Evolving the Morphology of a Compound Eye on a Robot
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Abstract of the sensors, the way of locomotion etc., is assumed to
be given and only the neural control is evolved. This re-
This paper reports on an experiment in evolving the mor- striction is not surprising: Most of the robots built today
phology of an artificial compound eye with 16 light sensors are quite flexible where the choice of control structure im-
on a robot. A special robot was designed and constructed plemented is concerned. When it comes to the mechanical
that is able to autonomously modify the angular positions of configuration, they are much more restricted by their de-
the individual light sensors within the compound eye. The signers. However, we believe that it is very important to be
task of the robot was to employ motion parallax to estimate able to also adapt the robot’s morphology to the desired task
a critical distance to obstacles. This task was achieved by and environment. There is increasing evidence that in many
adapting the morphology of the compound eye by an evo-cases a ‘good’ morphology can simplify the control struc-
lutionary algorithm while using a fixed neural network to ture and make it more stable with respect to environmental
control the robot. changes [13, 10]. It has been suggested that there exists
a kind of ecological balance between morphology, neural
control, task and environment [14]. In this paper we present
1 Introduction a robot that is able to automatically modify its sensor mor-
phology (to a certain degree) in order to improve its perfor-
mance on the task of estimating a critical distance to some

In the usual engineering approach, a robot is hand-
9 9 app obstacle.

designed to perform a specific task. The design choices for
many of the system’s parameters depend on models of the

robot-environment interaction. These models often cannot2 M ethod

describe actual real-world conditions very accurately. It is

therefore desirable to build robots that can adapt to their In our experiments we use a robot with adaptive mor-
environment by automatically re-adjusting some of the sys- phology (see section 2.2) where the process of changing the
tem’s parameters to match the actual conditions found in morphology is automatically controlled by an evolutionary
the real world. One method for automatic fine-tuning of process (see section 2.4). This means that in contrast to
design parameters is by the use of artificial evolution. The the conventional approach the physical characteristics of the
field of artificial evolution dates back to the sixties where robot are not completely predetermined at design time but
people like Rechenberg and Schwefel [15] developed com- can be modified to some extent by the robot itself to improve
putational models of evolution. In the field of robots and au- its performance on a given task. Modification of the mor-
tonomous agents these techniques have been applied duringhology is controlled by an evolutionary process obtaining
the last ten years. A typical application would be the fol- its feedback from the robot's behavior. We present an ex-
lowing: for a given robot system an evolutionary algorithm ample of a robot that is able to modify the positions of the
has to evolve the neural control structure for a certain task. facets within a compound eye using an evolution strategy
In many cases the neural network structure was given and(ES, see section 2.3) in order to better estimate a critical dis-
the neural weights were evolved, or learning rules had to tance to obstacles using motion parallax. The phenomenon
be evolved or the neural architectures had to be constructebf motion parallax [19] (see section 2.1) has the advantage
[8,2,7,12,17,18, 1]. Butin all these approaches the mor- that it is very well understood and favors non-trivial sen-
phology, in other words, the agent’s shape, the positioning sor morphology. Motion parallax is used by insects such



as the house fly to avoid obstacles. Biologists know that wherek is an arbitrary constant. Then equation (2) becomes
in this context the morphology of the compound eye of the with (5)
fly, i.e. the distribution of the facets (ommatidia), is of im-

portance [16, 9, 4]. To keep the focus on adaptivity of the d = ”5 sin” «
morphology we used a hard-wired control structure (a prim- .
itive neural network) that was fixed during the whole exper- = — @)

iment, i.e. in contrast to the usual approach of adapting the v

control structure, our robot ‘learned’ its task by changing its In contrast to (2) equation (7) no longer depends on the an-

morphology. gle a under which the obstacle is seen but only on the num-
ber of sensors activated per unit time and the observer’s
2.1 Motion parallax speed.

Figure 1 shows how an observBrmoving at constant
velocity v with respect to an obstacl® sees the obstacle
under different angles at differenttimeg, ¢', . From the
observer’s point of view the obstacle moves with the same
speedv but in opposite direction. Let; denote the com-
ponent ofv that is perpendicular to the vectofrom R to
X. Sincev; = vsina the angular velocity with which the
image of X moves through the visual field of the observer
Ris )

Vg v sin a
Ww=—= .

(1)
r r

If the obstacleX is fixed and the observer can measure its
own speed as well as the angle and the angular velocity

w it can calculate from equation (1) its distancw® the ob-
stacle at any time [19]. In our case we would like to estimate  Figure 1. lllustration of motion parallax. An

the distance of closest approatto determine whether the observer moving at position R with a veloc-
current track would keep us far enough from the obstacle at ity v that is constant relative to an obstacle X
all times. Sincel = r sin o we have can estimate the distance r at different times
d= Y sin?a @ t,t',t" by using sensors able to detect the

w ' angular velocity w = da/dt of the apparent

f movement of the observed object. d is the
distance of closest approach.

Let us assume that the observer uses some sensors each o
which can detect the obstacle if it is seen at a particular
anglea. We define ;

n
whereu is the number of sensors that are activated per unit
time (i.e., the number of neighboring sensors that detect the
obstacle during a unity time intervad. is the speed of the
image of the obstacle through the visual field measured in
sensor units). If we define

2.2 A robot with adaptive sensor morphology

We designed and built a special robot that is able to au-
tomatically adapt its sensor morphology within a certain
range (see figure 2 for apicture of therobot. Figure 3 shows
a Block Diagram of the robot and a schematic representa-

_ d_” 4 tion of one sensory unit). The robot employs sixteen light

pla) = (4) - .
do sensors. In front of each sensor athin intransparent tube is
to be the (angular) density of these sensors (i.e., the numbeimounted reducing the aperture of the sensor to about two
of sensors per radians) then degrees. These tubes are the primitive equivalent to the bi-
dov d ological ommatidia[16, 9, 4]. Each tube is mounted at the
u= d_? d_n =wp (5) sensor-side on a cog-wheel. All cog-wheels share a com-

(67

mon vertical axis but their direction can be controlled indi-
Let us now consider a very special density distribution for vidually using sixteen small electrical motors and feedback

the angular sensors, signals from potentiometers. Each tube can thus be rotated
1 around the common vertical axis within a range of about
=k—s (6) 200 degrees. The resolution of the angular position of the



tube depends on the angular position: however, for the an-
glesused in our experiment it was usually around 2 degrees.
The angular positions of the tubes are the system’s parame-
tersthat aredirectly controlled by an evolution strategy [15]
and changed according to the given fitness (see section 2.4).
The sensory system is essentially one-dimensional: Tubes
are arranged on top of each other only to alow for free ro-
tation. Since the system is symmetric along the vertical axis
and since we are using only obstacles with the same sym-
metry (like vertical bars) the situation is the same as if al
tubeswere mounted at the same height. This correspondsto
aone-dimensional circular array of sensors whose angular
positions can be freely varied.

To steer therobot a simple, homogeneoushneural hetwork
was implemented which was able to detect motion (see fig-
ure 4). Basically the neural net consists of elementary mo-
tion detectors which are activated if an object moves at a
speed higher than some critical value (in principle thereis
also an upper limit to the speed: when the obstacle moves
too fast the sensors will no longer be able to detect it since
they are not sampled frequently enough by the processor).
The network consists of two layers: In each layer al neu-
rons are identical. Neurons of type A receive their input
directly from the sensors. They are activated when the sen-
sor reading rises above a certain threshold (In our case the
neurons were activated at a “dark to bright” transition that
was significant enough. This can be seen as some kind of
edge detection mechanism). Then the neurons remain ac-
tive during a decay time 7 that is equal for al neurons of
type A. Neurons of type B become active if two neighbor-
ing neurons of type A are active at the same time and be-
come inactive as soon as this condition is no longer valid.
Note that all weights in the network are equal. During the
whol e evol utionary process the network remained the same,
no weights or connections were modified.

Consider now a strong enough stimulus moving aong
thearray of sensors. If thetime it takesto movefrom one A-
neuron to its neighbor is smaller than 7 this means that the
first A-neuronwill still be active when the second A-neuron
becomes active and thus the corresponding B-neuronistrig-
gered. Onthe other hand, if the (apparent) movement of the
stimulusis slow enough then the first A-neuron has already
become inactive again and the B-neuron is not triggered.
Therefore the parameter 7 determines a critical speed be-
tween two neighboring sensors (7 is equal for al sensors).
Note that the network does not discriminate the direction
of movement and would therefore work equally well if the
robot was moving backward. (However, we require that the
time between successive stimulations of agiven A-neuronis
always bigger than 7. This can be achieved by introducing
a corresponding “latency period” for the A-neurons during
which the neuron cannot be triggered again. But even then
there can be situationswhere the system isfooled: Consider

for exampletwo obstacles at different lateral distancesfrom
the robot’s track. Then at some point the stimulus from the
closer obstacle will “overtake” the stimulus from the far-
ther obstacle on the A-neuron layer which may result in an
erroneous activation of the corresponding B-neuron. For
simplicity we only used one obstacle in our experiments.)
Whenever one of the B-neurons becomes active asignal is
sent that triggers the necessary avoidance action. In our ex-
periment the robot did not actually turn away from the ob-
stacle but the avoidance signal was used do calculate the
fitness function for a particular individual (see section 2.4).

Figure 2. A robot that is able to position its
sensors autonomously using electrical mo-
tors. Each of the 16 long tubes contains a
light sensor which can detect light within an
angle of about 2 degrees. The tubes can be
rotated about a common vertical axis. An
evolution strategy was used to determine the
angular position of each sensor.

2.3 Evolution Strategy

Evolutionary agorithms (EAS) is a term for a class of
stochastic optimization and adaptati on techniques which al-
low to solve optimization problems. EAs provide a frame-
work consisting of genetic algorithms (GAs) [6], evolution-
ary programming (EP) [3], and evolution strategies (ESs)
[15]. Thesetechniqueshave been successfully appliedin di-
verse areas, such as machine learning, combinatorial prob-
lems, engineering problems such as the design of propellers
or flux optimization through a tube, VLS| design, or nu-
merical optimization. Each of these EAsis designed along
different methodologies. Despite their differences, all EAs
use random variation and selection from a population of in-
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Figure 3. Top: Block Diagram of the robot.
Bottom: Schematic representation of one of
the 16 sensor units.

dividuals. Typically, such population-based search proce-
dures generate offspring in each generation. A fitness value
(defined by a fitness or objective function) is assigned to
each offspring. Depending on their fitness, each population
member is given a specific survival probability. A generic
form of most evolutionary algorithms can be described as
follows. (1) Initialize and evaluate the fitness of each indi-
vidual of apopulation, (2) Select the parents accordingto a
selection scheme, (3) Recombine and mutate selected par-
ents with a specific operator, (4) Repeat the cycle. For the
present experiment an evolution strategy (ES) was used to
vary and select genomes.

2.4 Evolving the morphology of the robot’s com-
pound eye

The task of the robot would be to avoid an obstacle (a
light source) if the point of closest approach of its track to
the obstacle (the lateral distance) was closer than a critical
distance dy and not to avoidit if this distance was greater
than do (Not avoidingis aso important: A robot that avoids
whatever it sees would be quite useless, consider for exam-
ple the task of moving through a gap between two obsta-
cles). The robot would be moving straight ahead at con-
stant speed v while the obstacle was immobile. The prob-
lem with this experimental setup isthat it requirestoo much
supervision of the robot during the experiment: Using con-
stant speed the robot has to be run both at lateral distances
slightly greater than do (when it should not avoid) aswell as
at distances slightly smaller than dy (when it should avoid)
to be able to determine the critical distance dy. Thisisvery
impractical in an evolutionary procedure because for each
individual during evolution the robot has to be placed at

direction of robot's movement

Figure 4. A two-layered artificial neural net-
work is used to control the robot. This net-
work is never changed throughout the evolu-
tionary process. Neurons A remain active for
a certain decay time 7 after being triggered
by a stimulus at the corresponding sensor
S. Therefore neurons B are activated if two
neighboring sensors receive stimuli within a
time interval smaller than 7.

different distance settings. Since the evolutionary process
typically needed a total of a few hundred individuals to be
tested over atotal time of several hoursthe overhead of po-
sitioning the robot manually was prohibitive.

Therefore we decided to use a somewhat different but
functionally equivalent setting: Instead of varying the dis-
tance around d, we varied the speed of the robot around
a critical speed vy (one setting dlightly above vy and one
setting slightly below vg). The robot then had to avoid the
light if it was running faster than v, and not to avoid it if
it was running slower than vg. Since in (2) and subsequent
equations w only depends on the ratio of v and d thisis a
completely equivalent task (for the robot the apparent mo-
tion of the obstacle is the same) under the condition that the
distance to the obstacle remains fixed at d, (There may be
subtle differences between the two tasks since light intensi-
ties are different at different distances but for our purposes
these effects are neglectable). In order to guarantee that the
distance dy is aways constant we put the robot on a rail
track. In thisway the robot could move back and forth with-
out changingitslateral position and the experiment could be
left unattended during the evolutionary process.

One run of the experiment was performed in the follow-
ing way: All sensors were connected to their corresponding
A-neuron in the neural network at al times and the neural
network was never changed. At the beginning of the ex-
periment all sensors were placed at positions on the right
side of the robot so they would never get a stimulus from



the light tube which could only be seen on the left side
of the robot. (We used vertical fluorescent tubes as light
sources to account for the vertical arrangement of sensors
(see section 2.2). Idedlly all sensors would lie in the same
plane and then any type of light source could be used.) The
first sensor (corresponding to an A-neuron at one end of the
neural network, see figure 4) was then moved to a position
about 90 degrees from the front on the left side where it
remained fixed for the rest of the experiment. The second
sensor (connected to the A-neuron that was the neighbor of
the A-neuron for the first sensor) was moved to a position
at some random angular distance from the first sensor. The
distance between the two sensors was then evolved by an
evolution strategy (ES) using 5 individuals per generation
(seesection 2.3). Assoon asthefitness of anindividual was
high enough the second sensor was al so fixed and would not
move anymore for the remainder of the experiment. Then
the third sensor (with respect to the A-neurons) was posi-
tioned randomly and its angular distance to the second sen-
sor was evolved by the ES and so on until al sensors were
positioned on the | eft side of the robot.

Thefitness of each individua was determined asfollows:
Therobot would moveforward onitsrail track past thelight
tube at a speed dightly greater than v,. For every B-neuron
in the neural network that was activated (and would have
caused the robot to turn away) the fitness was increased by
one (the robot did not actually turn away but stayed on its
track in order to be able to continue the evaluation for the
other sensors at the same lateral distance d, from the light
tube). When the light tube was past the backmost sensor the
robot would move back to its starting point (without evalu-
ating the fitness while driving backwards). Then the robot
started to move forward again but at a speed slightly slower
than vg. Thistimethefitnesswasincreased by onefor every
sensor that detected the light tube only if the corresponding
B-neuron was not activatedfter the backmost sensor was
past the light the robot again returned to its starting position
without measuring. If al sensors that had been positioned
so far reacted correctly (i.e., ‘avoiding’ when moving for-
ward at fast speed and ‘ hot avoiding’ when moving forward
at slow speed) and thus the maximum fitness possible for
the current number of sensors was obtained then the current
sensor was fixed and evolution moved to the next sensor. If
not all sensors reacted correctly the ES modified the posi-
tion of the current sensor (relative to the position of its pre-
decessor) according to the fitness received and another run
for evaluating the fitness would recommence for the same
Sensor.

It is important to note that one reason for using motion
parallax for obstacle avoidance is that the robot can decide
if its track will lead it too close to an object regardless of
the angle under which this object is seen. Thusif the robot
moves on a track that passes too close by an obstacle first

the frontmost sensors will signal the potential collision and
then one after the other until finally the sensors at the side
are reached. This has the big advantage that the robot can
determine potentially dangerous obstacles anywhere in its
visual field and also at an early point in time. In our experi-
ment for every sensor that made a correct decision (avoid/no
avoid) the fitness was increased by one. This means that
the more sensors are positioned correctly the higher the to-
tal fitness achieved (remember that the neural network re-
mains fixed throughout the experiment and all sensors are
connected to their corresponding neuron at all times).

Figure 5 shows the robot moving on its track past the
light tube at different time points during the experiment.
The top image shows the situation right at the beginning
when only the first sensor is fixed and the second sensor is
evolved. All other sensors point to the right of the robot and
thuswill never detect the light tube and cannot contribute to
the fitness. The bottom image shows a situation when most
of the sensors have been positioned (the sensor pointing ap-
proximately towards the light is the one whose position is
currently being evolved). The image in between shows an
intermediary state.

Figure 6 shows the fitness of all individuals in one run
of the experiment. It reflects the fact that sensor positions
were evolved one after the other and so the fithess increases
whenever anew sensor is positioned correctly but never de-
creases, because the other sensors remain in their correct
positions. Note that the fitness function we employed does
not bear any information in which way to change the value
of a particular sensor position to improve the fitness (the
fitness function is completely flat away from the solution).
The ES therefore does essentialy a random walk until it
finds the right solution for the given sensor.

3 Reaults

Figure 7 shows sensor distributions that were evolved in
the experimental setup. Each of the three runs used a dif-
ferent random seed which resulted in slightly different so-
lutions being found by the ES. Each run took 4 to 5 hours
to complete. The inhomogeneous distribution of sensorsis
clearly visible although the exact positions of the sensors
differ considerably between runs. Thisis mostly due to the
relatively big difference between the two velocities used for
the avoid and the non-avoid task. In other words, there is
arelatively broad range of velocities where no fitness feed-
back was given and both behaviors were accepted. Conse-
guently there is a relatively big range of angular positions
that all represent solutions to the task. This follows from
equation (7): We have constant d = d, with good preci-
sion since the robot moves on rails. Also the critical time
between two sensors (when the behavior changes) is just ~
and therefore v = 1/7 which is also constant with high



Figure 5. The robot on its track during evolu-
tion moving beside an obstacle (the vertical
light tube). Three different states of sensor
positions are shown during evolution. The
top figure shows a typical configuration at
the beginning, the middle one an intermedi-
ate state and the bottom one a late state (the
randomly directed sensors on the right are
not yet positioned). Note that the sensors are
not uniformly distributed but become more
densely spaced toward the front (see equa-
tion (6)).

precision. Rewriting (7) yields
do
kv = — = constant (8
T

Therefore the larger the difference between the two values
of v that demand different behavior the broader the range
in accepted values for k£ becomes. Therefore according to
(6) moredifferent sensor distributions represent sol utions of
the robot’s task. Ideally, both velocities should be as close
aspossibleto the critical velocity v, one dlightly aboveand
one dlightly below. However, then the interval of sensor
positions where a solution exists becomes aso very small
and the ES has to find the exact positions according to (6)
which takes an arbitrarily long time due to the shortcomings
of our fitness function mentioned in section 2.4, namely that

Fitness

. . . . . . .
[ 20 40 60 80 100 120 140 160
Number of Individuum

Figure 6. A typical run of the evolution of
the sensor positions. The fitness increases
whenever a new sensor is positioned cor-
rectly but never decreases, because the other
sensors remain in their correct positions.

Figure 7. Sensor distributions that were
evolved using different random seeds. Each
run took 4 to 5 hours to complete. The inho-
mogeneous distribution of sensors is clearly
visible although the exact positions of the
sensors differ considerably between runs.
The robot is running from left to right.

the fitness only changes when the solution is found. The
choice of the two vel ocities was a compromise between still
obtaining an inhomogeneous spacing for the sensors but not
having to wait too long for evolution to completeitstask. A
method to speed up the evolutionary process would be to
use a simulator to evolve a coarse morphology and only do
the final tuning of critical parameters on the real robot.

To verify that the solutions for the sensor morphology
found by the evolutionary process produced indeed differ-
ent behavior on the robot than for example a homogeneous
distribution of sensorswe compared the two cases. The sys-
tems for both cases were completely identical except that in
one case the sensor morphol ogy of the robot was set by hand
to a homogeneous distributions (all equal interommatidal
spacings) and in the other case it was the result of a run of



Figure 8. Comparison of the behavior of two
robots that were completely identical except
that the sensor morphology of one was set
by hand to a homogeneous distribution (all
equal interommatidal spacings) and the sen-
sor morphology of the other was the result
of a run of the evolutionary process. There
are clear differences which can be explained
by the different sensor positions (the figure
is explained in the text).

the evolutionary process (Note that thisis not really a com-
parison between an approach using an adaptive morphol ogy
and another approach using an adaptive neural network be-
cause in the present comparison both networks were fixed
so the robot with the homogeneous sensor distribution had
no way of adjusting the parameters of the neural network
correctly). For the comparison the distance of therail tracks
to the obstacle was varied and for each distance the robot
was run along its track. Whenever it would have avoided
the obstacle the robot made a mark on the ground. The re-
sults are shown in the two images at the bottom of figure
8. The image on the left shows the case for the homoge-
neous sensor distribution and on the right the results for the
evolved distribution are shown. The mark near the top right
corner of each image shows the position of the light tube
(the obstacle). The robots moved from left to right and the
horizontal lines represent the tracks at different distances
from the light. The dotted rays emanating from the light
and passing through the marks on the tracks represent dif-
ferent angles under which the obstacle was seen when the
robot would have avoided. Therefore each of these angles
corresponds to the angular position of a particular sensor.
The two images at the top of figure 8 show the correspond-
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Figure 9. Critical distance determined from
the behavior of the same robots as in figure 8.
The two images on the top show plots of the
critical distance versus the angular position
of the respective sensor. The solid lines rep-
resent theoretical predictions and are shown
for qualitative comparison (the free parame-
ters were chosen ‘by hand’). The two his-
tograms at the bottom show the number of
sensors that measure a certain critical dis-
tance. The images on the left are for the ho-
mogeneous sensor distribution whereas the
ones on the right are for the evolved mor-
phology. It can be seen that for the evolved
morphology most sensors measure the same
critical distance (around 60) whereas for the
homogeneous sensor distribution the critical
distance is different for most of the sensors
(because it depends on their angular posi-
tions).

ing sensor morphologies.
The two most prominent differences between the behav-
iors for the two morphologies are the following:

e In figure 8 in the bottom left image the marks extend
much less to the left than in the bottom right image.
This is because for the homogeneous sensor distribu-
tion the time the image of the obstacle needs to move
from one sensor to its neighbour becomeslarger than ~
for small angles and therefore the neural network does
no longer avoid.

e The dependency of the critical distance on the angle
under which the obstacle is seen is different for each
case. The critical distance is approximately the lateral



distance from the obstacle (measured vertically in fig-
ure 8) of the mark that is furthest away from the obsta-
cle for a given angle (i.e., the most remote mark on a
certain ray emanating from the obstacle). For smaller
lateral distancesthan the critical distancethe robot will
avoid whilefor greater distancesit will not. Thetop of
figure 9 shows the dependency of the critical distance
on the angle under which the obstacle is seen for each
case. The solid lines represent theoretical predictions
(the free parameters were chosen ‘by hand’) while the
crosses are the experimental results from figure 8. The
image on the left again shows the case of the homo-
geneous sensor distribution whereas the image on the
right shows the results for the evolved sensor distribu-
tion. Note that in the later case according to equation
(7) theoreticaly the critical distance should be con-
stant (independent of the angle a). By contrast the ho-
mogeneous sensor morphology in the top left picture
theoretically results in a different critical distance for
every angle (thebiggest critical distanceisobtained for
the most lateral sensor, see (2)). The bottom of figure
9 shows how many sensors produced a certain value
for the critical distance. For the evolved sensor dis-
tribution (right image) most sensors reported a critical
distance at around 60 (in arbitrary units).

Note that in figure 8 al tracks are more or less parallel to
each other. Thisisnot really necessary sinceall that matters
is the lateral distance to the obstacle (the point of closest
approach to the obstacle), regardless of the direction of the
track.

4 Conclusions

In this paper we considered a robot with adaptive sensor
morphology. By autonomously adapting the morphol ogy of
its compound eye using artificial evolution the robot was
ableto achieve arelatively good performance on the task of
estimating a critical lateral distance to an obstacle (see fig-
ure 9, right side). The morphologiesthat were evolved (see
figure 7) qualitatively resemble the theoretical predictions
(equation (6)). We showed that for the present task it was
possible to improve the behavior of a robot by adapting its
morphology while keeping its control structure fixed. This
is in contrast to the usua approach in robotics where the
morphology of the robot is fixed and only its control struc-
tureis changed. The advantages of using amorphology that
is adapted to a certain task will be discussed elsewhere[10].
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