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Abstract

Autonomous mobile robots need good models of
their environment, sensors and actuators to nav-
igate reliably and efficiently. While this infor-
mation can be supplied by humans, or learned
from scratch through active exploration, such ap-
proaches are tedious and time-consuming. Our
approach is to provide the robot with the topo-
logical and geometrical constraints that are easily
obtainable by humans, and have the robot learn
the rest while in the course of performing its
tasks. We present GROW-BW, an unsupervised
and passive distance learning algorithm that over-
comes the problem that the robot can never be
sure about its location if it is not allowed to reduce
its uncertainty by asking a teacher or executing
localization actions. Advantages of GROW-BW
include that the robot can be used immediately to
perform navigation tasks and improves its perfor-
mance over time, focusing its attention to routes
that are more relevant for its tasks. We demon-
strate that GROW-BW can learn good distance,
sensor, and actuator models with only a small
amount of experience.

1 Introduction

We are interested in providing the technology for office or
hospital delivery robots that are autonomous. Assume that
you have just purchased such a delivery robot. Before it
can be used, it must gain some knowledge of its new en-
vironment. This can be achieved by either providing the
robot with the necessary information or letting it explore its
environment autonomously. Both methods have disadvan-
tages. Providing the robot with the necessary information
suffers from the problem that some information is difficult
or impossible to provide by humans. The sensor and actua-
tor models of the robot, for example, depend not only on its
environment, but also on characteristics of the robot itself,
and one cannot expect consumers to be familiar with details

of their newly purchased delivery robots. Other data could
be provided by the consumers, but might be cumbersome to
obtain. If they do not know the exact lengths of their corri-
dors, for example, they have to measure them – a task that
the robot could do itself. Letting the robot explore its en-
vironment autonomously, a method that many researchers
have investigated [Kuipers and Byun, 1988] [Basye et al.,
1989] [Mataric, 1990] [Dean et al., 1992], suffers from the
problem that the robot cannot be used immediately and, dur-
ing exploration, is likely to get into situations of confusion
or danger that require human intervention, since it has no
initial knowledge of its environment. We therefore suggest
combining both methods: the robot is provided with some
information that is easily available to humans, and it then
autonomously learns the rest of the information needed for
reliable navigation while in the process of performing its
delivery tasks.

We start by supplying the robot with a topological map of
its environment. A topological map specifies landmarks
(such as corridor junctions) and how they connect. Such a
map can easily be obtained from a sketch drawn by people
familiar with the environment. Figure 2 (center and right),
for example, shows a sketch of a corridor environment and
the corresponding topological map. Once equipped with a
topological map, the robot could use landmark-based navi-
gation to perform delivery tasks. However, landmark-based
navigation techniques suffer from the problem that imper-
fect sensors occasionally miss landmarks and even perfect
sensors are not able to distinguish between all landmarks,
such as corridor junctions of the same type (perceptual alias-
ing problem).

The reliability and efficiency of the robot can be improved
by adapting its sensor and actuator models to its environ-
ment and, a simpler task for people, by providing it with
distance information. However, people often err even with
respect to distances – unless they measure them. Although
the sketch of Figure 2 (center), for example, correctly spec-
ifies the topology, some of the arc lengths are incorrect. It
is therefore much more reliable and convenient to let the
robot learn the distance, sensor, and actuator models itself.



Figure 1: Xavier and two screen shots of its user interface

Figure 2: Corridor environment, sketch, and corresponding topological map

We want the learning to be unsupervised (not to require a
teacher during learning, after it has been supplied with the
topological map) and passive (not to explicitly control the
robot’s actions). Unsupervised, passive distance learning
is not a trivial task, because the robot can never be sure
about its location: it has no distance information available
initially, its sensors and actuators are noisy, and it cannot
reduce the uncertainty about its location by asking a teacher
or executing localization actions. In fact, its positional un-
certainty may be quite significant. For example, Figures 1
(right) and 2 (left) show that after traveling some distance,
the robot is unsure about its location (the sizes of the cir-
cles are proportional to the probability mass at each loca-
tion). On the other hand, unsupervised, passive learning
has the advantages that the robot can be used immediately
to perform delivery tasks (since it has a topological map
available) and it does not require a separate training phase
or (ideally) any external help. In addition, the robot never
stops learning: whenever it moves, it gains more and more
experience with its environment which it continually uses
to improve its distance, sensor, and actuator models and,
as a consequence, also its navigation performance. Since it
gains more information about routes that the robot traverses
more often, learning focuses its attention to routes that are
more relevant for the delivery tasks.

In the next several sections, we describe our algorithm for
learning distances, sensor models, and actuator models in

an indoor office environment. We conclude by presenting
experimental results showing that the algorithm can learn
good models with only a small amount of experience.

Our research is carried out on Xavier and its simulator (Fig-
ure 1). Xavier is built on an RWI B24 base and includes
bump sensors, sonars, a laser range sensor, and a color cam-
era on a pan-tilt head. Control, perception, and planning are
all carried out on two on-board, multi-processing 486-based
machines. Xavier roams the corridors of our building and
can be controlled by users worldwide via its experimen-
tal World Wide Web interface, that allows them to specify
goal locations and tasks that Xavier has to perform there.
The interface can be reached via Xavier’s homepage at
http://www.cs.cmu.edu/ � Xavier. Eventually, Xavier will
be used to deliver memos, letters, and printouts between
the offices in our building.

2 Our Distance Learning Approach

We have developed GROW-BW, an unsupervised, passive
distance learning algorithm that uses an extension of the
Baum-Welch (BW) algorithm [Rabiner, 1986]. GROW-
BW is an efficient algorithm that does not affect the other
components of the robot system (except by making them
operate more reliably) and can tune the initial (“factory
programmed”) sensor and actuator models to better match
the environment of the robot while it learns the distances
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Figure 3: Overview of the GROW-BW algorithm

(despite the fact that GROW-BW never knows the ground
truth about what the sensors were actually observing). Fur-
thermore, it can take additional knowledge into account, if
available, such as equality constraints between the lengths
of corridors, bounds on the possible corridor lengths, or
subjective probability distributions over them.

Instead of learning an exact corridor length, GROW-BW
learns a probability distribution over the possible lengths,
which is more robust to sensor and actuator noise. For-
mally, for each corridor segment c, GROW-BW learns a
probability distribution pc over the possible lengths of the
corridor l

�
[lmin(c) � lmax(c)], where lmin(c) and lmax(c) are

the minimal and maximal bounds on the length of the cor-
ridor segment and where “length” refers to the perceived
length of the corridor, which includes the dead-reckoning
error of the robot. Then, pc(l) is the probability with which
GROW-BW believes that the perceived length of corridor
c is l.

Figure 3 illustrates the GROW-BW algorithm. First, a
topological map, augmented with sensor and actuator mod-
els and an initial distance model (e.g., a uniform distribution
over the possible corridor lengths), is automatically com-
piled into a Partially Observable Markov Decision Process
(POMDP) model ( � 1 ). This model is used directly by our
probabilistic planning [Koenig et al., 1995] and navigation
methods [Simmons and Koenig, 1995] to direct the robot
to a given goal location. Better distance, sensor, and ac-
tuator models improve the navigation performance of the
robot. The robot therefore improves its models from ex-
perience using an extension of the Baum-Welch algorithm
( � 2 ). The experience is given in form of sequences of ac-
tion and sensor reports (execution traces) that are generated
automatically whenever the robot moves. The resulting
POMDP has less distance uncertainty and improved sensor
and actuator models ( � 3 ). Finally, it may be the case that
lmax(c) � lmin(c). To avoid having to consider all possible
lengths initially (or in cases where the given bounds do not
actually include the real length), we use a hill-climbingtech-
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Figure 5: Corridor of length 2 to 4 meters

nique that iteratively changes the structure of the POMDP
based on the results of the extended Baum-Welch algorithm
( � 4 ). It starts with a small bound lmax(c) and grows it if nec-
essary until there is a high probability that the real corridor
length is contained within the bounds.

3 The POMDP Model

POMDPs are popular models for optimal decision making
in uncertain conditions [Cassandra et al., 1994] [Parr and
Russell, 1995]. Our POMDP incorporates the distance un-
certainty and the sensor and actuator models of the robot.
It is specified as a finite set of states S, a set of actions
VA(s) � VA, for each state s

�
S, that can be executed in

that state, transition probabilities p(s ��� s � va) for all s � s � �
S

and va
�

VA(s) (the probability that the successor state is
s � if the robot executes action va in state s), and sensor
probabilities pvs(f � s) for all vs

�
VS, f

�
F(vs), and s

�
S

(the probability that sensor vs reports feature f when the
robot is in state s). Each state encodes both the location
and orientation of the robot. We discretize locations with a
resolution of one meter and orientations into the four com-
pass directions (this assumes that corridors are straight and
perpendicular to each other). Right and left turn actions are
defined for every state (Figure 4). Forward actions transi-
tion from location to location, but are not defined for states
that face walls. All actions are nearly deterministic, but
there is a small chance that the robot ends up in any of the
three unintended orientations (not shown in the figures).

The POMDP is compiled automatically from a topological
map. The corridor part between two adjacent junctions in
the topological map is modeled as sets of parallel chains that
share their first and last states (Figure 5). Each chain cor-



responds to one of the possible lengths l
�

[lmin(c) � lmax(c)]
for that stretch of corridor c. From each junction, forward
actions have probabilistic outcomes according to the prob-
abilities pc(l). Each forward transition after that is (nearly)
deterministic. Thus, our POMDP model explicitly models
distance uncertainty and differs in this respect from a simi-
lar model by [Nourbakhsh et al., 1995], that does not model
distances at all. It can therefore be quite large; the sizes of
our POMDPs are typically on the order of thousands of
states. It is possible, however, to reduce the number of
states required to model a corridor c from being quadratic
in lmax(c) � lmin(c) to being linear in lmax(c), at the cost of a
loss in model accuracy [Simmons and Koenig, 1995].

4 The Baum-Welch Algorithm

The Baum-Welch algorithm [Rabiner, 1986] is a sim-
ple expectation maximization (EM) algorithm for learning
POMDPs from observations. It is best known for its appli-
cation to speech recognition and handwriting recognition,
but it has also been applied in robotics, for example to inter-
pret tele-operation commands [Hannaford and Lee, 1991;
Yang et al., 1993]. In the following, we describe how
we use the Baum-Welch algorithm to improve the initial
POMDP.

Whenever the robot moves, a sensor interpretation module
converts its continuous motion into discrete action reports
and produces reports of high-level features from the raw
sensor data. In the case of Xavier, for example, the sen-
sor interpretation module integrates data from the wheel
encoders over time to produce a stream of discrete action
reports (going forward one meter, turning left ninety de-
grees, and turning right ninety degrees). Similarly, sonar
readings are bundled into three “virtual sensors” that report
observations of walls and openings of various sizes (small,
medium, and large) in front of Xavier and to its immediate
left and right. An execution trace contains these action and
sensor reports in chronological order.

We use the Baum-Welch algorithm to estimate a POMDP
that better fits the given execution traces, in the sense that
the probability with which the POMDP explains the sensor
reports (given the action reports) is increased. The Baum-
Welch algorithm operates as follows: It first uses the given
POMDP and all information contained in the execution
traces to calculate, for every point in time, a probability
distribution over all states that represents the belief that the
robot was in a certain state at a certain point in time. It
then estimates an improved POMDP from these probability
distributions, using a maximum likelihood approach. This
estimation process is then repeated with the same execution
traces and the improved POMDP until some termination
criterion is satisfied. The run time of each iteration of
the Baum-Welch algorithm is linear in the product of the
total length of the given execution trace and the size of the
POMDP, typically being on the order of seconds to minutes

for our application.

We have extended the Baum-Welch algorithm to address
memory constraints and the problem that collecting training
data is time consuming:

� The Baum-Welch algorithm has to run on-board the
robot and shares its memory with many other pro-
cesses that run concurrently. To decrease the amount
of memory that it requires, we use a sliding “time win-
dow” on the execution trace. Time windows add a
small overhead to the run time and cause a small loss
in precision of the improved POMDP, but allow the
memory requirements to be dynamically scaled to the
available memory.

� Given the relatively slow speed with which mobile
robots can move, we also want the Baum-Welch algo-
rithm to learn good models with as few corridor traver-
sals as possible. To reduce the amount of training data
that it needs to estimate good models, we extended
the learning algorithm to take advantage of available
prior knowledge, such as geometrical constraints that
can be deduced from the topological map. One might
know, for example, that two corridors are the same
length, because both are intersected orthogonally by
the same pair of corridors. This decreases the number
of parameters that have to be learned and therefore the
amount of training data needed to prevent overfitting.

The original Baum-Welch algorithm uses frequency-based
estimates, but these are not very reliable when the execution
traces are short. To understand why, consider the following
analogy: If a fair coin is flipped once and comes up head,
the frequency-based estimate is that it always comes up
head. If this model were used to predict future coin flips,
one would be very surprised if the coin came up tails next
time – this would be inconsistent with the learned model.
Our extended Baum-Welch algorithm solves this problem
by using Bayes’ rule (Dirichlet distributions) instead of
frequencies. For more details and an empirical evaluation
of the extended Baum-Welch algorithm, see [Koenig and
Simmons, 1996].

5 The GROW-BW Algorithm

The Baum-Welch algorithm improves the probabilities of
a POMDP, but never changes its structure (the number of
states and their connectivity). This poses a problem, be-
cause the distance model is partly encoded in the structure
of the POMDP: the possible lengths of a corridor are de-
termined by the structure, while the probability distribu-
tion over the possible lengths is determined by the prob-
abilities. Consequently, the Baum-Welch algorithm can-
not assign a positive probability pc(l) to corridor lengths
l

��
[lmin(c) � lmax(c)] nor can it change the bounds. Thus, it

cannot learn the real corridor length if the bounds are off
– but they might not be known. Guessing lmin(c) is easy:



The GROW-BW algorithm uses the following parameters: X =
0 � 1 � 2 � . . .; Y = 0 � 1 � 2 � . . . � X; Z = 0 � 1 � 2 � . . ., and P

�
(0 � 1).

In its simplest form, it uses X = Y = Z = 0 and a small positive
value for P.

1. For each corridor c: set lmax(c) := lmin(c) + X + 1. (If
a lower bound lmin(c) on the real corridor length is not
known, use lmin(c) = 1.)

2. Compile a POMDP (see Section 3).

3. Use the extendedBaum-Welch algorithm on the POMDP
and the given execution traces to determine improved
pc(l) for all corridors c and corridor lengths l with
lmin(c) � l � lmax(c) (see Section 4).

4. For each corridor c: if �
l � lmax (c) � Y

pc(l) � P, then set
lmax(c) := lmax(c) + Z + 1.

5. If any lmax(c) was changed in Step 4, then go to Step 2,
else stop.

Figure 6: The GROW-BW algorithm

we can use the smallest positive length according to our
discretization granularity. Guessing lmax(c) is harder: we
could, of course, guess a ridiculously large value, but this
has the drawback that the POMDPs become very large –
and the memory requirements of distance learning algo-
rithms determine their tractability. Instead, we investigate
learning algorithms that are able to change the structure of
the POMDP.

Alternatives to the Baum-Welch algorithm for learning
POMDPs are described by [Chrisman, 1992], [Stolcke and
Omohundro, 1993], and [McCallum, 1995], among oth-
ers. These algorithms are able to change the structure of a
POMDP, but have the disadvantage that they either require a
large amount of training data, learn task-specific representa-
tions only, or cannot utilize prior knowledge. Consequently,
we have designed a novel POMDP learning algorithm that
we call GROW-BW. GROW-BW achieves its power by
utilizing the regularities in the structure of our POMDP
models of the corridors. It takes advantage of the fact that
the Baum-Welch algorithm learns a good POMDP for the
given structure, even if the structure is incorrect. This al-
lows it to start with a small POMDP, learn the best model
for that structure, see if the model is “good enough,” and
grow the model if not.

Initially, GROW-BW guesses a small upper bound lmax(c)
on the real corridor length (Figure 6). It then compiles a
POMDP and uses the extended Baum-Welch algorithm to
improve it. If the Baum-Welch algorithm indicates that it
is likely that the real corridor length is close to the upper
bound, GROW-BW increases the upper bound, adds a new
parallel chain to the corridor segment (Figure 5), and repeats
the procedure. In this way, if the initially chosen upper
bound was too small, it can be increased to fit the real

8 meters

Figure 7: Example of myopic effects

length of the corridor.

GROW-BW is a hill-climbing algorithm and, thus, can
suffer from myopic effects. Consider the most myopic
version of GROW-BW, that uses the parameter values
X = Y = Z = 0 (X is related to the initial difference be-
tween lmin(c) and lmax(c), Y is related to the ranges of lengths
to consider when determining whether the model is “good
enough,” and Z is related to how much to grow the model at
each step). To simplify our argument, assume that a robot
with (almost) perfect sensors and actuators moves back and
forth in the environment shown in Figure 7(A). If lmax(c) = 4
for all corridor pieces, then the best fitting model is the one
where all traversed corridor pieces are four meters long.
(The robot expects to see a corridor opening every four me-
ters, but sees them only every eight meters. Thus, it cannot
explain four observations on each round-trip, and no dis-
tance model whose corridors are at most four meters long
can do better.) This leads GROW-BW to increase lmax(c)
to five for all traversed corridor segments. However, at this
point the model where all corridor segments are four meters
long is still among the models that, of all models consid-
ered, explain the observations best (another such model is
the one where adjacent corridor pieces of the main corridor
alternate between lengths three and five). If the Baum-
Welch algorithm learns this model, then GROW-BW stops
without having learned the real corridor lengths.

Note that we have constructed this example artificially –
the problem does not show up if the robot encounters both
ends of the main corridor while it moves forward and back-
ward. Despite the theoretical limitations of hill-climbing,
our experience with GROW-BW shows that it appears to
work well in practice. We attribute this to architectural
features of buildings – they are usually constructed in a
way that prevents people from getting lost, which appears
to dampen myopic effects. However, it is possible that a
problem similar to the one described could show up in con-
junction with office doors along a corridor. We therefore
recommend using a less myopic version of GROW-BW by
setting the parameters X, Y, and possibly Z to values that
are larger than the typical distance between adjacent office
doors. Similarly, P (the probability threshold that triggers
growing the model) has to be chosen small enough to pre-
vent GROW-BW from terminating prematurely.

Other problems arise when the real corridor length is greater
than lmax(c), since then the execution traces can be inconsis-
tent with the POMDP, in the sense that the model cannot ex-
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Figure 8: Corridor with self-transitions

plain the experience. One problem this might lead to is that
the position estimation component of the navigation system
may rule out all possible locations, leading the robot to be-
come totally uncertain as to where it is. The robot then has
to explicitly relocalize itself, which may take a fair amount
of time. Another problem is that learning can no longer
take place. As an example, again consider the environment
shown in Figure 7 and assume that the robot traverses the
main corridor from beginning to end for a total distance
of 40 meters. This, however, is impossible according to a
model that assumes lmax(c) = 4 for all corridor pieces. We
avoid both these problems by having the POMDP compiler
add self-transitions (with a small probability Q) in both di-
rections of the longest chain in the POMDP representation
of each corridor segment (Figure 8). In this way, all cor-
ridor lengths l with lmin(c)

�
l have positive probability.

This does not mean, of course, that the GROW-BW algo-
rithm is no longer needed. Using such a POMDP directly
with the Baum-Welch algorithm would not work very well
if lreal(c) � lmax(c), because only the probabilities pc(l) for
lmin(c)

�
l � lmax(c) can be specified individually. The

probabilities for lmax(c)
�

l are exponentially decreasing
according to the following formula:

pc(l) =

�
1 � �

lmin (c) � l �	� lmax (c)

pc(l 
 ) � (1 � Q) Ql � lmax(c) �
6 Experiments

We use the prototypical corridor environment shown in Fig-
ure 9(A) to illustrate the power of our learning algorithms.
Remember that they discretize the possible corridor lengths
with a precision of one meter. To match this assumption,
all corridor lengths in this environment are multiples of one
meter. In many ways, the environment is more complicated
than what we have available in our building. It has many
parallel corridors and indistinguishable junctions, which
amplifies the perceptual aliasing problem. The experiment

uses the real-time Xavier simulator, a highly realistic simu-
lation of Xavier including noisy sensors and actuators, that
has the exact same interface as Xavier itself, but allows
us to make the experiments repeatable. It is not based on
the POMDP model used for navigation and consequently
violates the independence assumptions made by POMDP
models (just like reality). The learning algorithms can be
used unchanged on Xavier itself. In this case, the execution
traces are provided by Xavier instead of the simulator.

We do not inform the robot about its start location or orien-
tation, its route, or its destination. Instead, we let it gain ex-
perience with the environment by guiding it through every
corridor once, using two execution traces with different start
locations. The only information that it has available is the
topological map, the data from its sensors, and the follow-
ing obvious equality constraints between corridor lengths:
(These constraints are not necessary for the learning algo-
rithms, but they increase the quality of the learned models
if the number of corridor traversals is small [Koenig and
Simmons, 1996].)

lreal(c1) = lreal(c3) = lreal(c6) = lreal(c10)

lreal(c2) = lreal(c5) = lreal(c9)

lreal(c4) = lreal(c7) = lreal(c8)

lreal(c11) = lreal(c13)

lreal(c12) = lreal(c14) = lreal(c18) = lreal(c21)

lreal(c15) = lreal(c19)

lreal(c17) = lreal(c20)

Given this information, the task of the robot is to annotate
the topological map with distance information and to adapt
its initial sensor and actuator models to its environment.
This learning task is particularly hard, since we assume that
the robot does not even know its approximate start location
or orientation. As a consequence, several different routes
can be consistent with the sensor data, especially since
the robot has noisy sensors and actuators and has no initial
estimates of the corridor lengths available. For example, the
probability that the left and right virtual sensors overlook a
corridor junction is about fifty percent. This relatively high
probability is due to the sensors being quite conservative:
they don’t report features until they have collected sufficient
evidence. Also, since the virtual sensors are implemented
as asynchronous processes, they sometimes do not report
features in time.

Our first experiment uses the extended Baum-Welch algo-
rithm directly. To make sure that it is able to learn the
real corridor lengths, we estimate the minimal and maxi-
mal corridor lengths cautiously to guarantee that lreal(c) 

[lmin(c) � lmax(c)]: we use lmin(c) = 2 meters and lmax(c) = 14
meters for every corridor piece c. The resulting POMDP has
6672 states and 80346 state transitions. Figure 9(B) depicts
the corridor lengths with the largest probability pc(l) in the
learned model: all 21 predicted corridor lengths correspond
to the real corridor lengths.
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Figure 9: Experimental results

Our second experiment uses GROW-BW with the param-
eters X = 0, Y = 0, Z = 1, P = Q = 0 � 05, and lmin(c) = 2
meters for all corridor segments. That is, the initial esti-
mate for every corridor segment is lmax(c) = 3 meters and,
if GROW-BW extends a corridor length, it increases it by
two meters. GROW-BW assumes a uniform probability
distribution over the possible corridor lengths. Given this
information, GROW-BW needs only four iterations to con-
verge. Figure 9(C) shows lmin(c) and lmax(c) for the final
model. The corresponding POMDP has only 1176 states
and 16260 state transitions, and is thus much smaller than
the POMDP from our first experiment (the POMDPs used
in the first three iterations of GROW-BW are, of course,
even smaller). This is the case, because GROW-BW stops
to expand the upper bound of a corridor length when it is
sufficiently sure that it is larger than the real corridor length
(where the required amount of certainty is determined by
the parameters Y and P). Because of the small sizes of
the POMDPs, GROW-BW is 1.84 times faster than the ex-
tended Baum-Welch algorithm, although it has to call the
extended Baum-Welch algorithm repeatedly. The proba-
bilities pc(l) that GROW-BW learns are similar to those
learned in the first experiment, and the corridor lengths
with the largest probability pc(l) are even identical: again,
all corridor lengths are learned correctly.

We repeated both experiments eight more times with dif-
ferent robot routes. The results are summarized in Table 1.
Each corridor length that, after learning, does not have
the largest probability among all possible lengths counts as
one mistake in the column “corridors.” If several corridor
lengths were constrained to be identical, we count only one
mistake per corridor group in the column “groups.”

The POMDPs learned by GROW-BW were of the same
quality as the ones of the extended Baum-Welch algorithm:
The learned sensors and actuator models were similar when
we evaluated them according to a) how much they reduced
the positional uncertainty of the robot and b) how much

they increased the probabilitywith which the POMDP could
generate (or, synonymously, explain) long simulator exe-
cution traces. Furthermore, both algorithms learned good
(although not perfect) distance models with only one traver-
sal of each corridor: in all cases, they erred by only one
meter when they made a mistake. In general, they can learn
good distance models with one to three corridor traversals,
depending on how confusing the corridor environment is.
Note that, although the dead-reckoning error of our robot is
not overly large, we cannot expect the learning algorithms
to learn all corridor lengths perfectly, because – for exam-
ple – the robot sometimes takes sharp and sometimes wide
turns around corners which affects the distances traveled
along the corridors.

The experiments show that the sizes of the POMDPs pro-
duced by GROW-BW are roughly between four and six
times smaller than the size of the POMDP that we used in
conjunction with the extended Baum-Welch algorithm. As
a result, GROW-BW is almost two times faster than the
extended Baum-Welch algorithm.1 Thus, GROW-BW pro-
duces results similar to those of the extended Baum-Welch
algorithm, but works on much smaller POMDPs and there-
fore needs less memory and often less run time. The effect is
even more pronounced when the models of our building are
used, since they are much larger than the model used here.
We could augment GROW-BW with a post-processing step
that prunes the final POMDP, thus making it even smaller.

The corridor environment used in this example was ex-
tremely small and thus one could have used distance learn-
ing methods with a runtime that is exponential in the to-
tal length of the execution traces, such as methods that

1The seventh experiment in Table 1 is an exception. It con-
tained a highly ambiguous execution trace and GROW-BW ex-
panded the upper bound of one corridor up to a length of 21(!)
meters, which required 10 iterations. We could not replicate this
phenomenon when we used execution traces that traversed each
corridor more than once.



Table 1: Comparison of GROW-BW with the extended Baum-Welch algorithm

mistakes of mistakes of improvement improvement
ext. Baum-Welch GROW-BW in the number in run time

corridors groups corridors groups of states
(out of 21) (out of 8) (out of 21) (out of 8)

1 0 0 0 0 4.79 � 1.80 �

2 0 0 0 0 4.46 � 1.76 �

3 0 0 0 0 5.67 � 1.67 �

4 5 2 5 2 5.67 � 2.08 �

5 5 2 5 2 5.20 � 1.99 �

6 0 0 0 0 5.20 � 1.97 �

7 3 2 3 2 3.66 � 0.53 �

8 0 0 0 0 5.20 � 1.78 �

match the routes probabilistically against the topological
map (possibly combined with branch-and-bound methods
to prune the search space). GROW-BW has two advan-
tages over such methods: First, the model that it learns (a
POMDP) can directly be used by our probabilistic plan-
ning and navigation methods. Thus, there is no need for
a model transformation that might degrade the quality of
the model. Second (and more importantly), the run-time
of GROW-BW is only linear in the length of the execution
trace. We have also used GROW-BW to learn environ-
ments in which the successful execution of actions does
not provide any information about the position of the robot,
namely for learning the distances between adjacent office
doors and corridors in a long hallway that is traversed by a
robot that does not know its starting position.

7 Extensions

We have assumed that GROW-BW can be provided with
a correct topological map. Although this is a realistic as-
sumption for many robot learning scenarios, weakening it
broadens the application area of our algorithm. Conse-
quently, we are working on extending GROW-BW to be
able to correct slightly inaccurate topological maps. We are
also investigating whether it can be combined with the pas-
sive topological map learning approach by [Engelson and
McDermott, 1992] to extend its applicability to scenarios
where a qualitative map is not available at all.

8 Conclusion

In this paper, we have described GROW-BW, a distance
learning algorithm that annotates a given topological map
with distance information. GROW-BW uses an extension
of the Baum-Welch algorithm as a subroutine. It is an
unsupervised (does not require a teacher during learning)
and passive (does not need to control the robot at any time)
learning method. GROW-BW overcomes the problem that
the robot can never be sure about its location if it is not
allowed to reduce its uncertainty by asking a teacher or
executing localization actions. It has the advantage that the

robot can be used immediately to perform navigation tasks,
and autonomously improves its performance over time as
it gains more experience with its environment, focusing
its attention to routes that are more relevant for its tasks.
It works transparently with the other components of the
robot system, can adapt the factory programmed sensor and
actuator models to the environment of the robot while it
learns the distances, and is efficient. It uses sliding “time
windows” to minimize the amount of memory required, and
as much or as little additional knowledge as is available to
minimize the amount of experience required to learn good
models. It can utilize, for example, equality constraints on
the lengths of two corridors, bounds on the possible corridor
lengths, or subjective probability distributions over them.
We demonstrated that GROW-BW can learn good distance
models with only a small amount of experience, often with
considerably less space and time than can the extended
Baum-Welch algorithm, by itself.

In conclusion, GROW-BW learns quantitative information
that is difficult to obtain from humans (distances as well as
sensor and actuator models), but is able to utilize a large
variety of qualitative (and quantitative) information that
humans can easily provide. In contrast, many other map
learning approaches in the literature attempt to learn maps
from scratch, not utilizing prior knowledge that is easily
available.
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