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Abstract

With the advent of New Artificial Intelligence it has
become clear that in order to understand intelligence
it s important to build complete agents. A complete
agent is capable of behaving autonomously in an envi-
ronment without human intermediary. It has to incor-
porate, among other things, capabilities for categoriza-
tion, for navigation, and for “deciding” what to do. In
this paper we illustrate how such an integration can be
implemented on a mobile robot. We introduce a new
control architecture, the so-called Extended Braiten-
berg Architecture (EBA). It consists of loosely coupled
processes that run in parallel. They implement various
behaviors such as exploration or recharging. The task
of the robot is to collect certain types of objects in the
environment. We show how the category learning can
be embedded in the overall architecture, i.e. we illus-
trate how categorization can be viewed from a complete
agent’s perspective. Results on the behavioral perfor-
mance as well as the underlying internal dynamics are
presented.

1 Introduction

In 1961 the Japanese psychologist Masanao Toda
proposed to study so-called “Fungus Eaters” as an
alternative to the traditional ways of academic psy-
chology ([13]). Rather than performing ever more re-
stricted and well-controlled experiments on isolated
faculties (e.g. categorization, learning or memory
and narrow tasks (e.g memorizing non-sense syllables
one should study complete systems. “Complete” in
this context means that the agent has to be capable
of behaving autonomously in an environment without
human intermediary. It has to incorporate, among
other things, capabilities for categorization, for navi-
gation, and for “deciding” what to do. Toda’s hope
was that such a system which is capable of interacting
with it’s environment autonomously will lead to better
insights into the nature of intelligence than looking at
isolated fragments of the very complex human mind
for a more detailed discussion of “Fungus Eaters”, see
10]).
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A very similar view is adopted by “New Artificial
Intelligence” where intelligence is studied using au-
tonomous agents (i.e. mobile robots) that interact
autonomously with their environment (see e.g. [10]
for an overview). One of the basic competences these
agents have to be equipped with is the ability to make
distinctions, i.e. the ability to categorize. Tradition-
ally, categorization has been treated as an information
processing module: the sensors receive a particular in-
put which is processed and mapped onto an internal
representation (e.g. a category node). This view dom-
inates most psychological models of categorization (see
e.g.[6]). Similarly, in computer vision systems catego-
rization is seen as a problem of matching the visual
input to a stored representation or model of objects
(see e.g. [5] for an overview).

In our previous work we have developed an alter-
native approach to categorization adopting the New
AT framework ([8],[11],[12]). The main idea is to view
categorization as a sensory-motor coordination rather
than an isolated perceptual (sub-)system. This is
achieved by including the robot‘s own actions into the
classification process. In this paper we considerably
extend this framework. First, we introduce a new con-
trol architecture, the so-called Eziended Braitenberg
Architecture (EBA), in which the categorization can
be easily embedded. Second, the sensory-motor com-
plexity of the robot is significantly increased. While
the sensory-motor system in the previous experiments
consisted of IR sensors and two wheels the robot used
in this paper is additionally equipped with a CCD
camera and an arm with a gripper mounted at the
end. A third improvement concerns the categoriza-
tion mechanisms used. Previously, the basic catego-
rization mechanism was a conditioned association be-
tween learned sensory-motor mappings and some be-
haviors. In the experiments presented in this paper
categorization is achieved by a learned reentrant map-
ping between visual and haptic feature maps. The
term reentry refers to the fact that there are recipro-
cal connections between the feature maps (e.g. [3]).
Reentry is necessary to correlate perceptual informa-



Figure 1: The robot and its environment. Explana-
tions see text.

tions from different modalities on the basis of their
temporal contiguity. A final extension of our previ-
ous work is the concept of attentional sensory-motor
loops which are modulated by the category-specific re-
sponses of the reentrantly connected feature maps. In
essense, categorization consists of breaking or enhanc-
ing the attentional sensory-motor loops depending on
the type of object encountered and the resulting ac-
tivity in the feature maps. The task of the robot is
to collect certain types of objects and bring them to
a home base. At the same time it has to sustain itself
by regularly visiting the charging station.

2 Experimental Set-up

The mobile robot used in the experiments is is
a Khepera™ , 55mm in diameter and 32mm high
(weight 70g) (see figure 1). The effector system con-
sists of two wheels which are individually driven by
DC motors, and an arm with a gripper installed at the
end. The maximum object size that can be grasped
with the gripper is about 40mm. There are two types
of objects in the environment (see figure 1). Wooden
objects with texture on the surface and others without
texture. Textured objects have been made conductive
by rapping a metalic wire around them. The sensory
system consists of a visual and a haptic system. Input
to the visual system is provided by a miniature (1/3”,
18g) B/W CCD camera (ces VPC-465). The camera
is equipped with a built-in lense with 90 degrees view-
ing angle. In order to reduce computational load all
visual processing was done on a visual server based on
a Pentium 133Mhz PC. The video image is sampled
at a maximum of 30 fps using a video framegrabber
(PMS from Media Vision). Images were grabbed at
resolution of 640 x 480 pixels and were spatially av-
eraged to provide an image of 160 x 120 pixels. The
main part of the control architecture was run on a
workstation (SUN SPARC 10). Communication be-
tween the visual server and the workstation was done

using the TCP/IP communication protocol. The in-
put to the haptic sysiem is as follows. Two wheel en-
coders provide position information with a resolution
of 0.08mm. Arm and gripper position are sensed by
position sensors coupled with the respective motors.
The arm position sensor takes values from 0 (bottom
back) and 255 (bottom forward), the gripper posi-
tions sensor takes values from 0 (open) to 255 (closed).
Conductivity of objects can be read by a conductivity
sensor which takes values from 0 (nonconductive, e.g.
plastic, wood) to 255 (conductive, e.g. metal). Ob-
jects inside the gripper can be detected by an optical
barrier that is mounted on the gripper. The optical
barrier takes values from 0 (no object) to 255 (object
presence). Finally, there are eight IR sensors, six in
the front and two in the back with an angular resolu-
tion of 60 degrees each. The maximal distance which
the IR sensors can detect is around 40mm. Because
of the small distance that they can sense and their ar-
rangement around to body surface of the robot we use
them as skin (pressure) sensors.

3 Architecture

3.1 The Extended Braitenberg Architec-
ture

In the real world, agents always have to do several
things and at least some of them will be incompatible.
To decide what the agent should do in a particular sit-
uation is one of the important functions of a control
architecture. In the literature this problem has been
called “action selection”. The term is inappropriate
because it introduces a particular bias on how the is-
sue should be tackled (see below). A comprehensive
review of “action selection” is given in [14]. There is a
fundamental problem with most approaches. They ex-
plicitly or implicitly rely on the assumption that what
is expressed behaviorally has an internal correspon-
dence. If we see an agent following an object we sus-
pect an object-following module (which is sometimes
called a “behavioral layer”). But there is a frame-of-
reference issue here. Behavior is by definition the re-
sult of a system-environment interaction and the inter-
nal mechanisms cannot be directly inferred from the
behavior alone. Of course, there must be something
within the organism which leads to this behavior. But
it would be a mistake to infer that, if we want an agent
to follow objects, we have to define a special module
for object-following. But this is precisely what is often
done. [1] proposed an alternative scheme which does
not suffer from this problem. Instead of having mod-
ules (or behavioral layers) there are a number of simple
processes which all run in parallel and continuously in-
fluence the agent’s internal state. An extension of this
approach is the “Extended Braitenberg Architecture”
(EBA). Let us illustrate the point directly with our
case study. The basic architecture is shown in Fig-
ure 2. There are a number of processes functioning
in parallel. The processes are implemented as neural
networks. Each process receives weighted input from
sensors and effectors (proprioception) and from other
processes. They all write simultaneously onto the ef-
fector variables where they are summed by a particular
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Figure 2: The control architecture of the robot: The
shaded processes (haptic and visual exploration) are
explained in more detail below.

summation scheme. The resulting values of these ef-
fector variables determine the behavior of the agent.
For example, the motor speeds are calculated as:

N

s(t) = (s1(2), 5, (2)) = (Z o (1), ZO?(t)) (1)

i=1 =1

where s;, s, is the speed of the left and the right mo-
tor and o, of is the output of the i-th process to the
speed quantity of the left and the right motor, respec-
tively and N is the number of processes. There are the
following networks: move forward, avoid, haptic ezplo-
ration, visual exploration, go-to-station, recharge, and
deposit. This sounds very much like the traditional
approaches. The main difference is the following. All
the networks run all the time. The influence they ex-
ert on the behavior of the agent varies depending on
the circumstances. So, under certain conditions they
will have no influence and, in others, they will con-
stitute the major influence; but they are not on or
off. We give only a short description of each process
in Figure 2 (for technical details see [7]. Because the
haptic exploration and the visual ezploration network
are core aspects of the current architecture we treat
them separately below.

move forward: The activity of this process is in-
versely proportional to the activation of the two front
IR sensors.

avoid: The activity of this process is a weighted sum
of the activity of all IR sensors such that obstacles on
the right will make the robot to turn left and thus
avoid the obstacle (and vice versa).

go to station: Whenever the battery level is low
the robot should go to the charging station and
recharge. The motivation to go to the charging sta-

tion, M(G€)(t), is a convolution of the motivation
function associated with the battery level, Mg(t), the
distance from the charging station, Mp(¢), and the
presence of an object in the gripper, Mo (t), respec-
tively (see below). The robot finds the charging sta-
tion by using the light sensors, i.e. by performing
phototaxis behavior :

GC(t) = MEOGC(t),GC,(t)) (2)

M©C) = (Mg, Mp, My) (3)
6
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GGi(t) = ;wu (“_i?wgtzw c C) (4)
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(t) ; (|Z_stw(t)| C ) (5)

where [,7 is the contribution of the process to the left
and right motor, respectively, ,,4, is again the index
of the maximally active ambient light sensor and C is

(¢c)

a constant. The weights w; "~/ are chosen such that

this process will actually lead to phototaxis behavior.

recharge: Once the robot is in the charging station
the recharge process causes it to slow down or stop (de-
pending on the activity of the other processes). The
activity of this process is a function of the energy in-
flow, dE. The energy inflow is large when the battery
level is low and vice versa (see below). Thus, when
the robot enters the charging station with a low bat-
tery level dE will be large and as a consequence the
recharge process will try to stop the robot :

RC(t) = (RGCi(t),RCy(t) (6)
RG(t) = w™® 1+ e:cp(al— BAE(t)) ©
RC(t) = w(FY 1+ e:cp(al— BdE(t)) ®

where wz(»RC ) < 0 so that large activity in RC; (t) will

decrease the motor speeds significantly or even halt
the robot. In the experiments presented in this paper,
there is (a) an energy decrease proportional to the
distance traveled, (b) a constant decrease of energy
due to a metabolic rate and (c) a decrease of energy
when the agent is carrying objects. Thus, the energy
dynamics are as follows:

E(t+1) = E(t)— MR—D(t)— (IR;+IRs)+D(t) (9)

where E(t) is the energy or battery level, M R is a con-
stant metabolic rate, and D(t) is the distance traveled
between two time steps. The metabolic rate causes
energy loss even when the robot is not moving. The
distance traveled, D(t), is approximated by taking the
summed and averaged difference of the wheel encoder
values WE at two subsequent steps. Since we are
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Figure 3: Overview of the visual and the haptic exploration systems (the shaded processes in figure 2). Each
system consists of sensory sheets, an attentional map and a feature map. There is a learned crossmodal interaction
via reentrant connections between the haptic and visual feature map.

interested in having a complete robot one important
task of the robot is the keep its battery level in a cer-
tain range, i.e. it should sustain itself over an extended
period of time. There are two aspects of this: First,
the agent should go to the charging station whenever
its battery level is low. Second, the distance from the
charging station has to be taken into account: travel-
ing a large distance costs a lot of energy. The moti-
vation function of the go to station, M %€, has three
components Mg,Mp and Mo. Mo is a linear func-
tion of the object presence and arm position sensor.
The Mp component implements the dependence of the
go to station process activation on the distance from
the charging station. If the robot is far away from
the charging station the influence will be greater than
when it is close to it. We use the activation of the
light sensors to estimate this distance:

Mp 1—IR(imaz) (10)
Mg is a function of energy. We used the following
function:

1
1+ exp(a — BE)

Mg =1 (11)

Typical values for @ and 3 are 15 and 45 respectively.
In essence, the motivation is largest, when energy is

low and the distance is large (i.e. the agent is far
away from the charging station). Other functions can
be used such as a quadratic [9].

3.2

As pointed out earlier, categorization can be viewed
as a process which involves action as well. Catego-
rization then becomes a matter of sensory-motor co-
ordination rather than information processing alone.
Instead of looking at a particular (fixed) sensory pat-
tern we let the agent explore the object. In the present
architecture there are two types of exploration behav-
iors: visual and haptic exploration. This part of the
architecture is shown in greater detail in figure 3. The
visual exploration system consists of a retina, a vi-
sual attention map and a visual feature map. We use
an image of 160x120 pixels as an input to the retina.
An artifical fovea (20x20 pixels) is extracted from the
center of the retina. The spatially averaged periph-
ery of the retina gives input to area VA1 of the vi-
sual attention map. VA1 responds to bright spots in
the image. The visual attention map is connected to
the wheel motor map. These connections implement
a continuous mapping between location of activity in
the attention map and the resulting translational and
rotational movements. As a result, the robot always
orients its body towards areas of interest (bright spots
in the present model). In addition, the attention map

Sensory-motor coordination



is connected to artificial eye muscles that move the
fovea to bright spots. Thus, together with the motor
map and the eye muscles the attention map forms a
complete (visual) attentional sensory-motor loop: it
brings the robot to relevant places in the environment
while at the same time keeping the eye focussed on
the spot where the robot is heading to.

The fovea in turn is connected to the visual feature
map. The feature map responds to relevant features
in the fovea. In the present model these are defined
to be horizontal and vertical edges, i.e. texture. The
visual feature map is connected back to area VA2 of
the visual attention map via modifiable weights. The
main idea behind these weights is that the categorical
responses of the classification couple (i.e. the two fea-
ture maps) should modulate the attentional sensory-
motor loops by either enhancing or breaking it. Area
VA2 consists of a population of inhibitory and exci-
tatory units that are connected via prewired weights
to area VA1l. The activity of these units increases
as the weights from the feature map to the attention
map evolve. These weights are topographic in the
sense that areas that code for strongly textured in-
put are mapped onto the excitatory population, while
areas that code for bright or non-textured objects are
mapped onto the inhibitory population. High activity
of the inhibitory population will lead to a suppression
of activity in VA1 and in turn to a breaking of the
visual attentional loop. The walue map implements a
general bias in the system. The value map receives in-
put from the resistivity sensor and the arm propriocep-
tors. The basic motivation behind these connections
is that the robot should learn only when it explores an
object. Activity in this map acts like a gating function
and is used as a reinforcement signal for the synap-
tic modifications between the feature and attentional
map as well as for the reentrant connections between
the two feature maps. Finally, the visual feature map
is connected to the haptic feature map via reentrant
connections. Again, the synaptic growth of these con-
nections is modulated by activity of the value map.
The value map is strongly active when the robot has
something in the gripper. In this way the robot only
learns about objects when it is exploring them with
its arm-gripper system.

The overall functionality of the haptic ezploration sys-
tem is similar to the one just described for the visual
system. The sensory maps consist of a conductivity
map, and a skin map. They get input from a con-
ductivity and a skin sensor, respectively. Both maps
are connected to area HA1 of the haptic attention
map. Similar to the visual equivalent, the haptic at-
tention map and the wheel, arm and gripper motor
maps form an attentional sensory-motor loop. Again
there is a continuous mapping of location of activity
in the attentional map and the resulting translational
and rotational movements. The main result is that as
soon as the robot has made body contact with an ob-
ject (which is sensed by the skin sensors) it will bring
the object to the front of its body. This “haptic fo-
cussing” leads to an increase of activity in area HA1
of the attention map and in turn to large activity in
the arm motor map, causing the robot to lower it‘s

arm. Lowering the arm leads to increased activity in
the arm proprioceptors and in turn to an even more
increased activity in HA1. As a result the robot will
start exploring the object by closing the gripper. Area
HAZ2 consists of inhibitory and excitatory populations
of units. They receive inputs from the haptic feature
map map and they are fully connected with the units
of area HA1. The projections between the haptic fea-
ture map and HA2 are topographic in the sense that
areas that code for non-conductivity are mapped onto
the inhibitory population, while areas that code for
conductivity are mapped onto the excitatory popu-
lation. HA2 and HA1 are fully interconnected. High
activity of the inhibitory population will lead to a sup-
pression of activity in HA1. As aresult the gripper will
be opened and the arm will be lifted. At the beginning
of a trial the main source of activity in the haptic at-
tention map stems from the skin map. This is a kind of
“haptic reflex” that makes the robot haptically track
and explore objects. Over time connections between
the haptic feature map and the haptic attention map
(area HA2) evolve. This leads to an amplification of
attention for relevant objects and to a breaking of the
haptic attentional sensory-motor loop when the robot
encounters irrelevant objects.

3.3 Activation and learning rules of neu-
ronal fields

The generic equation that describes the activation
rule for the attention maps is:

NFM

atM(t) = Z an(t)wij(t)+Za§(t)wfj(t) (12)

AM

where af* (¢) is the ¢-th unit of the attention map,
afM

7 (t) is the activation of unit j of the feature map,

wf;M (t) is the weight from unit j in the feature map,

aj (t) is the activation of unit j of the sensory map and
w;;(t) is the weight connecting unit j to unit s. The
activity of the units in the feature maps, al™ (%), is
computed using a “leaky integrator” activation func-
tion [2]:

afM(t) = Baf M (t—1)+al) af (t)u; (t)+Z aj (t)wi; ()]

i=1

(13)
where 0 < 8 < 1 relates to the time constant of the
unit, 0 < @ < 1 is the attack parameter, aj(¢) is the
activation of unit j of the other reentrantly connected
feature map, w;»"j(t) denotes the reentrant connection
strength from unit j to unit 4, aj(t) is the activation
of unit j of the sensory map,w;;(t) is the weight con-
necting unit j to unit ¢:. The connections between the
sensory map and the feature map are chosen such that
they result in a population coding of the average sen-
sory activity (conductivity/skin map activations for
the haptic and texture for the visual feature map, re-
spectively). Equation 13 makes the activation of the
units not only depend on the weights and the current
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Figure 4: A typical trajectory of the robot before (top)
and after (bottom) learning had occured. For visuali-
sation purposes objects were removed from the gripper
once the robot had grasped them.

inputs but also on the activation of the previous time
step. Besides being a biologically plausible activation
function, the leaky integrator function has the impor-
tant property that it leads to stability of responses and
a kind of “low pass” filtering on the input. The con-
nection strenghts between the haptic and the visual
feature map, and between the feature maps and the
attention maps are computed using a Hebbian learn-
ing scheme:

Aw;j = v(t)(na;(t)a;(t) — ea;(t)ws;(t)) (14)

where w;; represents the strength of the connection
between the presynaptic unit 7 and the postsynaptic
unit ¢, v(¢) is the value signal (activity of the value
map), a;(t) is the activation of the pre-synaptic unit,
and 7, € are the learning rate and decay parameters
respectively.

4 Results

Experiments were conducted on a flat arena (100
cm x 100 cm) with walls (8 cm height) on each side.
Objects were of 1.5 cm in diameter and 2 cm high,
the shape of the objects was cylindrical (see figure

30.0

20.0

cumulative numbers

10.0

0.0
0.0 10.0 20.0 30.0 40.0

number of con-conductive objects

Figure 5: Cumulative number of exploration and igno-
ration steps for 40 non-conductive objects. The data
are means over 20 trials.

1). There were conductive and non-conductive ob-
jects in the environment. The conductive objects had
a strongly textured surface while the non-conductive
had a white or only slightly textured surface. The
robot’s task was to collect the conductive objects. We
present results on the behavioral level as well as the
underlying internal dynamics.

4.1 Behavior

The behavior of the robot as it moves around in
the environment and explores objects is shown in fig-
ure 4. The trajectories were recorded with a video
camera and then hand traced. Figure 4 (top) shows a
typical trajectory at the beginning of a trial. White
and shaded circles indicate non-resistive/non-textured
and resistive/textured objects, respectively. It can be
seen there is no distinct behavior for the two types of
objects. Rather the robot approaches all objects and
explores them. Figure 4 (bottom) shows a typical tra-
jectory after the robot has encountered 10 objects of
each type. Two main results can be taken from the
traces in figure 4. First, the robot has stopped explor-
ing both types of objects. Rather the behavior is now
governed by the dynamics of the classification couple.
Second, the robot “ignores” non-conductive objects
while it grasps the conductive ones (without first ex-
ploring them). We use the term “ignoration” instead
of “avoidance” to indicate that there is no separate
avoidance module. Rather the avoiding is achieved by
breaking the attentional sensory-motor loop. In order
to quantify this learning process the number of non-
conductive objects explored and ignored was recorded
for 20 trials. Each trial ended when the robot had en-
countered 40 non-conductive objects. Figure 5 shows
the averaged cumulative number of non-conductive
objects the robot explores and ignores. At the be-
ginning of the trials the agent always explored non-
conductive objects. After it had explored around 6
objects it started to ignore them. Because the weights
had not been sufficiently evolved it still explored some
of the objects. After having encountered around 12
objects the robot only explored because of errors in
the sensory readings. One major problem when work-
ing with mobile robots is that they can get stuck. In
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our set-up the agent can, for example, get trapped in
a corner when there are some objects located nearby
the corner. There are several ways to approach this
problem. One is to introduce special processes which
survey the success or failure of others ([4]). In our
approach, however, this is not necessary for the fol-
lowing reason. Energy decreases even when the robot
is stuck because of the metabolic rate. After a certain
amount of time this will lead to an increased activity
in the go to station process. As a result, there will be
an increase of activity in the speed quantities and the
robot will start moving again. This is shown in figure
6. As can be seen in the figure, the agent gets trapped
after about 1800 steps: The speed of the left and the
right wheel become zero. At the same time, the en-
ergy level starts to decrease because of the metabolic
rate and the energy level gets very low at around 2400
steps. Because of the low energy level the activity in
the go to station process starts to increase and con-
tribute to the motor speeds. As a result, the robot
starts moving again. Because it cannot really get out
of the impasse initially, there is an increased wiggling
behavior (the bursts around 3100 steps in the figure).
Because of this the agent finally manages to get out of
the impasse and go to the charging station. Another
result that can be seen in figure 6 is that the robot
is in fact self-sufficient in the sense that it keeps it’s
battery level in a safe range.

4.2 Internal dynamics

In the following we present results on the cate-
gorization dynamics. One of the main consequences
of using reentry as the mechanism for categorization
is that temporal correlations or synchronizations in
the activity between neuronal areas emerge. In order
to quantify these correlations we estimated the level
of synchronization between the visual and the hap-
tic feature map. We have quantified synchronization
as the product of the average activities of the areas
V1, V9 and H1, HY9, in the visual and haptic feature
maps, respectively. Units in area V1 selectively re-
spond to non-textured regions in the fovea while units
in V9 respond to textured omes. Similarly, H1 and
H9 of the haptic feature map selectively respond to
non-conductive and conductive stimuli, respectively.
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Figure 7: Level of synchronization between areas H1,
V1 and areas H9, V9. See text for explanation.

Figure 7 shows the evolution of synchronization be-
tween the classification couple as the robot explores
objects. Three main results can be taken from this
figure. First, the level of synchronization between ar-
eas V1, V9 and areas H1, H9 (denoted as V1H1 and
V9H9 in figure 7, top) at the beginning of the trial
is significantly lower than after learning has occured.
For example, until around 300 steps the mean synchro-
nization level is around 0.05 while later in the trial it
increases up to 0.3 implying levels of average activ-
ity around 0.55. This increase is due to the evolv-
ing reentrant weights that couple the activities in the
two feature maps (see below). Second, the difference
in the synchronized activities between the two areas
(V1H1 and V9H9) increases significantly. Third, the
coherence of synchronous activity between the maps
increases. As can be seen in the figure, the dynam-
ics of the coactivities become strongly coupled over
time. This is also reflected in the correlations V1H1-
V9H9 that reach an average level of around -0.9 (data
not shown). Finally, figure 8 shows the evolution of
the average weights from the feature maps to the at-
tentional maps. These weights couple the categori-
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the attention maps. See text for explanation.

cal responses to the attentional sensory-motor loops.
As can bee seen in the figure, weights to both excita-
tory and inhibitory populations in the attention maps
increase significantly with the number of objects the
agent has explored. More specifically, area V1 of the
visual feature map (responding to non-textured stim-
uli) becomes associated with the inhibitory population
of the attention map (area VA2, see figure 3). Strong
weights also evolve between area V9 (responding to
textured stimuli) and the excitatory population of the
visual attention map. Together these connections lead
to a suppression of activity in the visual attention map
for non-textured objects while the encounter of tex-
tured objects lead to an enhanced activity. Similar
weights evolve between the haptic feature map and the
haptic attention map. Area H1 (coding non-resistive
input) becomes associated with the inhibitory popula-
tion of the haptic attention map while area H9 which
selectively responds to conductive objects becomes as-
sociated with the excitatory population of the atten-
tion map. Again, these connections have the conse-
quence that the activity in the haptic attention map
gets suppressed for non-resistive objects and enhanced
for resistive ones.

5 Summary and Conclusions

In this paper we have addressed the problem of inte-
grating the various competences that are required for a
complete autonomous agent. We have proposed a new
architecture, the EBA, which is based on the princi-
ple of parallel control with loosely coupled processes.
EBA provides a natural solution to the notorious prob-
lem of when the agent should do what, i.e. the action
selection problem. We have demonstrated how this
could work even when a “difficult” competence such
as category learning is embedded in the architecture.
In our case study categorization is based on the prin-
ciple of sensory-motor coordination rather than the
one of information-processing. We have shown that
based on this architecture the agent is able to learn to
categorize the objects in its environment. The cate-

gories that evolve are expressed in the synchronization
of activity in the classification couple.
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