems 5. 11-18.

(Yang et al., 1993) Yang, J.; Xu, Y.; and Chen, C.S. 1993.
Hidden Markov model approach to skill learning and its
application to telerobotics. In Proceedings of the IEEE
International Conference on Robotics and Automation.
396-402.

