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Abstract

This paper presents an algorithm to correct the odometry
error of an autonomous mobile robot only by using a
painted grid on the floor. The supposed robot position is
calculated by odometry and is matched with the grid lines,
whose existence is known to the robot. A new “position
probability function” was developed and used by the cor-
rection algorithm.
The correction of the odometry error is also based on inter-
active trajectory modification, in order to reduce the error
when crossing a line.
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1 Introduction and Overview

For autonomous robots, navigating and interacting with
their environment are fundamental skill. Depending on
their task, robots need different techniques to work and sur-
vive in their environment. For example, autonomous vac-
uum cleaners for swimming pools do their job quite
perfectly with a simple strategy: turning over when touch-
ing a wall. On the other hand, an apparently similar and
simple job like having an autonomous robot moving inside
an office becomes a technical challenge. The major diffi-
culty for the robot is to have a spatial representation of the
environment, and a strategy to cover the work-area in a safe
and exhaustive manner [Knieriemen91] [Pau90].

Various navigation systems can provide robot with its
absolute position, like laser range finder, ultrasonic dis-
tance measurement, Global Positioning System or optical
triangulation [Welch92]. These systems are sophisticated
and expensive.

A robot needs to keep constant track of its position (x
and y) and its direction (α). In most cases this is done by
odometry (local positioning), integrating the velocity. Rela-

tive positioning, using odometry is inexpensive, but inaccu-
rate due to slipping wheels and other influences.

This paper describes an approach to localize the position
of a robot in a very straightforward manner by combining
the local navigation system (odometry) with a very basic
global navigation aid (grid lines).

To correct the odometry error, a fixed grid is used, whose
features are known to the robot. This grid allows to syn-
chronize the position each time the robot crosses a grid
line. The combination of odometry and grid lines results in
a final corrected position. This technique includes a new
“position probability model” of the robot location and an
interacting pilot system which actively influences the robot
trajectory to take better advantage of the grid lines.

These two additional features (“position probability
model” and pilot) allows the robot to figure out its exact
position with simple means.

2 Odometry correction

This section describes the basic technique to correct the
odometry error with the grid on the floor.

2.1 One-dimensional correction

The robot is equipped with a single light sensor on its
bottom side which detects the painted grid line on the floor.
We assume that the light sensor provides an ideal short
pulse when crossing a grid line. This pulse will be used to
synchronize the supposed position of the robot (calculated
by odometry) with the real position (indicated by the grid
lines). The upper part of fig. 2-1 shows the robot passing
some vertical grid lines. While running, the robot calcu-
lates its position by odometry. This supposed position,
associated with a gaussian increasing error, is represented
by a dotted diagonal line in the diagram. The solid line rep-
resents the real x position. Checking the probability of the
corrected error is a good way to recognize abnormal condi-
tions and systematic drifts (allowing continuous re-calibra-
tion).
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 Fig. 2-1: Fundamental technique to correct odometry error

Explanation of fig. 2-1: The robot (solid line) starts at
position A and passes over the first grid line B at time tB.
The supposed position (dotted line) is a little bit behind the
grid line B, which means that the robot moves faster than
expected. The supposed position will therefore be cor-
rected forwards. During the next sequence (B to C), the
robot moves unintentionally slower and therefore crosses
the grid line C later than expected. The supposed position
has to be corrected backwards, because point C is closer to
the supposed position than point D. The last sequence
shows a wrong correction due to a blockage of the robot.
The light sensor sends a signal event at time tD. Unfortu-
nately, the supposed position is closer to point E than to
point D, which results in a wrong correction. The robot lost
its position because the odometry error was too big. This
wrong correction can normally be suspected, because the
probability of the obtained point E is quite low.

2.2 Two-dimensional correction

In the previous example (one dimensional), the direction
of correction was defined by a basic linear membership
function, indicating the closest grid line (see fig. 2-1). Such
a technique cannot be used in a two dimensional environ-
ment with a right-angle grid network for synchronization.
The reason is shown in fig. 2-2.

A robot follows a horizontal grid line in a zigzag move-
ment. The y position of the robot is therefore constantly
well calibrated (in contrast to its x position, which is com-
paratively rarely corrected). The probability, that the last
signal event ( ) is produced by the vertical grid line is

much higher (even if the horizontal grid line is closer),
because the x position is much more uncertain than the y
position. The following approaches addresses this problem.

 Fig. 2-2: Example: The closest grid line is not always the best.

2.2.1 The ellipse approach
Due to the error in the distance measurement, the posi-

tion of the robot belongs to some certain “Position Proba-
bility Distribution” (PPD). A gaussian distribution (see
right illustration in fig. 2-3) is often used to model the PPD
[Piasecki95][Pruski96]. The width of this bell curve repre-
sents the position probability (depending on the covered
path) and other parameters. The circles in fig. 2-3 show a
horizontal cut through the bell curve at a certain altitude
(top view). The chosen altitude corresponds to 95% of the
probability of being inside the area (circle, ellipse).

When the robot passes a horizontal grid line (see fig. 2-
3), the bell curve will shrink in the corresponding y dimen-
sion because the y position has just been calibrated. This is
shown by several ellipses, representing the same horizontal
cut through the distorted bell curve.

 Fig. 2-3: Passing grid lines change the shape of the PPD

The ellipses will grow continuously in both dimensions
between the grid lines.

However, the shape of the PPD is not only determined by
grid lines. Mechanical attributes of the robot have also
some influences on the shape as well. This will be consid-
ered in the next approach.
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2.3 The “banana” approach

In the case of a 2-wheel robot (like the Khepera®1), the
fundamental PPD is far from being a circle or an ellipse.
The shape of the PPD (see section 3 "Calculation of a PPD
model") looks more like a banana. The fig. 2-4 gives a first
idea of the PPD-shape and the expected effect.

 Fig. 2-4: The PPD-model influences strongly the result. The 
banana and the ellipse model result in different correction

A Khepera® robot starts at point Pt and turns slowly to
the right. After a certain time (∆t), a signal is supplied by
the light sensor, indicating a grid line below the robot. The
robot assumes its position at point Pt+∆t with a certain posi-
tion probability distribution (PPD). The 3 dimensional PPD
is cut by the grid lines, which are known by the robot. The
resulting 2 dimensional cut is shown on the right side in
fig. 2-4 for each PPD model (banana and ellipse). The
highest point (maximum) of the cut indicates the position
with the highest probability. This intuitive example shows
the importance of choosing the correct PPD model. This
knowledge can also be used to influence the trajectory of
the robot in order to put its PPD in a suitable position.

3 Calculation of a PPD model

The following section discusses how to calculate the
shape of the PPD. The approach is based on the two wheel
Khepera® robot. The odometry error is attributed by the
given speed of the wheels (*V) and its deviations (∆V).
Therefore the real speed of the wheels can be described by
Vx = *Vx ± ∆Vx (x indicates the left ‘L’ or right ‘R’ wheel).

3.1 Geometrical derivation

We assume a rotation of the robot around a fixed point
(R). The deviation of the two wheels are not equal
(∆VL≠∆VR) but constant. The radius (r) of the rotation
depends therefore of the wheel speed difference (|∆VL–
∆VR|) and the wheelbase (L). A lateral drift of the wheels

1. The Khepera robot was designed by LAMI EPFL
Lausanne and is now marketed by K-Team SA Switzer-
land (http://www.k-team.com/)

will be neglected (see fig. 3-1).

 Fig. 3-1: Derivation of a PPD model

The following calculation derives an equation for x, y
and α, depending only on VL, VR and L. The resulting x
and y is the position and α the direction of the robot.

The relation between the wheel speed and the angle can
be described as:

This double equation allows the extraction of r and α as
functions of VL, VR and L:

y and x can now be calculated by trigonometry:

The resulting equations supply the position (x and y) of
the robot, depending on the constant wheel speed (VL, VR),
the wheelbase (L), and the time (t).

3.2 Calculation and display of the PPD shape

In order to illustrate the distribution of the final position
of the Khepera, we have to transform the received equa-
tions into the following form:
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We assume a constant wheel speed (Vx) and use a geo-
metrical model to transform the variables:

The relation between (VL, VR) and (r, α) is already cal-
culated (see chapter 3 "Calculation of a PPD model",
page 3). We have now to find a geometrical relation
between (x, y) and (r, α):

We can now calculate the relation between velocity (VL,
VR) and the position (x, y):

The last equations computes a fix velocity (VL, VR) for
every robot position (x,y) under the following conditions:

• The wheel speed is constant.

• All positions on the y-axis (x=0) result in an infinite solu-
tion, because of the geometrical transformation.
The resulting velocity is not fixed. It has a gaussian dis-

tribution (see fig. 3-2), which variation will create the
banana. We assume a constant wheel speed Vx distributed
according to a bell curve between *Vx - ∆Vx and *Vx +

∆Vx.

 Fig. 3-2: Gaussian distribution of the wheel speed

 is the average wheel speed and  represents the stan-
dard deviation. We choose interval from *Vx - ∆Vx until
*Vx + ∆Vx covering 95% of the entire gaussian-surface:

In order to calculate the PPD of the final robot location
(which is a function of the gaussian distributed velocities),
we must multiply the velocity probability function by the
Jacobian determinant of the velocities with respect to the x
and y locations:

Inverting the product and the Jacobian:

This final equation represents the probability of each
position of the banana, located on the position (x,y).

We use Mathematica®1 to calculate the equations and to
visualize the PPD. The following image (see fig. 3-3)
shows the PPD produced by a Khepera® robot, moving
straight ahead for 3 meters (see the scale beside the graphic

1. Mathematica® is a commercial software product by
Wolfram Research Inc.

α 2⁄

α 2⁄

(x,y)

(0,0)
P

P′

r

s β( )tan

β

s

x

y

R

r s
β( )cos

----------------- s2 s2 β( )tan2+ s 1 β( )tan2+= = =

s x
2

y
2

+
2

---------------------=
y
x
--- β( )tan=Replacement of s and β:

x2 y2+
2

--------------------- 1 y2

x2
-----+⋅ x2 y2+

2
--------------------- 1

x
--- x2 y2+⋅ x2 y2+

2x
----------------- r= = =

α 2 π
2
--- β– 

 ⋅ π 2
y
x
--- 

 atan– α= = =

r L
2
---

VRL

VL VR–
---------------------+

L VL VR+( )
2 VL VR–( )
------------------------------ x2 y2+

2x
-----------------= = =

α
VL VR–

L
---------------------t π 2

y
x
--- 

 atan–= =

VL VR+

VL VR–
--------------------- x2 y2+

Lx
-----------------=

VL VR– L
t
--- π 2 y

x
--- 

 atan– 
 =

B:

A:

VL VR+
x2 y2+

tx
----------------- π 2

y
x
--- 

 atan– 
 =B’ =A B:

A–B’:

A+B’: VL x,y( ) 1
2t
----- π 2

y
x
--- 

 atan– 
  x2 y2+

x
----------------- L+ 

 =

VR x,y( ) 1
2t
----- π 2

y
x
--- 

 atan– 
  x2 y2+

x
----------------- L– 

 =

p Vx( ) 1

2πσ
--------------e

Vx µ–( )2

2σ2
---------------------

 
 
 

–

=

Gaussian distribution: µ *Vx=

σ 1
2
---∆V

x
=

Vx*Vx+∆Vx*Vx-∆Vx *Vx

p Vx( )

µ σ

1

2πσ2
-----------------e

x
2

2σ2
---------

 
 
 

–

xd

2σ– ∆Vx–=

2σ ∆Vx=

∫ 95%≈σ 1
2
---∆V

x
= because

fxy x,y( ) fVL
VL x,y( )( )fVR

VR x,y( )( )=

JVLVR
x,y( )

VL∂
x∂

----------
VL∂
y∂

----------

VR∂
x∂

----------
VR∂
y∂

----------

=Jacobian Matrix:

 Σ JVLVR
X VL VR,( ) Y VL VR,( ),( )⋅

fxy x,y( ) Σ
fVLVR

VL x,y( ) V, R x,y( )( )

Jxy VL x,y( ) VR x,y( ),( )
--------------------------------------------------------------=

Jxy VL VR,( )

x∂
VL∂

---------- x∂
VR∂

----------

y∂
VL∂

---------- y∂
VR∂

----------

=Inverted Jacobian Matrix:



LAMI-DI-EPFL February 1997 page 5

Robot Odometry Correction Using Grid Lines on the Floor Chapter 4: Examples

in mm) with a wheel speed (*Vx) of 100mm/sec and a
deviation of ±1% (∆Vx =1mm/sec, σ=0.5) for each wheel.
The wheelbase (L) is 52mm. These values correspond to a
real Khepera®.

 Fig. 3-3: 3D and 2D presentation of the right side of the PPD 
shape. Robot trajectory 3m; straight ahead; wheel slip 1%

It is remarkable, that the angular deviation is much big-
ger that the forward deviation. The robot has a lateral error
of about 1 meter, as compared to a forward error of about
30 mm. The banana is like a part of a very thin arc, evenly
decreasing to the end.

3.3 Deformation of the PPD by curves and corners

Robots move rarely straight ahead. Therefore it is impor-
tant to analyze in which manner their PPD-shape changes
when they take curves and corners. Unfortunately, the just
derived equations for calculating the PPD-shape depend on
constant wheel speeds (VL and VR). Therefore, corners and
variable-radius curves cannot be calculated. The following
iterative approach will be used to calculate this kind of
PPD-shape (see section 3 "Calculation of a PPD model"):

We use Mathematica® to sweep Vx from (*Vx – ∆Vx) to
(*Vx + ∆Vx) and for the following visualization of the

PPD. There is no significant difference between the PPD
shape calculated by the derived equation or by the iterative
calculation because of the high numerical precision of

Mathematica®. In order to visualize the path covered by
the robot, we use only the iterative calculation for all fur-
ther simulations.

4 Examples

The following examples illustrate the behavior of the
PPD in curves and corners. The graphic shows the same
PPD, but in top view. The dotted line indicates the ideal
robot trajectory without any slip. All examples show the
PPD 4 times (for each meter).

4.1 Curve

The following simulation (see fig. 4-1) shows a robot
constantly turning right for 4 meters. The left wheel is turn-
ing 4.08% faster than the right one (left: 102mm/sec, right:
98mm/sec) with 1% slip.

 Fig. 4-1: Example 1: PPD behavior in a curve.

Note: It is interesting to observe, that the orientation of
the PPD changes only slowly and has not at all the same
direction than the robot.

4.2 Turning back after one meter

This simulation (see fig. 4-2) shows the PPD of a robot
moving straight ahead, but turning back (turn of 180°) after
one meter. The wheel slip is also 1%.

 Fig. 4-2: Example 2: PPD behavior after a turn back.
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Note: The robot will reach again its starting point after 2
meters. Nevertheless, the corresponding second PDD is
bend (downward), like after a move in the direction of the
negative y-axis. This illustrates, that the PDD is more influ-
enced by the covered trajectory than by its end position.

4.3 Turning back after 2 meters

The last example (see fig. 4-3) shows the same main
movement like in example 3, but the robot turns back after
2 meters. Wheel slip 1%.

 Fig. 4-3: Example 3: PPD decrease after a turn back

Note: The third PPD is much smaller than previous PPD.
It seems, that the size of a PPD can also decrease. Never-
theless, the PPD is strongly bent, indicating that the orien-
tation of the robot is quite uncertain in contrast to its
position.

4.4 Conclusion of the examples:

It is interesting to notice that the shape of the PPD seems
to remain a segment of an arc (condition: the wheel drift
has to be constant). The difference consists only in radii
and orientations. The thickness of the line seems also to be
independent of the trajectory.
The latest example shows also that a certain motion strat-
egy can shrink the PPD. This result is surprising but never-
theless understandable. To better understand, follow the
dotted line in fig. 4-3 which indicates the trajectory of the
robot with a constant drift to the right side.

5 Statement of the problems

The proposed grid-solution is an easy way to correct
odometry errors with limited additional expenses. Never-
theless, this simplicity hides some problems which will be
described in the following section.

5.1 Angular drift, caused by inaccuracy α

Because the robot knows the geometry of the painted
grid on the floor, an independent correction of the x and y
position while crossing a grid-line seems to be an easy way
to continuously correct the corresponding dimension of the
robot position (see fig. 5-1). Unfortunately, this approach
neglects the angle α of the robot, whose estimation accu-
racy will decline with time, causing a strong angular drift
of the robot, which can not be recognized by this algo-
rithm. The robot will get lost.

 Fig. 5-1: Wrong correction because of confused grid lines

We notice that this angular drift is the main reason for
the position error. The distance and speed error while mov-
ing straight ahead are comparatively small (see section 3
"Calculation of a PPD model").

5.2 Information distribution of a grid

Another problem of this approach is the information dis-
tribution on the grid. The supplied information depends on
the region, which can be divided into 4 zones (see fig. 6-3):

• V and H zones supply information about the x and y 
position of the robot.

• C zones are difficult to interpret and should be therefore 
avoided by the robot.

• N zones supply no direct information, but are still neces-
sary to distinguish between V and H zones.
It is clear that the robot should pass alternating V and H

zones, separated by N zones. At the same time, C zones
should be avoided because they provides several cross
points with the PPD and the grid lines. The C zone will not
be further considered in this paper.

To take advantage of the grid information, a “grid fitter”
will be implemented changing the planned trajectory of the
robot. The resulting path is only slightly influenced by the
grid fitter, but the resulting advantage is relevant and will
be illustrated by an example (see fig. 6-3).
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6 Strategy for odometry correction

The strategy for odometry correction has to be separated
into two sections. The first describes how to use the knowl-
edge of the PPD to correct the estimated position of the
robot in a passive manner.
The second section describes how to influence the trajec-
tory of the robot in order to improve the result of the pas-
sive correction system.

6.1 Passive correction, using the PPD

The robot position is obtained fundamentally by odome-
try. The proposed algorithm corrects the odometry errors
by knowing the evolution of the PPD motion and by taking
advantage of the thin PPD-shape.

The following conditions have to be satisfied:

• The initial position and starting direction of the robot 
have to be known.

• The robot has to be equipped with a light sensor fixed on 
the underside in order to detect the painted grid.

• The robot knows the characteristics of the painted grid 
(organization, grid distance).

6.1.1 Correction of the position
The robot starts from a known position and updates its

PPD and therefore its position (Pi) continuously by odome-
try (see fig. 6-1). When the robot crosses a grid line (Pr) in
the real world (left image), it will choose the intersection
position between its PPD and the grid line as its new cor-
rected position (see Pc on the right image). In case of sev-
eral matching points, the cross-point with the highest PPD-
distribution wins (see also fig. 2-4 for other examples of
intersections between PPD’s and grid lines).

 Fig. 6-1: Correction of the assumed position by matching the 
PPD with the grid

Note: Although the robot on position Pi is much closer to
the vertical grid line, the final corrected position will be
placed on the horizontal grid line (and moreover quite far
away from the robot). Less carefully computed PPD or a
intuitive solution would lead to a wrong position on the
vertical line.

6.1.2 Correction of the angular error
As already discussed, the angular error is the most signif-

icant factor of odometry error. Therefore, the direction cor-
rection is very important. The matching point (Pc) of the
PPD (see fig. 6-1) is not only the new robot position, but
contains also information about the angular error. This
means that every point on the PPD depends on a certain
wheel speed difference VL–VR (see section 3 "Calculation
of a PPD model") and therefore on a certain angular drift
dα.

 Fig. 6-2: Each point of the PPD indicates the angular drift dα

The fig. 6-2 shows a plot of the wheel speed difference
VL–VR in the PPD. An intersection point of the PPD with a
grid line supplies the average wheel speed difference and
therefore the average angular drift, under the condition that
the wheelbase (L) and the traveling time (t) are known.

Note: The speed is constant.

6.2 Active correction

As discussed, the influence of a grid fitter to the actual
path will improve the odometry correction drastically (see
section 5.2 "Information distribution of a grid"). This chap-
ter describes, how the grid fitter works and how it has to be
inserted in a standard navigation system.

6.2.1 Grid fitter
To take advantage of the grid information (see section

5.2 "Information distribution of a grid"), a “grid fitter”
influences the planned trajectory of the robot. The resulting
path is only slightly modified by the grid fitter, but the
resulting advantage is relevant and will be illustrated by an
example (see fig. 6-3).
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 Fig. 6-3: The modified path (dotted line) makes a better use of the 
different zones than the intended path (solid line).

The robot is asked to follow the solid line, starting at
position A5. While driving to the right side (to F4), the
robot passes 4 V-zones, which allows to adjust 4 times the x
position. During this time, the y position and the direction
are neglected in favor of the freshly calibrated x position.
After that, the robot will turn right, but unfortunately pass-
ing a C zone containing no useful information. Close to the
point F3, the robot crosses finally a H-V zone, supplying
significant position information. The way back to the left
side of the scene (E2-A1) is similar to the first trajectory
segment (A5-F4). The lack of V-H transitions prevent a suf-
ficient odometry correction.

The fig. 6-4 illustrates the events produced by the
intended path (upper diagram) and the corrected path
(lower diagram). It can be seen that the corrected path con-
tains more useful V-H transitions (compare with fig. 6-3).

 Fig. 6-4: Zone events, caused by the intended and corrected way 

6.2.2 Including the grid fitter into a navigation system
The navigator steers the robot to a chosen destination,

considering known objects in a map and some unexpected
events. The navigator can normally be separated into a path
planner and a pilot (see fig. 6-5):

Path planner (global navigator):
The path planner calculates the path defined by the task 
describer (a), considering the obstacles indicated in the 
environment map (b). The path planner will calculate the 
result (c) in advance and hand it over to the pilot step by 
step (for example left, right, slightly right, stop, ...).

Pilot (local navigator):
The pilot has no knowledge neither about the environ-
ment, nor about the aim of the task. It reacts to different 
motion suggestions submitted by the path planner (c), 
grid fitter (e) and obstacle avoider (d). Each unit supplies 
a motion suggestion (like right, left, strong right), com-
bined with a certain priority (urgent, when convenient, 
mandatory). The pilot has to select or to combine these 
suggestions by selecting or fusion.

 Fig. 6-5: Standard navigation system, containing a path planner 
and a pilot, influenced by the grid fitter

It is important to understand, that the grid fitter is only
included into the navigator in order to improve the odome-
try correction algorithm. The illustration (see fig. 6-5)
shows, that the “grid fitter” module has the same structure
as the other modules (path planner and obstacle avoider)
influencing the pilot. The integration of the grid fitter into
the navigator produces no complications, if the interface of
these modules is well defined. A call from the pilot to the
grid fitter (and other modules) could be defined as follows:

void GridFitter(int actual_position,int actual_direction,int 
actual_speed,int *sug_direction,int *sug_priority);

The grid fitter module gets the actual position, direction
and speed of the robot from the pilot and returns the sug-
gested direction with a certain priority. Of course, the grid
fitter has a local knowledge about the grid.

6.2.3 Grid fitter implemented by potential fields
The grid fitter optimizes the odometry correction algo-

rithm by guiding the robot into interesting V and H zones
(see section 5.2 "Information distribution of a grid"). This
task can be easily modeled by potential fields and the fol-
lowing rules (see fig. 6-6):
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• Single (isolated) grid lines (V and H zones) attract the 
robot (striped circles).

• Grid cross points (C zone) repel the robot (black circles).

• The speed and the direction of the robot are also consid-
ered in the potential field. This means that attractive 
zones behind the robot have a much lower influence than 
attractive zones in front of the robot. The robot can be 
seen as a moving mass with a certain speed and direction. 
Of course, the potential field does not change the abso-
lute speed of the robot, which would be the case for a 
moving mass.

• V and H zones have to be crossed over alternately, thus 
when the robot has crossed some vertical lines, it has to 
be attracted in a stronger way by the horizontal ones.
The arrows on fig. 6-2 indicate the attractive and repul-

sive power of the zones.

 Fig. 6-6: Potential fields guide the robot over V and H zones, con-
taining information

6.2.4 Other tasks of the grid fitter
The robot is not simply attracted and repelled by the

potential fields. In order to improve the correction of the
angular drift(see section 6.1.2 "Correction of the angular
error"), the PPD should have a certain angle to the grid line
(horizontal and vertical) while crossing it. This situation
improves the recognition of angular errors. The following
illustration (see fig. 6-7) shows the difference, if the PPD is
crossing the grid line parallel (left image) or with a certain
angle (right image).

 Fig. 6-7: Inclined movement to the grid improves the recognition 
of angular errors

The left image shows the PPD passing the grid line right-
angled. The intersection (grid line and PPD) is flat and sup-
plies no exact cross point. In the right image, the intersec-
tion supplies an exact cross point, because the PPD has a
certain angle to the grid line.

Please note that the orientation of the PPD is important
and not the orientation of the robot. In certain circum-
stances, the PPD could have a good angle to the grid line
caused by its “inertia” (see section 4 "Examples"), even if
the robot crosses it right-angled (see fig. 6-8).

 Fig. 6-8: The PPD (and not the robot) has to cross the grid line in 
a certain angle to get exact intersection points

Tasks of the grid fitter:

• Avoiding bad and passing good zones (see section 6.2.3 
"Grid fitter implemented by potential fields").

• Crossing grid lines with a certain angle in order to 
improve the quality of the intersection.

• Minimizing the size of the PPD by adequate motion 
maneuvers (see section 4.3 "Turning back after 2 
meters").

7 Practical Tests

The described algorithm was implemented on a Khepera
robot, equipped with a Motorola 68311 Microprocessor,
128KRam and 256KRom. The aim was to program an
autonomous robot running on a grid-field performing
odometry correction without any external support like nav-
igation devices or linked work stations.

7.1 Simplification of the algorithm

Because of the low CPU power of the Khepera robot
(68311 @ 16MHz), neither the shape of the PPD nor the
3D cut with the grid line could be calculated in real rime.
Therefore, the PPD was approached by several sample
points of the PPD. These sample points are updated about
10 times per second. Connecting these points with a line
gives a useful approximation of the PPD. Moreover, calcu-
lating the intersection of this line with grid lines uses little
CPU power.
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7.2 Description of the experiment

The experiment was done in two stages (see fig. 7-1);
first without PPD correction (left image), then with correc-
tion (right image) to highlight the effect of the algorithm.
The robot starts on a known position and direction. While
running, the robot calculates its position continually simply
by odometry and draws its position to a Tektonix-Terminal
(left image). While moving on a random trajectory, the
robot plots continuously its calculated position ( ) and the
real measured position( ) on the screen. An increasing drift
to the down-left side can be recognized. After one minute,
the robot reaches an absolute error of more than a half
square unit (one square is 10cm).

 Fig. 7-1: Experiment without and with correction

The right illustration shows more or less the same robot
trajectory, but corrected by the described algorithm. The
path is marked by continuous plotted PPD’s. The PPD is
represented by a simple line connecting the sample points.
When the robot receives a signal from the light sensor,
meaning it is crossing a grid line, the intersection point is
marked by a cross ( ), which is obviously always on a
grid line. The corresponding real position is shown by a lit-
tle square ( ).

The size of the PPD is reduced by two every time an
intersection has been founded. Between these events, the
PPD grows corresponding to the drift of 1% per wheel. The
average size of the PPD keeps constant and is an indicator
for the reliability of the robot position.

Note:
The direction of the PPD is not always right-angled to

the robot trajectory. After turn a hard corner, the PPD can
have the same direction as the robot trajectory for a certain
time. This fact can be interesting for the Pilot (see section
6.2.4 "Other tasks of the grid fitter").

8 Conclusion

The present algorithm allows robots to efficiently correct
their odometry simply by detecting the lines of a grid
painted on the floor. Robots can thus navigate with mini-
mum external help.

This algorithm demonstrates also an optimal exploitation
of available information by using a new model of position
probability distribution (PPD) and an interacting pilot
(Grid Fitter).
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