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Abstract

This paper presents an approach for decentralized real-time motion planning for multiple

mobile robots operating in a common 2-dimensional environment with unknown stationary

obstacles. In our model, a robot can see (sense) the surrounding objects. It knows its current

and its target's position, is able to distinguish a robot from an obstacle, and can assess the

instantaneous motion of another robot. Other than this, a robot has no knowledge about

the scene or of the paths and objectives of other robots. There is no mutual communication

among the robots; no constraints are imposed on the paths or shapes of robots and obstacles.

Each robot plans its path toward its target dynamically, based on its current position and

the sensory feedback; only the translation component is considered for the planning purposes.

With this model, it is clear that no provable motion planning strategy can be designed (a

simple example with a dead-lock is discussed); this naturally points to heuristic algorithms.

The suggested strategy is based on maze-searching techniques. Computer simulation results

are provided that demonstrate good performance and a remarkable robustness of the algorithm

(meaning by this a virtual impossibility to create a dead-lock in a \random" scene).

1 Introduction

We address the problem of decentralized control and motion planning for multiple mobile robots

operating in a common planar environment, perhaps among stationary obstacles. Robots and

obstacles may be of arbitrary shape. The task of each robot is to reach its target position. A

robot plans its motion based on the local information from its sensors (say, vision or range �nders)

and on its planning algorithm. There is no direct communication between the robots { e�ectively,

each one is a moving obstacle for other robots. A robot has no knowledge about other objects in

the scene until it sees them.

This is quite similar to the situation one faces in a crowded place, such as a cocktail party { hence

the name The Cocktail Party Model. When a guest decides to talk to someone, he accomplishes
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this by maneuvering between tables, chairs, and other guests, planning his path "on the 
y" and

not consulting with other people about his or their intended motion. He assumes that other

people mean well, and so as long as he somehow takes into account their movements, it is safe

to move at a minimal distance from them. If, on the other hand, one of the guests does not

�t this assumption ("Is he drunk?"), one will increase the safety margin distance when passing

this person. Applications that �t this multi-agent model include mobile robots in large assembly

plants and automated factories (e.g., automatic paper roll carriers in a paper mill), specialized

assembly systems [1], military tasks, and intelligent highway control systems.

Two obvious approaches to motion planning in multi-agent systems are the centralized and decen-

tralized (distributed) approach. Both have their pros and cons. The usual scheme for centralized

control has its rationale in the factory 
oor tasks: in it, a central planner designs the motion

plan for all robots based on full knowledge about the environment. Only after the complete paths

have been computed, the actual motion takes place. The approach �ts better purely computa-

tional problems rather than tasks that rely on real-time feedback control. Its obvious advantage

is its conceptual simplicity: since everything is known, anything can be computed, including the

optimal (shortest, smoothest etc.) trajectories for all agents. The price for this convenience

is computational bottlenecks. The amount of computations quickly grows with the number of

agents, and is likely to become unwieldy in a task with 4-6 robots. Since planning is done o�-line,

complete recalculation of paths is required if one of the robots' objectives are altered or if the

environment changes.

Decentralized control has two obvious advantages: (i) It breaks the computational bottleneck

of centralized control; in principle, computational complexity of a decentralized system can be

made independent of the number of agents in it. (ii) It is inherently more stable and robust:

it can tolerate changes and uncertainly; a failure of one or few agents does not kill the whole

system. On the negative side, the decentralized control is inherently incapable of delivering

optimal performance: since at any moment each agent is lacking some information, optimality is

ruled out. Instead, a reasonable, acceptable performance is sought. The main question posed in

this work is whether decentralized motion planning can deliver good performance in a reasonably

complex system. The answer seems to be "yes".

Most of the literature on multiple robot motion planning is devoted to the centralized approach.

E�orts tend to concentrate on decreasing the computational cost. This is typically achieved at

the expense of completeness (which may be acceptable in some applications). In [2] the task

is divided into two subtasks. First, each robot's path is determined taking into account only

stationary obstacles. With the paths �xed, velocities of all the robots are then adjusted so as to

avoid collisions. In [3] priorities are assigned to each robot and planning is done for one robot at a

time: each robot's path is planned in the three dimensional space-time con�guration space taking

into account the stationary obstacles as well as the motion of the robots with a higher priority.

A scheme based on priorities and attempting to maximize the number of robots traveling in a
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straight line has been considered in [4]. All these are heuristic algorithms, in the sense that they

cannot guarantee the robot will �nd a path if one exists, or prove that there is no path if true.

Considerable research has been done in the area of provably correct algorithms. An O(n3) algo-

rithm for planning the motion of two disks in a polygon-�lled scene, and an O(n13) algorithm

for planning the motion of three disks have been presented in [5], where n is the number of sides

of the polygonal obstacles in the environment. In general, such algorithms are polynomial in

the complexity of the obstacles and exponential in the number of disks. For an enclosed space,

using the idea of retraction, O(n2) and O(n3) algorithms have been devised for the motion of

two and three disks respectively [6]. In [7] the problem of moving many disks among polygonal

obstacles has been shown to be NP-hard. Coordinating the motion of an arbitrary number of

rectangles which can only translate in a rectangular two-dimensional region has been shown to

be PSPACE-hard [8].

The decentralized approach is based on the model with incomplete information and assumes no

central planner. Each agent acts independently, planning its path based on its goal and on

local and limited global information. The latter typically comes via sensory feedback (e.g.. from

ultrasound sensors, a range �nder, or a camera), and the path is planned dynamically in real time.

An ideal decentralized strategy would require no direct communication between the robots, while

ensuring collision avoidance and minimal interference of each robot with the purposeful motion

of the other robots. The algorithmic methodology here makes use of maze-searching techniques

[9, 10].

Examples of decentralized motion planning in multi-agent systems { say, with the crowded cocktail

party above, or with automobiles on a highway { suggest that even when there is no direct

communication, usually there is a kind of shared expectation of a \reasonable behavior" that

agents use as a guideline in their planning strategies. For example, in [11] such shared information

appears in the guise of separating lines between robots, to ensure collision avoidance.

We formulate the problem as one of maze searching, albeit in a dynamically changing \maze".

The emphasis is on formal algorithmic issues of decentralized control, on a dynamically chang-

ing environment, and on objects of arbitrary shapes. One standard question in maze-searching

algorithms is that of convergence: if a path between starting and target positions does exist, we

would like the algorithm to guarantee �nding one. Interestingly, while this is possible for one body

moving among stationary objects, or for centralized planning, it is not feasible in the context of

decentralized control (see Discussion).

To our knowledge, the seemingly natural idea of extending the methodology of sensor-based

motion planning to decentralized control has not been explored in literature. Given this emphasis,

some relevant issues are left out below:

(i) No connection is made to learning and collective behavior [12, 13]. Note that learning has

little meaning for moving objects { they won't be there next time around. It could make sense
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for stationary objects though; note, however, that our model's allowing objects to be of arbitrary

shapes, while adding power to the algorithm, makes learning problematic since storing arbitrary

shapes requires, in principle, in�nite memory.

(ii) We assume perfect sensing and precise knowledge of the robots' and their targets' positions

(see a discussion about the issue of uncertainty in real sensory data in Section 6).

We make use of a simple mechanism of \reasonable behavior": when maneuvering to avoid a

potential collision, each robot Ri assumes that other robots will try to avoid collisions as well.

More speci�cally, when accounting for an approaching robot(s), Ri plans its next step so as not

to cross an invisible boundary that separates the \safe areas" of the two robots. Two alternative

mechanisms for such a boundary are suggested { the Voronoi diagram [14] and the perpendicular

bisector to the line of minimum distance between Ri and the other robot. In other words, although

the motion and sensing parameters (velocities, the step size, sensing range etc.) may di�er widely

from robot to robot, each robot can safely assume that the other robots operate under the same

\civilized" strategy.

Although the suggested approach makes use of a provably correct motion planning algorithm [9],

it is heuristic in nature. This means, for example, that a robot may fail to �nd a path to its

destination even if one exists (one such example is discussed in Section 6). It is important to note

that this lack of guaranteed convergence is not the result of a weak algorithm: as long as the

agents' decision-making processes are independent, provably correct algorithms are not feasible

anymore. What is interesting is that the algorithm that emerges exhibits remarkable robustness

in complex scenes. As used here, the term \robustness" means that, short of degenerate examples

in which all robots' paths must be carefully coordinated in a centralized fashion, it is virtually

impossible for a robot not to reach a reachable target under the suggested algorithm (Section 6).

The remainder of the paper is arranged as follows: the model of the robot and the environment are

introduced in Section 2. Details of the approach are developed in Section 3. The �nal algorithm

is presented in Section 4, followed by examples of its operation in Section 5 and a discussion of

the performance issues in Section 6.

2 The model

The environment (the scene) is a plane; it is populated by objects. An object's boundary represents

its shape and is a simple closed curve of �nite length. No constraints are imposed on an object's

shape. (What makes this happy generality possible is that the obstacle boundary needs not be

represented for the planning purposes, and thus requires no representation scheme, since at any

instance a robot will deal with only a tiny part of the boundary.) Objects can be of two types { they

are either stationary obstacles or mobile robots, Figure 1a. The corresponding con�guration space

(C-space) of a robot is the space of the robot's translation variables x and y; it can be obtained
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Figure 1: (a) An environment with mobile robots R1; :::; R4 and stationary obstacles O1; :::; O3.

Ti is the desired target location of robot Ri. (b) The scanning operation: robot R is equipped with

range sensors which operate within the sensing radius rv. The robot can see only portions V1 and

V2 of objects O1 and O2; Vi thus forms the visible objects for R.

by reducing the robot to a point and then growing the other objects in the scene accordingly.

Each robot has means for acquiring input information and planning its motion. For generality, we

assume they those are speci�c for each robot (this may correspond to di�erent motors, sensors,

sampling rates). The motion control and sensing models are as follows.

Motion control.A robot is capable of translation only. The reason for this important assumption

is simple { it reduces the planning problem to a two-dimensional, rather than three-dimensional,

C-space. This may be unacceptable in some applications and acceptable in others. For example,

in tasks where the robots can be considered roughly circular, or where passages between obstacles

are wide enough, robot's steering (rotation) control would be independent of the global path

planning algorithm, and so a two-dimensional model would be adequate. As is usual in computer

controlled systems, planning and control are done in small steps de�ned by the robot's sampling

rate, resulting in continuous motion. Typical sampling rates (e.g. in commercial mobile robots)

are in the range 20 to 50 per second. Accordingly, each robot Ri is said to move in discrete steps

of step size si. Step sizes may di�er from robot to robot, si 6= sj . A step cycle ti of robot Ri is the

(constant) time it takes Ri to perform sensing, planning and physical execution of a single step1.

Step cycles may di�er, ti = ktj ; i 6= j, k { integer. For example, if the sampling rate of robot Ri

is 20 (that is, ti = 50 msec) and the robot's velocity is 1 m=sec, then it's step size si = 5 cm.

Given the Start (S) and Target (T ) positions of robot R, its desirable path to T , called the main

line or M-line, is de�ned as the straight line connecting S and T . In our algorithm the robot will

move along its M-line towards its target until it is forced o� the M-line due to a potential collision

1The sampling rate depends on the nature of sensing, computational resources, and the algorithm's computa-

tional complexity. The former two are functions of technology: today, even some vision-based systems (perhaps the

most computation-taxing sensing medium) are already able to do at least simple planning in real time.
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with an object. The latter may be a stationary obstacle, another robot, or a combination of both.

The point where the robot abandons the M-line is called the hit point, H. A local direction, either

left or right, determines the direction for passing around an object; it is decided upon beforehand.

When a robot is passing around an object in a given local direction, it is said to be following its

boundary. The object whose boundary the robot is following is called the contact object. The

leave condition is the condition which, when satis�ed, causes the robot to abandon the object

whose boundary it has been following and resume its course towards its target. The distance

between R and object Oj during the boundary following is chosen independent of the algorithm,

based on such parameters as the robot's step size, the expected motion of Oj , and the desired

safety margin.

Input information. Robot input information comes from its sensors. Robot R is said to interact

with a visible object Vi if R can potentially collide with Vi within the current step cycle. Given

our emphasis on formal algorithmic issues { the topological/geometric control scheme, conver-

gence, completeness { we assume perfect sensing and accurate position information; no sensor

inaccuracies are considered (a rather common liability inalgorithmic work, see e.g. [3, 5, 8], and

also a discussion in Section 6).

Given the continuously changing world they live in, the robots will not attempt to build maps

or maintain other large pieces of data that they acquire during their motion. Each robot's input

information includes:

{ its current coordinates and those of its target,

{ the value of step upper bound smax for all other robots,

{ the current sensing information.

Current coordinates (current position) of the robot are the corresponding cartesian coordinates

of one of its points { say, the center of mass. At a given instant t, Ct is the robot's current position.

Step upper bound, simax (or simply smax) is a prede�ned value known to each robot Ri be-

forehand: it is the upper bound of the maximum distance that any other robot Rj ; j 6= i, can

cover in any direction within the step cycle ti. Note that simax may di�er from robot to robot,

and that it may correspond to more than one step of robot Rj. The notion of the step upper

bound represents the idea of a \reasonable behavior" mentioned above: in order to guarantee safe

operation in an environment with other moving robots, each robot needs some expectation about

the motion of the other robots it may encounter in the scene. In other words, whenever robot

Ri sees another robot Rj , although it does not know Rj 's objectives or step size, it assumes that

Rj 's displacement within the cycle time ti will be no more than simax.

Sensing. Each robot is equipped with range sensors which are capable of:

� Measuring distances to any objects within the robot's range of sensing rv (stands for "radius

of vision"); rv may di�er from robot to robot.
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� Performing a scanning operation so as to construct an outline of the portions of the objects

within its range of sensing and arriving at the set of visible objects Vj , see Figure 1b.

� Distinguishing between a robot and a (stationary) obstacle, and between two robots.

� Measuring the instantaneous velocity of any other robot within the robot's sensing range.

Two comments on the sensing capabilities:

1. The physical devices that provide these sensing capabilities are not discussed here. For example,

distinguishing between a stationary object and a robot may be tricky; this capability is necessary,

though, and is common in nature: confusing a building with a truck that happen to stand still at

the moment would be dangerous for a robot, as it would be for a human.

2. The need to measure instantaneous velocity of moving objects is quite basic: it comes from

the nature of the problem rather than from the algorithm requirements. To pass around moving

objects, one needs to assess their velocity. The reason this ability is not common in robotics is

that until now roboticists rarely considered dynamically changing environments and decentralized

planning. Just about all creatures in nature have this ability, and so do some technical systems

(odometers, radars etc.).

3 The approach

Overview. Our algorithm will make use of maze-searching techniques. With those, a point robot

can purposely move in an unknown environment with stationary obstacles. There is a number of

such algorithms available (see, e.g., [9, 10]); in principle, any one can be used for our purpose.

For speci�city only, we use below the algorithm called Bug2 [9]. De�ne ST as the M-line; de�ne

the local direction (left or right); brie
y, Bug2 works as follows:

1. Move along the M-line until one of the following happens:

(a) T is reached. The procedure stops.

(b) An obstacle is encountered. Go to Step 2.

2. Using the accepted local direction, follow the obstacle boundary until one of these occurs:

(a) The robot meets the M-line at a point between H and T that satis�es

the leave condition. Go to Step 1.

(b) The condition of target non-reachability is satis�ed. The procedure terminates.

In our multi-robot case, the procedure that each robot uses is similar to Bug2. Each robot moves

towards its target along a straight line until it encounters an object (another robot or an obstacle).

It then follows the boundary of the object in the local direction until a certain leave condition

is satis�ed, and then resumes its course towards the target. However, since the environment is

dynamic in nature, the following additional considerations have to be taken into account:
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� In order to ensure collision-free motion, a relationship between the robot's step size and its

range of sensing needs be established. It is clear, for example, that the robot should not

make a step that would take it outside its range of sensing. Details of this relationship are

examined in the next section.

� When robots Ri and Rj meet, each one has no information about the objectives or the

step size of the other. Some protocol is therefore needed that robots could count on when

trying to pass around each other and avoid collision. One possibility could be a beforehand

agreement on the direction, left or right, of passing each other during the encounter. When

walking toward each other, two people could avoid collision by each stepping, say, to his

left, and then continuing the path. Unfortunately, this mechanism loses consistency in

the interaction of more than two robots. The use of hyperplanes between the robots [11]

would be another alternative for the protocol, but it is applicable only to convex robots

and pairwise interaction. Two possible mechanisms described in Section 3.3 make use of the

perpendicular bisector and the Voronoi diagram [14], respectively, and allow many robots to

interact simultaneously and pass around each other in a meaningful manner and collision-

free.

� It will be shown in Section 3.4 that the leave condition used in the Bug2 algorithm {

meeting the M-line between points H and T { is not adequate for a dynamic environment.

Accordingly, a new condition based on a dynamic M-line is introduced, and a procedure for

M-line modi�cation is developed.

3.1 Constraint on the step size

In sensor-based motion planning, irrespective of the nature of the environment (static or dynamic),

the only information available to a robot for planning its motion is the data coming from its

sensors. This means that in order to guarantee its safety the robot has to con�ne its step to some

limited area within which it has complete knowledge. There is a simple relationship between the

sensing range, the step size of the robot, and the expected motion of other robots within a single

step cycle, that should be taken into account when planning collision-free motion. Starting with

the simple case of stationary obstacles, the step size s of the robot must satisfy the condition:

s � rv (1)

The constraint is apparent from the fact that is the robot makes a step outside of its sensing range,

it risks a collision with an obstacle it currently cannot sense. It is easy to see that condition (1) is

not adequate if the environment includes moving objects. A better condition for this case, which

is independent of the motion planning algorithm used, is given by the following simple statement:

The constraint is apparent from the fact that the robot cannot plan for obstacles that it has

not sensed: making a step outside of the robot's range of sensing could lead to a collision. It is
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easy to see that condition (1) is inadequate if the environment includes moving objects. A better

condition for this case, which is independent of the motion planning algorithm used, is given by

the following simple statement:

Lemma: For robot R to guarantee collision-free motion in an environment with moving objects,

it is necessary that the following inequality be satis�ed:

s � rv � smax (2)

where smax is the step upper bound on the other moving objects within the step cycle of robot R.

Proof. Assume for a moment that s > rv � smax, and assume a (minimum) distance, dmin =

s + smax, between robot R and some moving object whose step size is smax. Since dmin > rv ,

the robot will not sense the object and will not account for it while planning its next step. If

the robot and the object were to take steps towards each other so as to minimize the distance

between them at the end of the step, a collision could result. Similarly, note that if s < rv�smax,

a collision with an object that is not visible at the robot's current position will never take place

within a given step cycle. Q.E.D.

3.2 Boundary following

If robot R is interacting with a visible object Vi, and Vi, is a stationary obstacle, then following

its boundary in a given direction is a trivial operation. If, however, Vi is a robot, then robot R

has no information about its step size or intended motion, and so the boundary to be followed is

not de�ned.

Although robot R cannot predict the motion of object Vi precisely, it can estimate all possible

motions that Vi can make within R's one step cycle. The estimate is based on the fact that the

maximum step size of any object is smax. The area formed by taking into account all possible

motions of object Vi de�nes its collision front. The collision front Ei of Vi represents the union

of all possible moves Vi can make within a given step cycle. Given a robot R and a set of visible

objects fVig in its sensing range, the method of constructing the corresponding collision front E

is as follows (see Figure 2):

1. With the collision front Ei obtained for each visible object Vi separately, the �nal collision

front E is the union of all individual fronts, E = [Ei. Let dmin be the minimum distance

between R and Vi.

2. If object Vi is an obstacle, then depending on dmin do one of the following:

(a) If dmin > s, then Ei = �: that is, Vi is too far o� to a�ect robot R, and is ignored.
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Figure 2: Construction of a collision front. (a) Robot R1, whose radius of vision is rv, detects R2.

(b) V is the portion of R2 that is within the range of R1. G is V grown by smax in all directions.

(c) Perpendicular bisector method: P is the perpendicular bisector drawn to the line of minimum

distance dmin. S is the robot's side of the semi-plane formed by P . The collision front (shaded) is

E = G� (G \ S). (d) Voronoi diagram method: P represents the Voronoi curve between R1 and

V (Any point on P is equidistant to R and V ). S is the robot's side of the semi-plane formed by

P . The collision front (shaded) is E = G� (G \ S).

(b) If dmin � s, then Ei = Vi.

3. If object Vi is a robot then depending on dmin do one of the following:

(a) If dmin > s+ smax, then Ei = �: Vi is ignored as it is too far o� to a�ect the robot.

(b) If dmin � s+smax, then grow Vi by smax in all directions, to obtain the \grown" region

Gi, see Figure 2b. Region Gi thus represents the worst case of all possible motions Vi

can make. However, if what we called a \reasonable behavior" and a corresponding

protocol is assumed, region Gi can be further reduced so as to give R more latitude

for motion. Note that such a protocol assumes a prior agreement and requires no

explicit communication between the robots. Two procedures for reducing area Gi are

considered:

The perpendicular bisector method: Let P be the perpendicular bisector of

the line of minimum distance between R and Vi dividing the workspace into two semi-

planes. Let S be the robot's side semi-plane of the bisector P . The portion of Gi in S,
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Figure 3: The argument for a dynamic M-line. (a) While moving from S to T , a point robot

R (shown as a small black disc) encounters object V . After de�ning the hit point H, R starts

moving around V using left as the local direction. (b) While R is going around V , V moves to the

new position. Under the Bug2 algorithm, this would cause R to go around V inde�nitely without

ever meeting the M-Line. Dynamic M-line: (c) At each step, point H (and thus the M-line HT ),

is shifted by the corresponding vector traversed by V within this step. (d) Eventually R meets

the current line HT and proceeds towards T . (The entire path is not shown). For the sake of

simplicity, direct contact between R and V is shown.

Gi \ S, is then excluded from Gi to obtain the collision front Ei, Ei = Gi � (Gi \ S),

see Figure 2c. (For nonconvex objects, a more complex recursive procedure would be

needed).

The Voronoi diagram method: Given a robot R and a visible object Vi,

the Voronoi diagram presents a skeleton P , a curve de�ned by the locus of points

equidistant to R and Vi, see Figure 2d. As in the perpendicular bisector method,

the Voronoi curve P divides the workspace into two generalized semi-planes, and the

portion of Gi on the robot's side of P is excluded from Gi to obtain the collision front

Ei, Ei = Gi � (Gi \ S). The Voronoi diagram of the set (R; Vi) is unique [14].

Due to its simplicity, the calculation of the collision front carries low computational burden and

can be easily done in real time. In applications the procedure can be simpli�ed even further: at

every step only the small area of the collision front around the robot's position is contemplated

for the next step. In the algorithm, after de�ning the collision front E, the robot will follow

the boundary of E. Since the described method for constructing the collision front guarantees

that no collisions take place (as no candidate locations for two robots can overlap), this assures

collision-free motion. As the environment is dynamic, the collision front computation is done at

every step.

3.3 The leave condition

The leave condition for the Bug2 algorithm requires the robot to meet its M-line at some point

between H and T [9]. In a dynamic environment, however, this leave condition in general will not

work. While following the boundary that is shifting in time, the robot may be \dragged" away

from the M-line and never meet it again, causing the robot to go around the boundary inde�nitely,
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Figure 4: In this example, an attempt to follow a �xed M-line would result in an in�nite loop. (a)

In the workspace, robot R tries to reach its target T from S. Object O1 is a stationary obstacle,

object O2 is a mobile robot. After encountering O1 and O2, R uses the local direction left to

negotiate around them. (b) The C-space representation of O1 and O2; here, robot R becomes a

point, and O1; O2 grow accordingly and are `fused' together, appearing as a single obstacle. (c)

Once R loses contact with O2, the latter moves away thus `splitting' the C-space obstacle into two.

As a result, R goes around O1 inde�nitely as it is unable to reach the M-line. (d) The C-space

representation of R continually looping. Again, direct contact between R and obstacles is shown

for simplicity.

see Figure 3a,b. In order to overcome this problem of losing the M-line, we introduce the notion

of a dynamic M-line. Namely, when a hit point H is de�ned at a contact object V , the M-line is

re-de�ned as the line HT . Since the robot is capable of measuring the instantaneous velocity of

the object V , at every step the robot compensates for the motion of V by shifting (the invisible

but known) H by the corresponding distance traversed by V , see Figure 3c. The hit point H can

be thought of as being \attached" to the object V at the �rst point of contact. The M-line is

re-de�ned as HT at every step.

Another problem that arises due to the dynamic nature of the environment is that two objects

that are simultaneously in contact with robot R may split later, causing the robot to go into an

in�nite loop, as illustrated in the example in Figure 4. In this case the C-space representation of

the obstacle that the robot is following is altered without the robot being aware of it. To overcome

this di�culty, the robot de�nes a new hit point every time it meets a new contact object (which it

recognizes using its ability to distinguish between a robot and a stationary obstacle, and between

two robots). These rules for modifying hit points are summarized in the next section.

12



3.4 Modi�cation of the hit point

The rules for modifying the hit point H apply only to the case when the contact object(s) (or,

rather, the collision front) whose boundary robot R is following at the time involves at least one

moving object, that is another robot. No modi�cation is needed otherwise. At a given step, the

rules are as follows:

1. When passing around a robot Ri, move H by the distance traversed by Ri during one step;

de�ne the M-line as M-line=HT .

2. When switching contact from a robot to a stationary obstacle or from a stationary obstacle

to a robot, use the current position C to de�ne the new hit point H = C, and de�ne the

M-line as M-line=HT .

4 The algorithm

We are now ready to formulate the �nal algorithm for sensor-based motion planning in an envi-

ronment with multiple mobile robots. The algorithm consists of two procedures, one covering the

motion along the M-line (Step 1), and the other for moving o� the M-line (Step 2). All robots

execute the algorithm in parallel, independent of each other. Assume that initially robot R is at

point S, C = S (Current position = Start), and it attempts to reach point T . Set the M-line of

R as CT .

1. Move along the M-line until one of the following occurs:

(a) T is reached. The procedure stops.

(b) Object(s) Oi appears within the robot's range of sensing. If the collision front is E = �

or if the next intended position of robot R is outside of E, iterate this step. Otherwise,

turn in the local direction to follow the object's boundary, and go to Step 2.

2. At every step, follow the boundary of the collision front, while modifying the hit point H

and the M-line according to the rules of Section 3.5, until one of the following occurs:

(a) T is reached. The procedure stops.

(b) The robot meets its M-line within the segment HT satisfying the leave condition (Sec-

tion 3.4). Go to Step 1.

(c) The robot loses contact with the boundary, E = �. Set the M-line = CT . Go to Step 1.
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5 Examples

The computer simulations shown below have been carried out in real time. That is, after one

creates the robots, the scene (obstacles), and indicates the intended target positions, one presses

the button, and the whole animation of the motion unfolds in front of one's eyes. Given the

complexity of these examples, the feasibility of real-time computation is remarkable. The source

of this high performance is in the algorithm's exploiting the advantage of the decentralized control

{ only local data processing is done.

Given the nature of computer simulation, the task and robot parameters de�ned in Section 2 {

step sizes si and smax, radius of vision ri, step cycle time ti, object dimensions, distances in the

scene { are relative values. For \myopic" sensing (e.g. Figure 5), the step size has been such as to

�t 2-3 steps into rv; in the case of better sensing (see e.g. the relative size of the sensing range in

Figure 6), it corresponded to 10-20 steps per rv. The sensing ranges tested varied widely; those

shown seem to be realistic enough { in Figure 5 it would correspond to a short-range infrared

proximity sensor, in Figure 6 { to a sonar or laser range sensor. The cycle time varied widely as

well, including more realistic 10 to 30 cycle/sec rates.

In the �rst example, Figure 5, two robots operate in an environment with two stationary obstacles.

Both robots have a very short sensing range. Figure 5a shows the robots in their starting positions.

The line connecting Si and Ti is the desired path (the initial M-line) of robot Ri. Right before

the situation shown in Figure 5b, the robots see each other (not necessarily simultaneously) and

attempt to pass around each other using left as the local direction. This turns out to be impossible

because of the stationary obstacles O1; O2, and both robots embark upon rather long detours,

Figure 5c. [Clearly, some coordination between the robots would help here]. The resulting paths

are shown in Figure 5d.

Figure 6 shows what happens in the same environment when the robots are enabled with better

sensing. The sensing ranges for R1; R2 are shown by the two bars on the left, 1 and 2, respectively.

The situation becomes more complex: both robots see each other much in advance, and for a while

do not see a need to change their paths. Then, sometime before the situation shown in Figure 6b,

R1 infers that R2 will be blocking its path to T1, and embarks upon a detour around O1; this

clears way for R2 which continues along its path, Figure 6c. Note that the resulting paths,

Figure 6, are smoother, shorter, and quite di�erent from those in Figures 5.

Examples shown in Figures 7 and 8 are more complex. Five robots, R1; :::; R5, operate in an

environment with three stationary obstacles O1; O2; O3. In Figure 7 all robots have very short

sensing range; their velocities di�er from each other; robots R1; :::; R4 are of simple geometric

shape, R5 has a more complex nonconvex shape. Each robot has no information about other

robots and obstacles until it senses them. Robots do not store their paths or outlines of other

objects that they encounter { only very limited information, such as recent intersection points
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between the paths and objects is stored (see Section 3).

Given the multiplicity of objects in the scene, intended paths, and robots' inferior sensing, Fig-

ure 7a, mutual interference involving combinations of obstacles and robots is likely. Indeed,

intersections between the intended paths lead to a temporary crowding in the middle of the scene,

Figure 7b. Robots R2 and R3 are �rst to �nish their motion, Figure 7c. Figure 7d shows the

complete paths, with the robots in their �nal destinations.

Figure 8 relates to the same set of objects and tasks, except the robots have better sensing: the

sensing ranges for robots R1; :::; R5 are shown by the bars on the left, 1 through 5, respectively.

With the bigger radius of sensing here, each robot has more information in advance, and so the

likelihood of crowding is reduced. Paths become smoother, and also more complex, in the sense

that it is often hard to understand the \rationale" behind the planning decisions. Note that as

long as some information is still missing, although better sensing does on the average result in

better paths, it cannot guarantee it: for example, the path of robot R4 turned out to be shorter

when it had \myopic" sensing, Figure 7d, than when it had a wider sensing range, Figure 8d.

6 Discussion

The problem of multi-robot decentralized motion planning is formulated in this work as a maze-

searching problem, albeit in a dynamically changing \maze". There is no communication between

the robots; each of them knows about the other(s) only when it see it. The main emphasis is on the

algorithmic issues of decentralized decision-making. Consequently, as mentioned before, a number

of multi-agent control issues, such as learning or collective behavior, are not being addressed; also

ignored are real life uncertainties of input information { we assume precise knowledge of robots'

and their target' positions, and perfect sensing.

Real physical sensors being what they are, they are of course a source of various errors. Some of

those depend on the technology used; some may accumulate with time { as e.g. in registration

systems based on dead reckoning; some may depend on the robot's surroundings and position

in space { e.g., compass readings get worse near iron masses. Proper handling of those errors

in a real system is very important. Note, however, that the necessary measures are likely to be

independent of and can be separated from the planning algorithm design process. For example,

if the error in distance reading is within 3 robot steps, it would be logical to use a safety margin

that is at least 3 steps wide. A more complex example with a real physical system can be found

in [15].

The two examples in Section 5 have been simulated on one computer, in real time, producing

an animated \movie". Given the decentralized character and independent decision-making, the

same software could be used to simulate the operation on multiple computers, one per simulated
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robot, or to implement motion planning on real robots. Given this parallelism, although from our

standpoint the second example is more complex than the �rst, from the standpoint of each robot

the computational complexity in both examples is the same.

This advantage of decentralized motion planning is also the source of its drawback { in spite of

the fact that the underlying maze-searching algorithm does guarantee convergence, it cannot be

guaranteed anymore for our multi-agent algorithm. As mentioned before, the loss of convergence

is not a matter of a good or bad algorithm { it is due to the decentralized control model. This is

easy to show: in the example in Figure 10 (taken from [5]) each of the robots R1, R2 is required

to reach its respective target T1, T2. The task is clearly impossible unless the motion of both

robots is closely coordinated in a centralized manner.

To understand the frequency of such unfortunate situations, consider a notion of algorithm robust-

ness, de�ned, say, by the frequency of cases when because of the \jams" one or more robots do not

reach their (otherwise reachable) targets in a randomly generated environment. Since today there

are no accepted ways for de�ning statistical distributions of geometric shapes [16], setting up a

rigorous statistical test here is di�cult. Simple statistical tests with \reasonable" shape/position

distributions show, however, that in randomly generated complex scenes the described algorithm

is remarkably robust [17]. Note also that the complexity of generated motion in the example in

Figure 8 seems already to be beyond the human ability for space reasoning and centralized control

(with complete or with incomplete information). One would also �nd it di�cult to contemplate

such control when observing this motion in real-time animation.
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(a) (b)

(c) (d)

Figure 5: Example of the algorithm performance. While attempting to reach their target positions

T1, T2, robots R1 and R2 have to negotiate their paths around each other, and possibly around

stationary obstacles O1 and O2. Each robot has very \myopic", short range sensing: (a) starting

con�gurations and intended paths, (b),(c) intermediate positions, (d) �nal positions.
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(a) (b)

(c) (d)

Figure 6: Same example as in Figure 5, except both robots have a better sensing; the sensing

ranges for R1; R2 are shown by the two bars, 1 and 2, respectively. Note the improvement in the

path length performance compared to Figure 5.
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(a) (b)

(c) (d)

Figure 7: An example with �ve robots, R1; :::; R5, operating in an environment with three station-

ary obstacles, O1; O2; O3. The robots are capable of only simple very short range sensing. Si and

Ti are the robot Ri start and target positions. (a) Starting con�guration and the intended paths;

(b),(c) intermediate positions; (d) �nal con�guration.
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(a) (b)

(c) (d)

Figure 8: Same example as in Figure 7, except all �ve robots are provided with better sensing; their

sensing ranges are shown by the bars on the left, 1 through 5, respectively. Note the complexity of

the interaction in this decentralized system.
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Figure 9: A pseudo three-dimensional presentation of the situation shown in Figure 8d

2T 1TR 1 R 2

Figure 10: Here, in order for the circular robots R1 and R2 to reach their respective targets, their

relative positions need to be switched. The only way to do so is to move R2 into one of the `wedges'

and then move R1 through the other wedge. With decentralized motion planning this is clearly

a futile task, as advance information about the wedges and close coordination are necessary to

execute the task.
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