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Abstract

Autonomous mobile robots need to integrate many
different skills in order to perform complex tasks.
In particular, they need to explore, sense, map and
navigate in unknown or partially known environ-
ments. This paper describes a robot system that
is designed to perform a find-and-deliver task in an
office-building-like environment. The robot’s initial
orientation and location within the environment are
not known, but the robot does have an a-priori map
of the environment. We describe a sensor-based map
representation that the robot uses while exploring its
environment. We also describe how the robot deter-
mines its initial position and orientation within the
environment, how it explores the environment for a
visually-tagged object, how it recognizes the object
and how it delivers the object. The robot also up-
dates its map to reflect changes in the environment.
While the entire robot system has not yet been in-
tegrated, each subsystem described in this paper has
been implemented and tested.

Introduction

Autonomous mobile robots need to explore, sense,
map, navigate and perform tasks in the environments
in which they find themselves. Often these five func-
tions are studied separately, with little or no atten-
tion given to how they are all integrated to produce a
completely autonomous mobile robot. In this paper
we concentrate not on completely describing any sin-
gle aspect of robot exploration, sensing, mapping or
navigation, but instead on how many different skills
can be integrated into an autonomous robot that per-
forms a sophisticated task. Unfortunately, time con-
straints prevented a complete integration of all of the
described skills on the mobile robot. All of them, how-
ever, were tested individually and their integration is
planned.
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Task description

The task our robot is designed to perform is to find
a single, visually tagged object somewhere in a large,
office-like environment and to “deliver” the object to
a designated room. The robot is given a crude map
shortly before being asked to perform the task. How-
ever, the map does not show obstacles that may block
hallways or doors, nor does the map show all of the
doors in the environment. The robot does not know
its starting position or orientation with respect to the
map. The delivery object is in one of the rooms and 1s
a coffee pot marked with a black-and-white ‘X’. The
robot need not actually pick-up the coffee pot, only
approach it. Some, but not all| of the doors are tagged
with a visually distinct bar-code; bar-coded doors are
noted on the map and the delivery room will be one
of them. The robot has 30 minutes to complete the
task, which was one of three tasks that comprised the
AAAT 93 Robot Competition and Exhibition held in
Washington DC on July 11-16, 1993.

The task is challenging to mobile robots because it
requires the integration of many mobile robot skills.
The robot must initially explore the environment and
determine its position and orientation with respect
to the a-priori map. The robot must then plan an
exploration strategy that will allow it to examine each
room for the coffee pot. This strategy must be flexible
in the face of unexpected obstacles. Finally, the robot
must use visual sensing to detect the coffee pot, plan
a path from the object to the delivery room and then
follow that path.

Robot description
Our robot is a Cybermotion K2A called CARMEL

(Computer-Aided Robotics for Maintenance, Emer-
gency and Life Support) (see Figure 1). It has a
ring of 24 sonar sensors and a rotating B&W cam-
era. Three computers are on-board CARMEL, one
computer each for the motors and sonar sensors and
a 486-PC for high-level processing. The 486-PC has
a framegrabber and performs all image processing.
CARMEL has a basic obstacle avoidance competence




Figure 1: The mobile robot CARMEL.

provided by an algorithm called VFH [2, 3, 4]. VFH
constructs a certainty grid of sonar hits and uses it
to continually compute a new direction that will take
the robot towards its target while avoiding obstacles.

Overview

We first present the robot’s representation of its
environment. This i1s the representation that is en-
tered into the robot from an a priori: map. The robot
must then register itself (i.e., determine its orienta-
tion) with respect to the environment; we give a basic
registration algorithm. Next the robot must localize
itself with respect to the a priori map; two different
localization algorithms are presented. Once the robot
is registered and localized, it can begin exploring the
environment and looking for the coffee pot. We de-
scribe our vision algorithm to detect the coffee pot
and also describe how we update the a priori map to
reflect changes in the environment. Finally, the robot
must navigate from the room that contains the coffee
pot to the delivery room. This sequence is shown in
the flow chart in Figure 2.

Representing the environment

The map in our representation is a graph of nodes.
Each node represents a region of the environment that
has a common sonar signature. FEach link between
nodes represents a bidirectional connection between
the two regions. The first issue when creating such
a representation is to decide on an appropriate sonar
signature that will distinguish between different re-
gions.

Detecting region boundaries

There have been many approaches to using sonar
sensors to define distinctive places in an environment,
including [10, 1, 6, 7, 9, 8]. In our approach, a region
in the environment is characterized by having a com-
mon sonar signature throughout its extent, where the

Figure 3: The sonar signature feature set de-
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Figure 4: The VFH obstacle avoidance algorithm.

signature is the pattern of free or blocked space to the
front, back and sides of the robot. Thus, there are 16
unique sonar signatures in a rectilinear environment
(see Figure 3 for a complete listing of the 16 sonar sig-
natures). Our approach is unique in that it is directly
tied to an obstacle avoidance algorithm—the Vector
Field Histogram (VFH) [4].

The VFH algorithm first creates a histogram grid,
which is a certainty grid representation of the objects
surrounding the robot as detected using the robot’s
sonar sensors. VFH then takes a local window of the
certainty grid and converts it into a polar represen-
tation called the polar histogram. A certainty grid
and its corresponding polar histogram are shown in
Figure 4. The polar histogram shows the obstacles in
each direction around the robot. To avoid obstacles,
VFH simply chooses the free direction of travel that
is nearest to the desired direction of travel. This same
polar representation is used to produce the sonar sig-
nature.

A simple example will best show how the polar his-
togram is used to detect a region boundary. The robot
is started down the hallway (the direction of the hall-
way is determined by an algorithm described in Sec-
tion 3) and VFH automatically aligns the robot and
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Figure 2: Flowchart for accomplishing the find and deliver task.
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Figure 5: Detecting region boundaries using VFH.

positions it in the middle of the hallway. When the
robot is positioned in the middle of a hallway the po-
lar histogram has two “mountains” for the two walls
of the hallway (Figure 5(top)). The presence of a
“mountain” means that the robot is blocked to that
side. In this example, the sonar signature is: (front
= open, back = open, right = closed, left = closed).
As the robot moves down the hallway and approaches
the doorway, the “mountain” on that side of the robot
will disappear (Figure 5(bottom)). So the sonar sig-
nature is now: (front = open, back = open, right =
open, left = close). By “camping out” at the polar
histogram segments corresponding to the front, back,
left and right of the robot, changes in the sonar sig-
nature can be immediately detected.

In tests on the repeatability of this algorithm,
CARMEL was asked to repeatedly stop at the same
region boundary in the basement of our laboratory.
Over ten consecutive runs, the largest difference in
position along the hallway’s axis between any two
runs was H20mm and the largest difference in posi-
tion perpendicular to the hallway axis along any two
runs was 290mm. During these runs, obstacle avoid-
ance was performed and the robot was running at a
speed approaching 400 mm/sec.

While our boundary detection algorithm works fine
in hallway environments, it has not been extensively
tested in rooms. We rely instead on the dead reckon-
ing capabilities of our robot to move into and out of
rooms. Extending our approach to rooms as well as

allways is a topic of future research.

Map representation

Each region of the environment, which corresponds
to a sonar signature, is represented by a node. A node
contains the extent of the region (i.e., its length and
width), a global (x,y) position of the center of the
region and connections to neighboring regions. Fig-
ure 6 shows an example configuration of the arena
where the robot will be working. As shown in Fig-
ure 7, the whole area is divided into regions based on
the sonar signature. The regions are further distin-
guished by either being a hallway region or a room
region. Each hall section has one node at the center
of the hall (nodes with “H” prefix). Every exit of the
room also has one node close enough to the entrance
(nodes with “R” prefix). Each room section has some
extra virtual nodes (nodes with “V” prefix) for each
side of the walls of the room. These virtual nodes
serve two purpose. First, they are used to figure out
the boundary of the room. Since each node has its
(z,y) coordinate, we need at least two room-nodes to
calculate the boundary of a rectangular shape room.
Second, they are used for map modifications which
will be explained later in this paper.

Rooms can have up to four exits, one each to the
north, south, east and west. If a room has more than
one exit on each side it will be split into several vir-
tual rooms. Large open space, such as lobbies, are
also classified as rooms and may have to be split into
several virtual rooms. For example, rooms 7,8 and 9
in Figure 7 are all virtual rooms contained within a
single open area.

Registration

In order for our representation scheme to work,
CARMEL must be able to determine the main axes
of the corridors, so that it can start searching for re-
gion boundaries to its left, right, front and back. We
call this registration. Currentlyy, CARMEL can only



Figure 6: Arena Configuration

register itself in a hallway; if CARMEL starts in a
room it must wall-follow until it enters a hallway. To
register in a hallway, CARMEL starts to travel in any
free direction. As it travels, the VFH obstacle avoid-
ance algorithm will automatically align CARMEL be-
tween the two walls of the hallway. While moving,
CARMEL saves its (x,y) positions along the way and
fits a line to them. The orientation of this line is used
to determine the axis of the hallway. CARMEL can
reregister during the task to correct dead reckoning
errors.

During initial registration, when the robot has no
information as to its orientation in the environment,
CARMEL also stores and averages the direction of
free space. This should always fall along the axis of
the hall. However, obstacles in the hallway, door-
ways, and intersecting corridors cause CARMEL to
drift from the middle of the hall. Therefore line fit-
ting, which is a simple chi-square fit, is used. This
occurs after CARMEL has traveled a minimum dis-
tance and the rate of change in the average free-space
direction falls below a threshold. If CARMEL be-
comes trapped before this time, it turns around and
starts the process again assuming that it has reached
a blockade in the passage or the end of a hall. If
the orientation of the fit line is too far from the aver-
age free-space direction, it is assumed that CARMEL
has not been traversing a hall or has “fallen” into
a room or an intersecting hallway. In either case, all
data are disregarded and the entire process, including
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Figure 7: Arena Map

wall-following if necessary, is repeated.

For reregistration during the task, the previous ori-
entation can be used to judge the accuracy of the cal-
culated orientation. When there is a large difference
between the previous and new orientations, either the
old one can be maintained or the process can be re-
peated. Maintaining the old orientation repeatedly
is dangerous because CARMEL’s orientation can be-
come very inaccurate over a period of time.

We evaluated the registration algorithm in two sit-
uations. The first situation was in a corridor with
no obstacles or openings into rooms or intersecting
hallways. These experiments set out to confirm that
the algorithm will correctly identify the hall axis re-
gardless of CARMEL’s initial orientation. In the sec-
ond set of experiments, CARMEL was placed in a
more complex area which included an obstacle and
an opening into a room. The intention of these runs
was to determine the robustness the algorithm, as it
currently stands, in a more realistic situation.

Twenty-seven runs were carried out in the obstacle-
free hallway. CARMEL?’s initial orientation with re-
spect to the hall axis varied from 10 to 170 degrees in
20 degree steps. CARMEL’s initial orientation was
determined by eye and so is inaccurate by up to a
degree or two. At each initial orientation, three runs
were made. CARMEL determined the actual hall-
way axis to within six degrees in all but one run. In
this case, the calculated hall axis was off by nine de-
grees. No run required more than approximately four



meters. The accuracy of the registration and the dis-
tance covered during a run were acceptable and within
the limits of the environment that was expected to be
encountered.

The second set of runs had two parts. The first part
was carried out with CARMEL given an initial orien-
tation of 30 degrees. The second part used an initial
orientation of 70 degrees. Fight runs were carried out
with each orientation. In the first part, CARMEL
determined the hall axis to within five degrees each
time, except one in which it wandered into the room
through the opening. The average distance required
was approximately five meters. In the second part,
CARMEL entered the room twice, but determined
the hallway axis to within four degrees in the other
six runs. The average length of the successful runs
was about 2.6 meters.

While these runs were far from exhaustive, they
do show that this method of registration is useful.
The most difficult problem is that of wandering into
a room. This can either be avoided or detected, with
the first preferable. The difficulty with preventing
CARMEL from drifting into a room is that there is
no simple way to distinguish between an opening into
a room and a narrowing of the corridor due to obsta-
cles. The former should not be entered while the lat-
ter should be. Detecting the entry into a room should
be simpler. The chi-square fit provides a goodness of
fit measure, namely x?. When CARMEL enters a
room, its path is generally straight but roughly per-
pendicular to the hall axis. This should yield a very
poor value for y2. The use of this value and the re-
turn of CARMEL to the hallway it left are still being
investigated.

Localization

Once registered, the next critical issue is the deter-
mination of the correct location and orientation of the
robot. We call this process localization. CARMEL ac-
complishes localization through the accumulation of
information, in the form of local sonar signature fea-
tures, during its initial movement through the halls
of the “office” environment, and through observa-
tion of visual tags identifying doors. We would like
CARMEL to localize itself as quickly as possible, how-
ever, so that in the absence of door markers we try to
use the sonar signature features. In both approaches
CARMEL is given a map representing the environ-
ment in which it will be placed. However, the map
can be in error in that doorways may exist where they
are not so indicated on the map, and doorways may
be blocked where they are indicated on the map. The
localization schemes must therefore deal with these
problems.

We have implemented two approaches, one based
upon heuristics and confidence factors, the other upon
probabilistic reasoning using a belief network. Our
localization methods only work in hallways, so that
if CARMEL’s initial location was within a room we
would first have to find an exit using a wall follow-
ing behavior. In this section we describe each of the
approaches and show them in operation. Although

both were implemented, neither have actually been
fully integrated into the office exploration system.

Rule Based Localization

One method of localization that has shown to be
successful is a rule based system. Before CARMEL
makes a move during rule based localization, it com-
putes scores over all of 1ts possible starting locations
in the a—prior: map.

Creating a Score Distribution

Since direction is ambiguous to CARMEL at first,
we run our scoring algorithm four times, rotating
CARMEL’s map to a new cardinal orientation each
time. So for n possible starting locations, there are
4n total scores computed.

The basic scoring algorithm is a modified depth-
first recursion, which runs as follows:

The first feature node seen by CARMEL is com-
pared with the start node in this orientation. The
comparison scores points depending on how many
sonar signature features (i.e., walls or openings on the
four sides of the robot) match and on the measured
extent of a region. However, points scored for extent
matching are fewer because we have determined that
distance data tend to be more erroneous than the de-
tected sonar signature features.

Each node adjacent to the current one on
CARMEL’s constructed map is checked to see if it has
been examined yet in this orientation. If the neigh-
boring node has not yet been examined, then it is
compared with the node corresponding to it on the
a-priort map. The algorithm continues this recur-
sively for all of the paths the robot can follow from
the start node. The score for each recursion is added
to the total score for that start node in that particular
orientation.

While the algorithm recurses, it also tries to answer
this question:

If CARMEL started in this start node with this
orientation, where would CARMEL be now?

If the algorithm can determine this, it makes note of
the fact. We refer to a current location inference of
this type as a location resolution. There is no guar-
antee that a start node—orientation configuration will
produce a location resolution.

In the event that a path to an adjacent node exists
in CARMEL’s map but a wall exists on the a—prior:
map, the routine attempts to figure out possible lo-
cations across the wall that might correspond to the
node CARMEL saw. If a possible match is found,
then the routine continues from there; otherwise, no
points are scored for that area on CARMEL’s map.

After all of the location—direction combinations are
examined, the algorithm normalizes the raw scores
by computing the mean and standard deviation of
the score set. Then each original score is replaced
by the number of standard deviations the score was
above the mean. The resulting scores are now less
dependent on the number of nodes seen by CARMEL.
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Figure 8: Map of the experimental space showing
a priori regions.

Move Planning

CARMEL scores the possible moves it can make
based on the location resolutions. CARMEL looks
at each location resolution that it has and computes
a shortest path to the nearest door marker for that
resolution. The first move of this path is considered.
This first move is either one of the four directions, or
no movement at all (the special case where CARMEL
is hypothetically in the vicinity of a door marker).

For each first move of a particular type, weight is
added to that corresponding move possibility. The
weight added depends on the score found for the
location—orientation pair that the first move was de-
rived from. If CARMEL saw a door marker at this
stop, or if any location—orientation score for one of
the first moves is above a certain threshold, then the
“don’t move” move choice is given a score of infinity,
and CARMEL assumes localization is complete. In
the former case, CARMEL assumes it is now at the
location on the a—priori map where the door marker
is. In the latter case, CARMEL assumes it is at the lo-
cation resolution found for the above-threshold score.

As a final factor in move choice, we programmed
CARMEL to select from these possible movement
choices the highest scoring direction that has the
shortest path to an unexplored region on CARMEL’s
map. This ensures that CARMEL covers unexplored
space as efficiently as possible while searching out
door tags. It also guarantees that CARMEL will not
‘paint itself into a corner’ or oscillate between ad-
jacent nodes while exploring (two problems that oc-
curred without this adjustment).

Experimental Results

Here are some results of a typical run with the rule
based algorithm. The map given CARMEL is shown
in Figure 8, and a door tags are located at nodes 0,
6, and the north end of 7.

We placed CARMEL in feature region 2 and
aligned the robot so that it faced south on the map.
CARMEL was told that it was starting somewhere
along the south hall (nodes 0-6). CARMEL localized
after the third move without using door markers.

In Table 1, the Move # column shows the current
move. The Best Resolved column reports the best

location—direction pair, i.e., CARMEL’s top choice(s)
for where it may be. The number is the feature node
label corresponding to the map, and the direction is
the direction CARMEL thinks it’s facing. For exam-
ple, 2-south means CARMEL thinks it may be at
node 2 facing south.

The ‘Best’ Move(s) column indicates the best

moves computed by the possible move scoring rou-
tine. Directions are displayed here as the true direc-
tion on the map for ease in interpretation. Multiple
directions indicate a ‘tie’, in which case the final move
is chosen from them based on exploration preference.

The Move Choice column is the actual move made
by CARMEL. It may differ from the previous column
if CARMEL chose an unexplored area over a high
score direction.

It may seem strange at first that the ‘best’ move
and the move choice are totally uncorrelated after the
first move. One must remember that the ‘best’ move
is a result of weighting all possible moves for all resolv-
able pairs, so it doesn’t necessarily represent the true
best move that can be made, especially in a symmet-
ric environment. The moves chosen were carried out
because CARMEL picked a direction, and preferred
to explore new area on a ‘next best’ score rather than
backtrack on a best one (which only may be best by
a margin). Also, it is important to remember that
the Best Resolved nodes are not the only nodes used
in determining direction. All of the possible location
resolved nodes are considered, weighted only by the
location—orientation score associated with them. The
Best Resolved values are therefore only displayed to
show how quickly the algorithm can localize.

Belief Network Approach

In the second localization approach, the depen-
dence of the sensed features on the world map, the
robot’s initial orientation, and the direction of travel
of the robot as it attempts to localize itself, is mod-
eled using a belief network [5, 11]. As the robot moves
about and sees new features, the belief network accu-
mulates a history of the features observed and the
movements that the robot has made. These obser-
vations can then be propagated through the network,
resulting in a probabilistic distribution over the possi-
ble locations the robot may be in currently. The robot
considers itself localized when one of the locations
achieves a level of confidence about a certain thresh-
old. If CARMEL is not yet localized, it can use this
distribution to determine the most likely direction in
which to travel to facilitate better localization. Cur-
rently, this amounts to moving in the direction most
likely to take it to a room tag, the most unambiguous
localization feature detectable by CARMEL.

Belief network operation

The belief network that we used is shown in Fig-
ure 9. This network models the dependencies between
the robots initial location, its initial orientation, and
the sonar feature that it “sees”. The modeling is ac-
complished both through the topology of the network
as well as the probability tables (both conditional and
priors). The conditional probability that a certain



Move # | Best Resolved | ‘Best” Move(s) | Move Choice
start 2-south 4-south east,west east
1 3-south,5-south west east
2 4-south west east
3 5-south no move no move

Table 1: Results from an experiment using rule-based localization.

feature is detected, given a particular location and
orientation, is based on heuristic calculations of the
correlation between what should be observed and that
which is actually observed. The conditional probabil-
ity that the robot is in a particular location, given a
previous location and orientation, is a simple boolean
function based on the map, where the probability is
1.0 if the locations are adjacent and joined by a path,
and 0.0 if they are not.

Upon initialization, an observation of the robot’s
initial surroundings is placed in the FEATURE] node
of the network and then propagated throughout the
network. The resulting posterior probability distri-
bution in the LocaTioN]l and ORIENTATION nodes
reflect the evidence’s impact upon the likely starting
location and orientation of CARMEL. The robot can
use this revised information in its planning to either
facilitate improved localization or to switch to explo-
ration of the office environment if the probabilities are
suitably high enough to justify this.

In the situation where the resulting probabilities
are such that CARMEL is still unsure enough of
where it is to warrant further localization, CARMEL
plans and executes a move in a direction most likely
to take it to a door tag in the shortest amount of time
(i.e., shortest distance). When it detects a change in
the sonar features around it, it stops and makes an-
other observation. The new sonar feature, as well as
the motion the robot made to get to its current loca-
tion, is fed to the belief network as evidence, propa-
gated, and the resulting probability distributions ana-
lyzed. This cycle continues until either CARMEL be-
comes sure enough of its location based solely upon
the sonar features so far detected, at which time it
switches to exploration mode, or CARMEL detects a
door tag, at which time it knows with certainty where
it is, and similarly switches to exploration mode. The
belief network in Figure 10 shows the belief network
at iteration 3 in the process. As can be seen in this fig-
ure, the belief network grows at each iteration, adding
new LocATioN, MoTiON, and FEATURE nodes. The
portion of the network that includes the MovE node
models the dependence of the robot’s new location
upon the previous location, the original orientation,
and the move the robot made to get to the new loca-
tion.

Experimental Results

We evaluated the belief network’s ability to localize
CARMEL in the halls of the University of Michigan’s
Artificial Intelligence Laboratory. The map for the
region is shown in Figure 8, with the possible local-
ization locations indicated by the numbered regions.
Each of the labeled locations represents a region of
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Figure 9: Initial belief network architecture.

Figure 10: Belief network architecture showing the
network at iteration 3 of the process.
The Feature and Move nodes are in-
stantiated as evidence, and the Loca-
tion and Orientation nodes are inferred.

the map that has the same sonar feature type. Trav-
elling between regions (locations), then, implies that
the sonar feature must change at the transition point
between the regions.

As an example, suppose CARMEL starts in loca-
tion 2, the T—intersection at the South end of the
map, and is initially facing South. The sonar fea-
ture observed would be that of a single blocked direc-
tion, that directly in front of it. Passing this evidence
to the localization network, the resulting probability
distribution for the current location is shown in Ta-
ble 2(top), while the posterior distribution of the ORrI-
ENTATION node is shown in Table 2(bottom). These
state that CARMEL 1is either in Location 2, 4, 9 or
11, and is most likely to be facing South.

If CARMEL then moves West (to it, East on the
map), it will move until it enters region 3, which has
a different sonar feature. The new feature, that of an
East—West hall, and the West move that CARMEL

made, are both given to the localization network and



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.04 | 0.04 | 0.13 | 0.04 | 0.13 | 0.04 | 0.04 | 0.04 | 0.04 | 0.13 | 0.04 | 0.13 | 0.04 | 0.04 | 0.04
North | South | East | West
0.27 0.44 0.15 0.14

Table 2: Probability distribution of location (top

propagated. The new probabilities for the current
location and orientation are show in Table 3, which
says that CARMEL thinks that it most likely to be
at Location 10, and is most likely to be facing South.
Again moving West (to it, East on the map), so that
CARMEL sees the new feature at Location 4, yields
distributions shown in Table 4.

Taking this probability distribution, CARMEL now
has greater than 90% confidence that it is at Loca-
tion 4 and was initially facing South. If there was a
door tag at the entrance to the room at Location 4, it
could then visually verify that this inference is correct.
CARMEL can now reorient itself correctly to the map
and position itself at the transition point between the
current location (Location region 4) and the previ-
ous location (Location region 3). Note that since the
belief network has nodes representing each of the pre-
vious locations also, it is easy to reason about where
the robot has already been simply by looking each
of the nodes and determining the highest probability
state in each. This facilitates exploration updating
in that extra time to perform a backtracking search
through the map with the previously performed mo-
tions doesn’t have to be done in order to see what has
already been explored.

Exploration and Navigation

Once CARMEL is localized it can begin to look
for the coffee pot. The first step in this process is
to plan an exploration path. An exploration path
is an exhaustive sequence of rooms to visit from the
robot’s current location. The sequence 1s determined
based on the travel distance from the current location.
CARMEL first selects the closest room (in terms of
travel distance, not the Cartesian distance), then adds
another room closest to the selected room, and so on.
After planning, CARMEL traverses the exploration
path stopping in each room to scan with its camera
for the coffee pot. Exploration i1s terminated when
the coffee pot is found. The exploration path can
be modified to accommodate unexpected blockages
or openings.

Planning exploration path using closest-node-first
(hill-climbing) method does not necessarily generate
the optimal path in terms of total traveled distance*,
but in practice this method turned out very fast and
the resultant path was quite reasonable. For example,
the exploration path from, say, “H18” (in the middle
of the map in Figure 7 ) would be (R4, R7B, R3, R8A,
R9A, R1, R6, R5, R2A). This sequence specifies only

the room nodes to visit in that order.

*Finding the optimal exploration path amounts trav-
eling sales man problem

and orientation (bottom) at the start location.

Updating the map

While exploring CARMEL can update its a-prior:
map to reflect blocked hallways and doorways and to
note additional doorways that were not in the original
map. For blocked hallways or doorways, the connec-
tions between the two nodes in the map are cut and
the sonar characteristic of the node is modified ap-
propriately. In the case of unexpected openings, new
nodes are created, assigned the appropriate signature
and connected to adjacent nodes. This information
helps CARMEL find the most efficient route to the
delivery room once the coffee pot has been found or to
replan its exploration path. For example, if the robot
sees an unexpected opening to a room from a hall
node, it finds the nearest node (either virtual or real
room node) of the room and create a new link to that
node. Note that each node can have maximum four
connections (roughly corresponding to North, West,
South, and East) to other nodes. Figure 11 shows a
part of the map before the robot sees an unexpected
opening at west side of the hall “H5”. It first fig-
ures out which room is next to west of “H5” from the
boundary information of each room. In this case, it 1s
Room 5 and “V5E” is the closest node of that room.
Now “Hb5” should be divided into three sections since
the sections are divided based on the sonar-reading
changes and new opening will change the sonar sig-
nature as shown in Figure 12.

Visual sensing

As CARMEL enters each room it scans for the cof-
fee pot. CARMEL’s vision system finds predefined
markers (a black ‘X’ on a white background in the
case of the coffee pot) in the environment and deter-
mines their pose (3D position and orientation) rela-
tive to the robot. We will describe the algorithm for
detecting the ‘X’ here. The algorithm for determining
the pose of the ‘X’ is described in [12].

Marker detection

The marker detection phase is composed of two
main routines: the connected components routine
and the marker identification routine. The detection
phase must be both fast and accurate for the pose
estimation algorithm to be useful for real-time tasks.

To maximize speed, we make only one pass through
the entire image. During the pass, the image is
thresholded and connected components are found and
labeled. One pixel components are ignored and not
labeled. Size thresholding then filters out most of
the non-marker components. Only one pass is made
through all possible connected components.

To identify or reject the remaining markers, we
use a weighted pattern matching template. An nxn
template matrix is created for each marker (see Fig-

ure 13).



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
< 0.01 | 0.04 | 0.01 | 0.20 | 0.01 | 0.20 | 0.01 | 0.03 | 0.05 | 0.01 | 0.36 | 0.01 | 0.04 | < 0.01 | < .01
North | South | East | West
0.33 0.62 0.04 0.02

Table 3: Probability distribution of location (top) and orientation (bottom) after first move.

Table 4: Probability distribution of location (top) and orientation (bottom) after two moves.
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Figure 11: Before Modification
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0 1 2 4 5 6 7 8 9 10 11 12 13 14
0.01 | <0.01 | 0.08 | <0.01 | 0.57 | <0.01 | 0.08 | 0.01 | 0.02 | 0.07 | <0.01 | 0.13 | <0.01 | 0.01 | <0.01
North | South | East | West
0.18 0.800 0.01 0.01

Figure 12: After Modification
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Figure 13: Weighted pattern template for the ‘X’
markers. Positive values indicate ex-
pected black areas; negative areas are
expected to be white. Certainty in-

creases with magnitude.
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Figure 14: Sample marker with calculated ‘X’ cer-
tainty value. “b” indicates a black
pixel; “w” indicates a white pixel. r

counts rows; ¢ counts columns.

Increasing n increases the resolution of the tem-
plate, but also increases the process time. We found
n =T to be a good compromise. This weighted tem-
plate indicates which areas are expected to be black
and which ones white. The weights for our matrix are
currently determined by trial and error, but we could
easily replace these with machine generated weights
if a learning program were implemented. The marker
template which a component most resembles is se-
lected as the “guess” for that component. The pro-
gram generates a certainty measure with each guess
(see Figure 14) and uses this measure to accept or re-
ject the guess. Each marker can have one or more
templates. The additional templates may be used
to improve marker recognition from views other than
straight on.

We also use additional heuristic information in
identifying the markers. Some heuristics were not
learned or incorporated until after the program had
been tested. For example, diagonal lines often scored
high enough certainty values to be considered ‘X'’s.
Once we realized this, adding a specific test to ver-
ify that each possible ‘X’ is not a diagonal line solved
this problem. To avoid slowing down the program too
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much, specific heuristic tests were kept to a minimum.
Navigation

Once the coffee pot is found, CARMEL uses the
vision algorithm’s estimation of the pot’s relative lo-
cation to approach it. Since CARMEL doesn’t have
a manipulator, it is assumed that once CARMEL has
approached the coffee pot it has “grabbed” it and can
then deliver it to the delivery room. CARMEL plans
the shortest path to the delivery room using a stan-
dard shortest-path algorithm. CARMEL then follows
the path by moving from region to region and detect-
ing region boundaries with its sonar sensors. There
are numerous error recovery routines that can cope
with changes in the environment and sensor errors.

Conclusion

Unfortunately, time constraints leading up to the
competition prevented the complete integration of all
of the described skills. In particular, the robot did
not perform registration or localization at the compe-
tition. Instead the robot was told its orientation and
position. During the actual competition, the robot
explored several rooms before becoming hopelessly
lost, at which time the run was terminated. The most
difficult problem encountered was tuning the sonar-
based region-finding algorithm to the particular en-
vironment. While the algorithm had worked fine in
our testing environment (the basement of our labora-
tory), different characteristics of the competition en-
vironment caused many false detections (i.e., defining
the start of a new region when there wasn’t one) and a
few missed detections (i.e., not detecting a new region
when there was one). Since the robot’s localization
depended on matching the regions it found with the
a priort map, it became lost very quickly.

Our experience demonstrates an important lesson
in mobile robotics—if the low-level sensing of the
world is not working correctly, then high-level rea-
soning or map making will be unsuccessful, no mat-
ter how elegant their implementations. Our experi-
ence also underscores the fact that routines that are
demonstrated to work in one environment will not
necessarily work in another environment, even if that
environment is quite similar. In addition, our expe-
rience was not unique—no robot at the competition
(out of a dozen entries) successfully completed the
task. Obviously, there remains much work to be done
in mobile robot exploration and navigation of indoor
environments.
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