

ROBOT POSITIONING BY SUPERVISED AND
UNSUPERVISED ODOMETRY CORRECTION

THÈSE NO 1858 (1998)

PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUE

PAR

Philip MÄCHLER

Ingénieur électrotechnique diplôme EPFZ

originaire de Küsnacht (ZH)

acceptée sur proposition du jury:

Prof. J.-D. Nicoud, EPFL (directeur de thèse)

Prof. R. Siegwart, EPFL, Switzerland

Prof. J. Crowley, I.N.P. Grenoble, France

Dr Marek Piasecki, Wroclaw UNI, Poland

Lausanne, EPFL

1998
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction i

ii EPFL-LAMI Ph. Mächler

Abstract

The aim of this thesis is to perform robot positioning, based on an odometry which is continuously
corrected by different landmark detection systems demanding as less modifications as possible for the
environment. Two independent correction systems (a supervised and an unsupervised) were imple-
mented into two different experiences which represent the subject of this thesis.

The supervised experiment uses grid lines painted on the floor which are detected by a single light
sensor underneath the robot which cannot distinguish between horizontal and vertical lines. The robot
knows the geometry of the grid lines and its estimated position which is calculated by odometry. A new
position probability model calculates the assumed robot position and transforms this single sensor
information into a reliable position and orientation indication of the robot. The intended trajectory is
slightly modified in order to optimize the correction algorithm by guiding the robot more efficiently
over close grid lines. The theory was implemented and tested on a real Khepera robot. Investigation and
modeling of the odometry error is the main subject of this first experiment.

The second experiment demonstrates continuous odometry correction by an unsupervised correction
system. Different kind of unsupervised neural networks classify the robot’s rough sensor signals. A sta-
tistical algorithm extracts “meaningful” classes from the generated pool of classes and uses these as ref-
erence points for odometry correction. The robot position will be calibrated to these reference points if
the robot detects the same “meaningful” sensor information which generated earlier the corresponding
reference point. What is going to be used as a reference point is initially unknown, and no extended pre-
processing of the sensor signals is done. The localization method allows a robot to correct its position
calculated by odometry without any prior information about its environment and its sensor configura-
tion. This localization approach takes full advantage of the sensor abilities, because no model unsuit-
able for the sensor configuration was imposed.

In a higher level, sequences of reference points are grouped to places in order to establish a more reli-
able indication for a certain region in the environment. In opposite to reference points, places do not
indicate an exact robot position, but more a fuzzy region which can be still detected even if the robot
trajectory or the environment is slightly influenced by noise or other circumstances. Place recognition is
done by Markov chain detecting reference point transitions. The result is a topological map of the envi-
ronment representing these places and the common transitions between.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction iii

Résumé

On étudie dans cette thèse la manière dont un robot peut se localiser en se basant sur les résultats de
son odométrie corrigés en continu par différents systèmes de détection de repères naturels. On y pro-
pose deux systèmes de correction distincts, l'un avec supervision, l'autre sans supervision. Ils font cha-
cun l'objet d'une série d'expériences.

Dans les expériences supervisées, un réseau de lignes orthogonales est peint sur le sol. Un capteur de
lumière placé sous le robot réagit à la présence des lignes, mais ne peut ni les identifier, ni distinguer
leur orientation. Le robot sait toutefois que les lignes sont orthogonales et connaît leur espacement. Il
connaît également sa position approximative par odométrie. A l'aide d'un algorithme original, il calcule
la zone de ses emplacements possibles en y associant une probabilité. L'information rudimentaire du
capteur unique lui permet alors de déterminer sa position et son orientation avec une grande précision.
Lorsque, dans ses déplacements, le robot juge que sa marge d'incertitude devient trop grande, il modifie
légèrement sa trajectoire pour franchir une ligne peinte selon un meilleur angle et recalculer ainsi sa
position exacte. Cette méthode a été testée sur un robot Khepera. L'étude et la modélisation des erreurs
d'odométrie sont au centre de ces premières expériences.

La seconde série d’expériences présente un système non supervisé de correction en continu de l'odo-
métrie. Plusieurs réseaux neuromorphiques non supervisés de types différents participent à la classifica-
tion des signaux bruts provenant des capteurs du robot. Un algorithme statistique extrait les classes
significatives de l'ensemble des classes produites et les utilise comme points de référence pour la cor-
rection de l'odométrie. Lorsque le robot reconnaît dans les signaux provenant de ses capteurs une infor-
mation significatives déjà classifiée, il l'utilise pour recalibrer son odométrie. On ignore à l'avance ce
qui, dans l'environnement, sera utilisée comme repère et, pour laisser le plus d'ouverture possible au
robot, on limite rigoureusement le pré-traitement des signaux. Cette méthode permet donc à un robot de
corriger ses erreurs d'odométrie sans rien savoir initialement de son environnement, ni de la nature et de
la configuration de ses propres capteurs. En renonçant à imposer aux capteurs une certaine vision de
leur environnement, elle leur permet de tirer au mieux profit de leurs caractéristiques.

Après l'identification de repères, le calcul se poursuit par la constitution d'“emplacements” définis par
une séquence de repères. On obtient ainsi une caractérisation encore plus fiable de certaines régions de
l'environnement. A l'inverse des repères, les emplacements ne permettent pas de préciser la position
exacte du robot, mais plutôt de les situer dans une région circonscrite de manière floue mais clairement
identifiable même lorsque la trajectoire du robots ou certains traits de l'environnement ont été légère-
ment modifiés par des perturbations de diverses natures. La reconnaissance des emplacements est assu-
rée par une chaîne de Markov détectant les points de transition. Il en résulte une carte topologique de
l'environnement représentant les emplacements et les transitions les reliant.
iv EPFL-LAMI Ph. Mächler

für meine Eltern
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction v

vi EPFL-LAMI Ph. Mächler

Table of contents

Table of contents

Abstract .. iii
Résumé ... iv
Table of contents... vii
Table of figures .. xi

1 Introduction ... 1
1.1 Thesis inspiration and justification ... 2
1.2 Organization of this thesis... 2
1.3 Sensor positioning systems in robotics ... 3
1.4 Data sensor fusion... 4
1.5 The importance of odometry in robot positioning .. 6
1.6 The problem of modularized data processing ... 7
1.7 Related Work in the field of model-less learning ... 9

2 Supervised Passive Positioning System (SPPS)... 11
2.1 Overview... 12
2.2 Introduction to odometry correction ... 13

2.2.1 Properties of odometry errors .. 13
2.2.2 Combining of systematic and non-systematic odometry error 14
2.2.3 One-dimensional correction... 14
2.2.4 Two-dimensional correction.. 16
2.2.5 The traditional ellipse approach to distinguish x and y correction.................. 16

2.3 The PPD model ... 17
2.3.1 Introduction.. 17
2.3.2 Geometrical calculation of the PPD model ... 18
2.3.3 Calculation and display of the PPD shape... 19
2.3.4 Differences between the circular and the PPD model 22
2.3.5 Deformation of the PPD by curves and corners .. 22
2.3.6 Examples.. 23
2.3.7 Conclusion ... 24

2.4 Statement of the problems... 25
2.4.1 Angular drift, caused by inaccuracy robot direction 25
2.4.2 Information distribution of a grid .. 25

2.5 Strategy for PPD, robot position and direction correction.. 26
2.5.1 Passive correction, using the PPD ... 26
2.5.2 Correction of the position .. 26
2.5.3 Correction of the angular error .. 27

2.6 Integration of a path planner “grid fitter” ... 28
2.6.1 Including the grid fitter into a navigation system.. 29
2.6.2 Grid fitter implemented by potential fields ... 31
2.6.3 Other tasks of the grid fitter... 32
2.6.4 Practical tests ... 33

2.7 Conclusion .. 34
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction vii

Table of contents

3 Unsupervised Passive Positioning System (UPPS) ... 35
3.1 Unsupervised classification approaches.. 36

3.1.1 Statistical approach.. 36
3.1.2 Machine learning approach.. 36
3.1.3 Neural network approach... 36

3.2 Experimental Set-up.. 38
3.2.1 Aim .. 38
3.2.2 Experience set-up... 39
3.2.3 Algorithm overview... 40

3.3 Normalization.. 41
3.3.1 Distance and ambient light sensors.. 41
3.3.2 Camera preprocessing.. 41

3.4 Classification... 45
3.4.1 The Growing K-means Algorithm... 46
3.4.2 Adaptive Resonance Theory (ART) .. 48
3.4.3 Simplified Fuzzy ART... 50

3.5 Discussion of unsupervised classifiers.. 52
3.5.1 Significant versus entire number of classes... 52
3.5.2 Quality versus quantity of significant classes.. 53
3.5.3 Class distribution in the input space .. 53
3.5.4 Representing the environment by classes .. 54

3.6 Classes become landmarks.. 55
3.7 Landmark comparison by Levenshtein Distance .. 56

3.7.1 Introduction.. 56
3.7.2 Recursive mathematical definition .. 56
3.7.3 Flat implementation of the LD .. 58
3.7.4 Code example for WLD... 58
3.7.5 Graphical example ... 59
3.7.6 Calculation of substitution cost ... 59
3.7.7 Recognizing identical landmarks by WLD.. 60
3.7.8 Estimated robot position supports landmark recognition 61

3.8 Constraining robot movements ... 62
3.9 Introduction to concepts.. 63

3.9.1 Concept quality depending on frequency .. 64
3.9.2 Concept quality depending on the sensor ability... 64

3.10 Landmarks become places .. 65
3.10.1 Recognizing places from the landmark stream.. 65

3.11 Place identification by Markov Chain .. 66
3.11.1 Concept of probability ... 66
3.11.2 A simple Markov model .. 67
3.11.3 Implementation of Place recognition by Markov Chain.................................. 68

3.12 What’s the difference between Levenshtein and Markov?... 70
3.13 Places become a map .. 71
3.14 Algorithm controlling ... 72

3.14.1 Interconnections between the different levels ... 73
3.14.2 Learning phases ... 74
viii EPFL-LAMI Ph. Mächler

Table of contents

3.15 Experimental results.. 75
3.15.1 Landmark distribution ... 75
3.15.2 Odometry error correction ... 76
3.15.3 Place production .. 76
3.15.4 Structured environment ... 77

4 Discussion and conclusion... 79
4.1 Future work ... 81

5 Appendix .. 83
5.1 Different ways to calculate the odometry ... 84

5.1.1 Odometry calculation describing the direction of the robot by an angle......... 84
5.1.2 Odometry calculation describing the direction of the robot by a vector 85

5.2 Levenshtein simulators on the WEB... 86
5.3 PPD simulation with Mathematica ... 87
5.4 Simplified Fuzzy ARTMAP ... 89

6 References... 91

7 Remerciements aux dieux de l’Olympe ... 97

8 Publications .. 99

9 Curriculum Vitae... 101
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction ix

Table of contents
x EPFL-LAMI Ph. Mächler

Table of figures

Table of figures

Fig. 1-1: Robot PEMEX for antipersonnel mine detection. 2
Fig. 1-2: Sensor fusion of related information into similar spatial place of the pit tectum . 4
Fig. 1-3: Foraging and return of a desert ant “Cataglyphis fortis” [Wehner R., 1992]. 6
Fig. 1-4: Simplified landmark recognition by several processing modules 7
Fig. 1-5: Recognition of useful part in signals, independently of the sensor type 8
Fig. 1-6: Rectangular robot environment with a significant exception. 8
Fig. 2-1: Khepera performs odometry correction by detecting grid lines on the floor 11
Fig. 2-2: Combination of different positioning systems . 12
Fig. 2-3: Folding of the non-systematic and systematic gaussian error distribution 14
Fig. 2-4: Example of the fundamental technique to correct odometry error. 15
Fig. 2-5: Example: The closest grid line is not always the best . 16
Fig. 2-6: Passing grid lines change the shape of the ellipses . 16
Fig. 2-7: Minor wheel speed difference causes a strong change of the robot direction . . . 17
Fig. 2-8: Derivation of a PPD model . 18
Fig. 2-9: Gaussian distribution of the wheel speed . 20
Fig. 2-10: PPD shape (right side). Path length 3m; straight ahead; wheel slip 1% 21
Fig. 2-11: Difference between the PPD and traditional circular approach 22
Fig. 2-12: Example 1: PPD behavior in a curve . 23
Fig. 2-13: Example 2: PPD behavior after a turn back . 23
Fig. 2-14: Example 3: PPD decrease after a turn back . 24
Fig. 2-15: Spreading out and concentrating of the PPD . 24
Fig. 2-16: Wrong correction because of confused grid lines . 25
Fig. 2-17: Correction of the assumed position by matching the PPD with the grid 26
Fig. 2-18: Each point of the PPD indicates the angular drift . 27
Fig. 2-19: The modified path (dotted line) leads to many more V-H transitions 28
Fig. 2-20: Zone events, caused by the intended and corrected way 29
Fig. 2-21: The grid fitter can easily be inserted into a standard path planner. 30
Fig. 2-22: Potential fields guide the robot over V and H zones . 31
Fig. 2-23: Diagonal grid line crossing improves the recognition of angular errors 32
Fig. 2-24: Angle between PPD and grid line is important (not PPD and robot path) 32
Fig. 2-25: Experiment without and with odometry correction . 33
Fig. 3-1: Robot exploring an unknown environment . 35
Fig. 3-2: Three different representations of an artificial neuron. 37
Fig. 3-3: Standard environment offers several stimuli . 38
Fig. 3-4: Equipment of the extended Khepera robot. 39
Fig. 3-5: Sensor signal data processing and recognition of significant features 40
Fig. 3-6: Calculation of light intensity, first approximation . 41
Fig. 3-7: Two different images preprocessing to improve classification 42
Fig. 3-8: Screen-shot of the camera image normalization . 43
Fig. 3-9: Effect of camera processing . 44
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction xi

Table of figures

Fig. 3-10: 2-D robot sensor space defined by a distance sensor and a compass. 45
Fig. 3-11: Network structure of the K-means algorithm. 47
Fig. 3-12: General ART architecture . 48
Fig. 3-13: Sketch of a Fuzzy ART network . 50
Fig. 3-14: Almost linear relationship between significant and used classes. 52
Fig. 3-15: The reactivation of significant classes is better for small neural networks 53
Fig. 3-16: Different cluster shapes for a 2D input space. 54
Fig. 3-17: Different environment representation by classes . 54
Fig. 3-18: Combining three class streams into a landmark. 55
Fig. 3-19: A landmark is a significant class combined with the adjacent classes. 55
Fig. 3-20: Combination tree to compare two strings with each two characters 57
Fig. 3-21: Landmark comparison by analyzing all class streams . 60
Fig. 3-22: Similarities of landmarks depend on Levenshtein distance and position error . . 61
Fig. 3-23: Robot path attracted by walls and contours . 62
Fig. 3-24: Object’s frequency influences the concept’s quality . 64
Fig. 3-25: Different concepts for the same object depending on the sensor ability 64
Fig. 3-26: Accumulations of landmarks become places . 65
Fig. 3-27: Definition of First Order Markov Chain . 66
Fig. 3-28: Transition probability matrix [T] of English inhabitants 67
Fig. 3-29: Typical distribution of the most important places . 71
Fig. 3-30: Distorted representation of the environment . 71
Fig. 3-31: Complete algorithm divided into levels and temporal phases 72
Fig. 3-32: Transition of the learning phases . 74
Fig. 3-33: Robot environment with all created landmarks from all classes 75
Fig. 3-34: Stabilized error due to landmark synchronization . 76
Fig. 3-35: Place evolution in time . 77
Fig. 3-36: Structured environment leads to little and less reliable class production. 77
Fig. 3-37: Landmarks synchronization is less stable and fails after a certain time. 78
Fig. 4-1: Some significant situations can only be recognized by sensor correlation 80
Fig. 5-1: Rough overview of the traditional approach for odometry calculation 84
Fig. 5-2: Displacement calculation based on the normalized direction vector of the robot 85
xii EPFL-LAMI Ph. Mächler

C

A
P
T
E
R

H

1 Introduction

Watching a running robot searching for its trajectory and avoiding obstacles at the same time is both
entertaining and intriguing for human observers. Self-identification is tempting because the robot is
executing a very familiar task. Of course, the robot cannot withstand a comparison with human naviga-
tion strategy. The differences are so extensive that it would not make sense to list them in this chapter.

The observer is often fascinated to see how a robot is at ease to perform a task considered difficult or
even impossible for a human being (specially concerning manipulation speed and precision). On the
other hand, the same observer is sometimes astonished to discover the clumsiness of autonomous
robots moving in an apparently simple environment. Robot’s skills do not match human ones, they
sometimes even seem to be quite the opposite.

One of the reasons humans are astonished by robotical behavior is because they tend to judge them
according to human clichés. The robot’s behavior is considered “human” if its reaction matches the
imposed human model otherwise its behavior is considered “awkward”. As a result, scientists try to
adapt the robot’s behavior to human or animal. Different techniques were developed to analyze and to
model human and animal behavior which led to a wide spectrum of models. One problem can be put
down to the fact that robots do not relate to their environment the way humans or animal do: their sen-
sors, their effectors and everything else in between have completely different characteristics. For
instance, robots can easily perceive infrared sources, while human cannot without technical help, and
humans can easily recognize a human face while robots cannot. Thus, even if robots and humans work
in the same environment, the way they would perceive it is different. Why should a robot recognize a
chair, if it can’t sit on it? Why should a human care about magnetic field if it doesn’t harm him at all?

Therefore the robot’s and human’s perception of the world is completely different and will probably
never really be understood by humans. Hence the question is, are we actually able to create a model for
a robot (agent) whose abilities we cannot really understand? The last sentence seems to enter the field
of psychology, but the problem is also well known in that of robotics. Several scientists developed sys-
tems which are able to develop it’s own model or at least which are able to select the best model of a set
[Kuipers B., 1997] [Schmidhuber J., 1997].

A possible solution to this problem is letting the robots agent build its own model. This requires the
ability to recognize the coherence and the context of the environment and not only to adjust some
parameters of a model. It is obvious that to develop this idea will be very difficult and will hardly lead
to an efficient result. Some initial models are still needed as a base to build on. But what is the limit?
What kind of flexibility can we expect from systems that classify and conceptualize for themselves their
own world?
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 1

Chapter 1: Introduction

1.1 Thesis inspiration and justification

The principal idea of this thesis was born during my first project in the lab. Prof. Nicoud developed a
concept for a robot, able to detect anti-personnel mines and designed the robot PEMEX (PErsonnel
Mine EXplorer) [Nicoud et al., 1995a] [Nicoud et al., 1995b]. My task was to realize the robot and to
implement a navigation algorithm for the Pemex. The second task was much more difficult than
expected. Almost every navigation algorithm meeting the imposed specifications depended on some
special environment conditions or were based on artificial reference points which were difficult to put
up due to the mine danger. However, as a human observer, the environment offered a great variety of
reference points like trees, trails, horizon reliefs, surface conditions, etc. But there was no model and
also no sensor fitting such reference points. A robot, placed in a natural environment, felt himself in
another world and was completely lost. The problem was not only related to the inadequate sensors but
also to the absence of a suitable model for information processing. The often confusing and noisy sen-
sor signal made it difficult to develop an adequate model which necessitated good sensor quality.
Observing the sometimes astonishing raw sensor values raised the following questions in my mind:
- Why not use the motor energy consumption to detect muddy ground or slope?
- Why not use noisy ultrasonic information caused by a bush of grass?
- Why not use a short drift in the compass every time the robot passed close the computer monitor?
These questions were the “kickoff” to investigate a system which could identify and use any kind of
sensor signals as a reference point, regardless, as far as possible, of any kind of model.

Fig. 1-1: Robot PEMEX for antipersonnel mine detection

1.2 Organization of this thesis

Odometry correction will be first tackled in chapter 2 in which an experiment shows the effect of
odometry error and an original way to correct it by detecting grid lines on the floor. This experiment
represents a supervised odometry correction because the dimension of the grid line is known. However,
the supervised correction method does not use the ideas discussed above.

The second experiment in chapter 3 presents an approach for robot localization which is also based on
odometry but corrected by an unsupervised system. Because the problematic of odometry error was
already discussed in the previous section, this chapter treats exclusively the problem of unsupervised
(or model-less) correction. The presented model-less correction method use neither knowledge about
the environment nor about its own sensor configuration. This reduces the risk of loss of information by
model based preprocessing, which are always created and therefore influenced by human models and
therefore probably doesn’t fit very well the robot’s internal world. The problem is explained more
detailed in section 1.6 on page 7.
2 EPFL-LAMI Ph. Mächler

Sensor positioning systems in robotics

1.3 Sensor positioning systems in robotics

Recent years have witnessed a tremendous development in robotical electronics. Most progress was
based on the commercial availability of interesting new components. For instance, small and efficient
electric motors and controllers were developed for the car industry. In twenty years, microcomputer
power grew from simple Z80 processors with 64kByte address space to Pentium based system with a
thousand times larger address space. But in the field of robot positioning sensors, nothing very spectac-
ular was achieved. Positioning remains the weak spot of robot systems. Table 1-1 gives an overview of
the most frequently used robotical positioning sensors. A very good survey of almost every kind of
positioning sensors can be found in the Book “Sensors for Mobile Robots” [Everett H., 1995]:

Most other types of positioning systems can be reduced to one or several positioning system presented
in table 1-1. However, generally no one of the enumerated systems can be used as a single positioning
system because they are not enough reliable or are too expensive. A solution is to fuse multiple sensor
information to obtain usable compromise solutions.

Pos. system Short description Advantage Drawbacks

Odometry
Position determination by integrating wheel

speed information
• cheap • distance drift

Inertial
navigation

Sensing minor accelerations in all directional
axes and integrating over time to derive

velocity and position

• no ground contact
needed

• time drift
• expensive

Compass
Measures direction heading based

on Earth’s magnetic field
• cheap
• no time drift

• sensitive to mag-
netic anomalies

• limited accuracy

Gyroscope
Direction heading based on the inertial prop-

erties of a rapidly spinning motor or other
techniques like optical gyroscope

• insensitive to mag-
netic anomalies

• time drift
• expensive

Ultrasonic
distance

Time of flight measurement for an ultrasonic
chirp (pulse) to travel to a reflective object

• cheap

• no focusing
• slow
• limited range
• artifact by echoes

Light/Laser
triangulation

Reflection angle measurement
of an emitted light beam

• cheap
• fast

• limited range

Laser
time of flight

Time of flight or phase shift measurement
of an emitted light pulse

• fast • expensive

Landmark
recognition

Distance and/or angle measurement between
the robot and an artificial landmark

• absolute position • external set up

Stereo
vision

Distance measurement by object recognition
of two staggered images

• no external set up
• complex algorithm
• not reliable

GPS Global positioning system based on satellites • absolute position • free sky view

Table 1-1: Mostly used sensor system for robot positioning
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 3

Chapter 1: Introduction

1.4 Data sensor fusion

Multisensor data fusion is mainly used in military applications. The Department of Defense (DoD) in
the United States of America issues almost every definition in this field. Data fusion techniques com-
bine data from multiple sensors to achieve improved accuracy and more specific inferences than could
be achieved by the use of a single sensor alone. The Joint Directors of Laboratories Data Fusion Group,
established in 1986 [Hall et al., 1990], has been active in standardizing the terminology used in data
fusion. They have established the following definition of multisensor data fusion:

“A continuous process dealing with association, correlation, and combination of data and
information from multiple sources to achieve refined entity position and identity estimates, and
complete and timely assessments of resulting situations and threats, and their significance.”

Data sensor fusion is not tied to a specified type of data processing. Every kind of algorithm can be
used that is suitable for the sensors used and the requirements. A data fusion system can therefore con-
tain signal processing, pattern recognition, information theory, cognitive psychology, artificial intelli-
gence and statistics.

The use of multisensor data fusion is hardly new. Humans and animals have both evolved and devel-
oped the capability to merge the outputs of different sensory modalities to improve their ability to sur-
vive. Let us take an example from [Abidi et al., 1992], originally published by [Newman, 1982]:
Pit vipers and rattlesnakes have in their optic tectum (a midbrain structure found in vertebrates) neurons
responding to both visual and infrared stimulus. Fig. 1-2 shows the left eye and the pit organ of a rattle-
snake receiving information from the same region A in the environment. Both stimuli from region A are
connected together on the surface of the optic tectum in a similar spatial orientation. Therefore each
region of the optic tectum receives information from related regions of the environment. Neurons per-
forming different kinds of fusion are able to detect different kinds of preys. For instance, “or” and
“and”1 neurons can be used to distinguish a warmblooded mouse from a cool-skinned frog. (The “and”
neurons have been whimsically described as a mouse detector).

Fig. 1-2: Sensor fusion of related information into similar spatial place of the pit tectum

1. “and” and “or” in logical sense.

A
B

C A

B

C

A
B
C

A
B

C

A
B

C

Hindbrain

Pit organs

Optic tectum

Eye Eye

Infrared stimuli

Optical stimuli
4 EPFL-LAMI Ph. Mächler

Data sensor fusion

Fusion of different kinds of sensors

The way data fusion is implemented depends on the sensors used. We found it useful to divide sensors
into two groups: Continuous sensors and Event sensors.:

• Continuous sensors produce normally an uninterrupted flow of information of constant importance.
This information can be integrated continuously into the position calculation process (for instance,
position calculation by odometry which is continuously corrected by a compass). The accuracy of the
values supplied by continuous sensors is normally constant. Therefore no particular action (like emer-
gency stop) caused by this type of sensor has to be initiated. Fusing this kind of sensor can be
achieved relatively easily, because the information of continuous sensors is always available and its
importance (relative weight to other sensor inputs) is constant.

• Event sensors announce a special situation for the robot. The importance of a signal coming from an
event sensor may be different and could trigger an immediate reaction (for example a touched bumper
triggers an emergency stop or the lost contact with a laser reflector activates a search behavior). An
event sensor signal can also be created from a continuous sensor signal. For instance a distance sen-
sor (continuous sensor) can be used as an event sensor indicating objects getting too close to the
robot. In such a case, the sensor can be seen as two sensors: As a continuous sensor delivering the dis-
tance to an object and as an event sensor supplying a signal if an object gets too close to the robot.

Fusing information coming from continuous sensors is normally done by probability calculations or
other nonlinear functions. They deliver a continuous flow of results (for instance the updated robot
position) and generally do not have to trigger special reactions for specific values of the signal. There-
fore such fusion processes can be easily integrated into sensor data streams without affecting other
modules like navigation or path planner modules.

As already mentioned, information coming from event sensors usually triggers a special behavior or
an exceptional calculation. It usually initiates a decision which causes a change of some of the internal
robot states. Fusing the information of event sensors requires usually less mathematical complexity but
more expenditure for program structure. Thus, fusing event sensors is often less reliable because the
problem cannot be modeled extensively and is therefore programmed in a more heuristic manner.

Both odometry correction algorithms presented in chapter 2 and 3 in this thesis belong to the second
category, i.e. fusion of event sensors.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 5

Chapter 1: Introduction

1.5 The importance of odometry in robot positioning

Odometry is the calculation of the actual position by integrating the traveled distance which is mea-
sured by the wheel rotation. It has not to be confused with Dead Reckoning which is derived from
“deduced reckoning” of sailing days (see http://www.teleplex.net/timonier/book18.html for further

details) and calculates the actual position by average speed and direction information.

The concept of odometry was first applied in 1910 for automobile navigation. The aim was to replace
paper maps in order to eliminate the stress associated with route finding [Catling I., 1994]. This rather
primitive but pioneering system counted the wheel rotation to derive longitudial displacement and the
steering wheel to calculate heading. Unfortunately the cumulative errors precluded its ultimate success.

The efficiency of odometry is proven by nature as well. Wehner [Wehner R., 1992] shows in the chap-
ter 3 of the book Animal Homing that Saharan desert ants Cataglyphis are able to find their way home
by using only direction and distance information. It seems that the distance information is gained from
optical flow and compass direction from celestial cues, primarily from the polarization pattern of the
blue sky. The example in fig. 1-3 shows that Saharan desert ants - during their search for food - cover a
distance of 600 meters in about 19 minutes in a very accidental way. After that, they return straight
home, in close to 6 minutes, 140 meters away. This is a very impressive performance considering the
ant’s body length of 1.2 cm.

Fig. 1-3: Foraging and return of a desert ant “Cataglyphis fortis” [Wehner R., 1992]

Borenstein (see section 2.2) shows also that robots are able to perform astonishing results by navigat-
ing only with dead reckoning. He uses different methods to improve the odometry calculation.

However, odometry is very often used as robot positioning system because the needed wheel speed
sensors are normally already implemented to stabilize the wheel speed (PID controller). This reduces
the additional expenditure for odometry implementation to software. Therefore considerable effort is
devoted to the correction of the cumulative odometry error using different systems. Kalman filter is a
well-known method for data fusion and position estimation [Grewal et al., 1997] [Crowley et al., 1993]
[Brown et al, 1992]. For example Cécile Durieu et al. [Durieu C., 1995] presented a fusion application
for location of mobile robots using odometry and a panoramic laser telemeter. A similar approach is
presented by Marek Piasecki [Piasecki M., 1995]. He uses multiple hypothesis tracking to determine
the source of an observed signal in order to perform position estimation by comparing this source with
corresponding map entries. However, in both papers the characteristics of the landmarks and their posi-

prey capture

home

return path

foraging trip

Desert ant:
Cataglyphis fortis
6 EPFL-LAMI Ph. Mächler

The problem of modularized data processing

tion are known. On the other hand, H. Xu [Xu H. et al., 95] fuses a low cost gyroscope with dead reck-
oning signals to estimate the position. All three approaches use Kalman filter for position estimation.

1.6 The problem of modularized data processing

The usual approach to attack a general data processing problem is to break down the processes into
modules, each of them with a well defined input/output interface. Thus modularized, a complex system
is much easier to understand and develop. Each module performs a well specified data processing task
and ignores every other kind of signal information which unconsciously could be of interest. Fig. 1-4
shows the typical data processing chain for a positioning algorithm. Sensor information is read and pre-
processed independently. For instance, distance information is normalized into categories such as close,
middle and far away. The image delivered by a camera is analyzed for vertical and horizontal edges and
the direction information coming from a compass is divided into N, S, E and W. Afterwards, the prepro-
cessed information is fused and abstracted in order to recognize some important situations, i.e. the
edges are matched with the shape of landmarks which depends again on the direction of view (using a
compass). Such recognized landmarks (marked by a cross) can be used to build a map and to navigate
the robot.

Fig. 1-4: Simplified landmark recognition by several processing modules

This could be called the Cartesian approach, following René Descartes (1596-1650) [Descartes R.,
1637] who, in his “Discours de la méthode” explained his strategy: “to divide the problems I shall study
as many parts as possible”. But, since we cannot really understand the robot’s world, we cannot be sure
to have chosen the best possible modularization. Modularizing perception the way it is done in fig. 1-4
might very well entail a loss of information. Thus, the Cartesian way, one of the corner stones of mod-
ern science, should not be applied blindly.

Another strategy is to keep all the data available to all sensors and let the system discover by itself
how to perceive the world. This is what is done with neural networks. After the learning phase, they
know the relative attention to pay for different input vectors and store they into weights.

Nevertheless, such self learning systems are often trained to recognize foreseen features or they
receive already preprocessed information. So the problem of modularized data processing is still exist-
ing.

Edge detection Shape

Landmark localization

Image

Global direction View angleDirection

Preprocessing Abstraction & fusionSensorEnvironment

Distance Dist. profileNormalization

loss of information loss of information combining of information
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 7

Chapter 1: Introduction

The motivation for this thesis was to create a landmark recognition system which would avoid as
much as possible such problems of modularized data processing. Hence:

• The landmarks should not be predefined in a way that specific signal preprocessing becomes neces-
sary.

• The system should be capable of recognizing autonomously a combination (correlation) of signals
which can be used as a landmark.

• This has to be done without any prior knowledge about the related sensors and even without any
knowledge of the reason generating these signal events.

Fig. 1-5 shows in comparison to fig. 1-4 the structure of the system that include the changes men-
tioned. The preprocessing and abstraction module is replaced by different types of classifiers, which
divide all sensor stimuli into classes. Every class (so every combination of stimuli) can be declared as a
landmark, if it meets some later explained conditions. The way of classification can be slightly adjusted
depending on the number and quality of classes. The resulting landmarks are unknown in advance but
well adapted to the characteristics of the environment and to the sensor’s abilities. The purpose of this
thesis is to show how far such an adaptive system can be pursued.

Fig. 1-5: Recognition of useful part in signals, independently of the sensor type

The example shown in fig. 1-6 shows the effect of such a system:
A room consisting of right-angled walls contains one diagonal wall as well. This significant exception
(which was perhaps even not intended) will be automatically recognized by the mentioned classifier as
a suitable landmark. Such a system could discover the irregularity of a natural environment and use
them as landmarks. Localization systems as shown in fig. 1-4 cannot take advantage of such unintended
situations.

Fig. 1-6: Rectangular robot environment with a significant exception

Landmark localization

Image

Direction

Landmark perceptionSensorEnvironment

Distance

loss of information

Classification

Classification

Fusion

Tuner

loss of information

an
y

se
ns

or
 s

ig
na

ls

diagonal wall
8 EPFL-LAMI Ph. Mächler

Related Work in the field of model-less learning

1.7 Related Work in the field of model-less learning

The work mentioned in this section shows some different approaches for model-less learning of an
environment.

Benjamin Kuipers and David Pierce presented in the paper Map Learning with Uninterpreted Sensors
and Effectors [Kuipers B., 1997] an algorithm which finds the dependences between sensors and actors
by applying and adapting models of a given set. The approach is divided into several levels. A rich set
of models makes the algorithm very adaptive to a large range of sensor configuration. The result is a
hierarchical model of the robot’s world.

Lin and Hanson [Lin et al., 1993] demonstrate in the paper On-line learning for indoor navigation:
Preliminary results with RatBot learning of a topological map of locally distinctive places. They use
physical robots with 16 sonar sensors and 16 infrared sensors. The work is inspired by Kuipers and
Byun [Kuipers B., 1991], but they use reinforcement learning1 to train the local control strategies,
rather than engineering them by hand. However, the target behavior like corridor following are speci-
fied by a human teacher, so the robot is rewarded if it moves along the corridor without bumping into
obstacles.
Their approach is complementary to Kuipers and Pierce because they specify its own target behaviors,
eliminating the need for the human teacher. On the other hand, Lin and Hanson specify the desirable
behaviors by defining appropriate reward signals and then letting the robot learn on its own how to get
the rewards.

An efficient approach to combine sensor events with a robot’s position in order to perform robot navi-
gation is shown by H. A. Mallot [Mallot H.A. et al, 1995]. He presented a view-based approach to map
learning and navigation in a maze. The topological structure of a maze is defined from the sequence of
images and perceptions experienced while exploring the maze.

Jürgen Schmidhuber [Schmidhuber J., 1997] goes one step further in his paper What’s Interesting. He
investigates the characteristic of interesting information. He says that interestingness depends on the
observer’s current knowledge and computational abilities. Information appears either trivial or random
if there is either too much or too little known about it. He implemented this idea in a “curious” and “cre-
ative” explorer with two coevolving “brains”.

Another interesting work, but in the domain of speech classification, is done by Virginia R. de Sa and
Dana H. Ballard [de Sa, Ballard, 1998]. They use temporal correlation between sensations of different
sensory modalities (lip motion and sound) to recognize “interesting events”. However they want to
avoid clustering of multimodal patterns which would prevent adequate performance in the individual
modalities. So they describe an algorithm that avoids the intractable task of modeling cross-modal asso-
ciations but uses this useful structure to derive its own internal target signals for classifiers in the indi-
vidual modalities. The result is a network which classifies visual and auditory stimuli with performance
comparabe to supervised networks.

1. The reinforcement-learning algorithm is a neural-network version of Q-learning [Lin L.J., 1993]
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 9

Chapter 1: Introduction
10 EPFL-LAMI Ph. Mächler

C

A
P
T
E
R

H

2 Supervised Passive Positioning System (SPPS)

This chapter describes the origin and the propagation of odometry error and a supervised method for
odometry correction. However, it is mainly focused on modeling a new odometry error model for two
wheeled autonomous robots.

Fig. 2-1: Khepera performs odometry correction by detecting grid lines on the floor

Introduction

The experience presented performs odometry correction for an autonomous robot, based on black grid
lines painted on a white floor (see fig 2-1). These grid lines are detected by a single light sensor under-
neath the robot, which cannot distinguish between horizontal and vertical lines. The robot knows the
geometry of the grid lines (model) and its estimated position which is calculated by odometry (see sec-
tion 2.2).

The robot’s estimated position is needed to distinguish between the detection of a horizontal and a
vertical grid line (both lines cause the same sensor signal). Thus, a detected grid line can be used to
improve the estimated robot position.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 11

Chapter 2: Supervised Passive Positioning System (SPPS)

2.1 Overview

For autonomous robots, navigating and interacting with their environment are fundamental skills.
Depending on their task and the environment, robots need different techniques to work and survive in
their environment. For example, autonomous vacuum cleaners1 for swimming pools do their job per-
fectly well using a simple strategy: turning over when touching a wall.
On the other hand, an apparently similar and simple job like moving an autonomous robot inside an
office becomes a technical challenge. The major difficulty for the robot is the spatial representation of
the environment, and how to evolve a strategy to navigate in a safe and exhaustive manner, see [Knieri-
emen T., 1991] [Pau L. F., 90].

Various navigation systems can be found on the market to provide a robot with information about it’s
position. They can be separated into absolute positioning systems such as Global Positioning System
(GPS) and relative positioning systems such as odometry or acceleration sensors [Welch S., 92].
Absolute positioning systems deliver accurate position information without considerable drift in the
long term, but they are relatively expensive. On the other hand, position delivered by a relative position-
ing system drift with time (see fig. 2-2).

The approach presented here tries to extract both advantages by using odometry as a cheap relative
positioning system and grid lines on the floor as an absolute positioning system.

Fig. 2-2: Combination of different positioning systems

The position of the robot is represented by the position x, y and direction α. Odometry delivers the
information x, y and α, but with a drift in the long term (therefore the variables are marked with an
overline). The grid line delivers the absolute x or y position modul grid line distance. Thus:

(x , y , α) = (x , y , α) [(x mod gridlinedist) OR (y mod gridlinedist)] .

The presented fusion process (indicated by ’*’) is based on a new model of the position probability
distribution and additionally supported by an interactive pilot system which influences the robot trajec-
tory in order to take better advantage of the grid lines (see section 2.6 on page 28).

1. http://www.electrolux.com.ru/robot/meny.html or http://diwww.epfl.ch/lami/robots/K-family/vacuum.html

GPS

Landmark

Scanning systems
(e.g. laser)

(e.g. optical)

Absolute positioning system

Provided Information:
x, y and sometimes α
- expensive
- accurate position in long term

Combined positioning system

Odometry

Grid lines

Provided Information:
x mod(line-dist) or y mod(line-dist)
∆x±xerror, ∆y±yerror and α±αerror

Sensor

Acceleration

Odometry

F

Relative positioning system

Provided Information:
∆x±xerror, ∆y±yerror and ∆α±αerror
- cheap
- no stable position in long term

 ⊗
12 EPFL-LAMI Ph. Mächler

Introduction to odometry correction
2.2 Introduction to odometry correction

The following sections introduce the problem of odometry error and grid line correction by compar-
ing one and two dimensional cases. The difference makes it clear that a new position probability model
is needed, which is presented in this section as well. The presented correction algorithm is designed for
two wheel robots and has been tested on the Khepera®1, which is often used in our laboratory.

Before correcting the estimated position of a robot, we have to know how to calculate this estimated
position which consists of the position x, y and the robot direction α. Using the angle α to describe the
robot direction can spoil the accuracy of the calculation and demands a special case treatment in the
calculation program. The section "Different ways to calculate the odometry" in the Appendix on
page 84 contains some practical hints on how to implement odometry calculation. A very comprehen-
sive survey on several mobile robot positioning methods is given in [Borenstein et al, 1996].

2.2.1 Properties of odometry errors

The odometry error is the difference between the position on which the robot “thinks” to stay on (i.e.
calculated by odometry) and its actual position (often measured by external devices). We divide the
cause of the odometry error onto:

• Systematic error, which is caused by kinematic imperfections of the robot, as for instance unequal
wheel diameters, misalignment of wheels or limited encoder resolution or sampling rate.
The systematic error depends on the vehicle specification and stays almost constant over prolonged
periods of time. Thus it can be examined and eliminated to a large extent. Borenstein and Feng
describe in the paper Measurement and Correction of Systematic Odometry Errors in Mobile Robots
[Borenstein, Feng, 1996] a method to investigate and compensate the systematic odometry error. The
approach is simple but nevertheless very powerful and is mainly based on measuring the deviation of
a robot running along a defined trajectory and compensating the odometry calculation by the mea-
sured parameters. However, the practical usefulness of this approach is questionable because the mea-
sured parameters can drastically change. For example, a different load distribution of the robot or
worn wheels strongly influences the systematic error and requires frequent re-calibration of the sys-
tematic error.

• Non-Systematic error, which may be caused by wheel-slippage or irregularities of the floor. The non-
systematic error is by definition unpredictable (if the environment is insufficiently known which is
almost always the case). It is caused by interaction of the robot with unpredictable features of the
environment. However Borenstein [Borenstein J., 1994] and [Borenstein J., 1995] shows that non-
systematic error can be drastically reduced by using redundant encoder data. He uses several robots
or only one robot with several redundant wheel encoders to compensate the odometry error.
However, these approaches need special robot architectures and cannot be implemented on a simple
two wheel robot like the Khepera.

1. The Khepera robot was designed at the LAMI EPFL Lausanne and is now marketed by K-Team SA
Switzerland (http://www.k-team.com/)
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 13

Chapter 2: Supervised Passive Positioning System (SPPS)
2.2.2 Combining of systematic and non-systematic odometry error

In order to develop an odometry correction method, we need a model of the odometry error. The aim
is to find a model which describes both kinds of error together (systematic and non-systematic). The
influence of dynamical moments are not considered.

• Developing a model of the non-systematic error is very difficult because of its unpredictable charac-
teristic. However, if we exclude “strong external disturbances” like hitting a wall or spinning wheels,
we can model the difference between the real wheel speed Vwheel and the effective robot motion Vmo-

tion caused by this wheel by a Gaussian distribution pnonsys(Vdif) (see eq. 2-1).

• The systematic error depends strongly on the specific robot. Therefore, psys(Vdif) is constant if the
robot characteristic does not change at all. See case 1 in eq. 2-2.
Otherwise, we have to assume a gaussian distribution of the wheel diameter error, misalignment of
wheels and other parameter errors in a population of robots of the same type. The model for system-
atic error is expressed again by a gaussian distribution of psys(Vdif) representing the difference
between the real wheel speed Vwheel and the effective robot motion Vmotion. See case 2 in eq. 2-2.

Fig. 2-3 shows that the cumulation of non-systematic and systematic error distribution is a convolution
(folding) of two gaussian distributions. Because the convolution is as a multiplication in the frequency
domain, we transform the gaussian function into the frequency domain to square it. Transforming the
result back into the time domain results in a gaussian as well, but with different standard deviation .

Conclusion: Whether one considers the systematic error or not, the error distribution can be described
by a gaussian distribution. Thus, all further calculations are based on a gaussian distribution.

Fig. 2-3: Folding of the non-systematic and systematic gaussian error distribution

2.2.3 One-dimensional correction

The robot is equipped with a single light sensor underneath which detects the painted grid lines on the
floor. We assume that the light sensor provides an ideal short pulse when crossing a grid line. This pulse
will be used to synchronize the estimated position of the robot (calculated by odometry) with the real
position (indicated by the grid lines on the floor).

pnonsys Vdif() 1

2πσ
--------------e

Vdif µ–()2

2σ2

 
 
 

–

=
(Eq. 2-1)

Vdif Vmotion Vwheel–=

(Eq. 2-2)

psys Vdif() 1

2πσ
--------------e

Vdif µ–()2

2σ2

 
 
 

–

=

psys Vdif() const=case 1:

case 2:

σ

Gaussian distribution of the non-sys-
tematic error of one specific robot

Gaussian distribution of the systematic error
of several robots with different properties

f t() g t()⊗ f τ() g t τ–()⋅() td
∞–

∞
∫= F

1–
F v()[] G v()⋅()=

F v() e
ax2–

e
ivx⋅ xd

∞–

∞
∫ e

ax2–
vx()cos⋅ xd

∞–

∞
∫ e

ax2–
vx()sin⋅ xd

∞–

∞
∫+ π

a
--- e

k2–
4a

⋅= = =

             

Integration over a symmetrical range gives 0.

Convolution of two gaussian f(t) and g(t):

Gaussian distribution
14 EPFL-LAMI Ph. Mächler

Introduction to odometry correction
The upper part of fig. 2-4 shows the robot passing some vertical grid lines. The robot is constantly cal-
culating its estimated position by odometry. This estimated x position is indicated by a dotted line in the
time-distance table in fig. 2-4. Between the detection of the grid lines, the dotted line (estimated x posi-
tion of the robot) is rising constantly because the robot speed is assumed as being constant. The solid
line in the time-distance diagram shows the real x position of the robot and is therefore rising with some
irregularities due to the slipping wheels and other disturbances.

The estimated robot position (dotted line) is corrected to the x position of the closest grid line each
time the light sensor detects a grid line. The gaussian error distribution surrounding the x position of
each grid line (bottom diagram in fig. 2-4) indicated the odometry error if matched with the real posi-
tion by a grid line detection. This can be used to recognize abnormal conditions and systematic drifts.

Fig. 2-4: Example of the fundamental technique to correct odometry error

The following paragraph explains fig. 2-4 in more details:
The robot starts at position A and is passing over the first grid line B at time tB. At this time (tB) the esti-
mated position (dotted line) is a little bit behind the grid line B, which means that the robot moved
faster than expected. The estimated position will therefore be corrected forwards to B. During the next
sequence (B to C), the robot moves unintentionally slower and is therefore crossing the grid line C later
than expected. The estimated position has to be corrected backwards, because point C is closer to the
estimated position than point D. The last sequence shows a wrong correction due to a mechanical
blockage of the robot. The light sensor indicates line D at time tD. Unfortunately the estimated position
(dotted line) is closer to point E than to point D, which results in a wrong correction. The robot lost its
position because the odometry error was too big. This mistake can normally be detected, because the
probability of the obtained point E is quite low (see bottom diagram in fig. 2-4).

Note: Counting the grid lines and using the number obtained as an indicator for the absolute robot
position would solve the problem just described, but would cause more nuisance from missed or double
counted lines.

y-
ax

is grid

x-axis

path

x-axis

tim
e

estimated position

Disturbance

real position

(robot blocked)

backward
correction

forward
correction forward

correction

wrong correction

right correction

grid line sync

grid line sync

grid line sync

A

tC

tB

tD

B C D E Wrong correction can be
detected, because the
probability is quite low
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 15

Chapter 2: Supervised Passive Positioning System (SPPS)
2.2.4 Two-dimensional correction

In the previous one dimensional example, the position of the robot was corrected towards the position
of the closest grid line. Such a technique cannot be used in a two dimensional environment with a right-
angle grid network for synchronization. The reason appears clearly in fig. 2-5.

The robot is intended to drive straight forward which is marked by the dotted line (assumed trajec-
tory). Each grid line passed generates an event which synchronizes the robot’s x or y position to the x or
y position of the closest grid line. Suddenly, the robot gets an event signal on the assumed position .
The vertical grid line is closer, so the position marked by a empty circle seems to be correct. How-
ever, it is much more probable that the robot followed the full line (real trajectory), because direction
drift is more probable that distance drift (see section 2.3.1). This would explain the premature light sen-
sor signal which was in fact generated by the horizontal grid line on position , even if this position is
further away than the first assumed cross point.

Fig. 2-5: Example: The closest grid line is not always the best

2.2.5 The traditional ellipse approach to distinguish x and y correction

The constantly growing positioning error can be described by a 3D bell curve, of which the z value
indicates the probability for the robot to be found on the corresponding x, y position. The circles (or
ellipses) in fig. 2-6 show the top view of a horizontal cut through the bell curves at a certain altitude
(probability threshold). Circles are widely used to model the spatial position distribution [Piasecki M.,
1995] [Pruski A., 96] of robots and for some robot architectures correspond very well to reality.

The ellipse is normally growing constantly in both dimensions. Each time the robot crosses a grid
line, one dimension of the ellipse shrinks corresponding to the orientation of the crossed grid line. As
already mentioned in the section before, the robot assumes the orientation of the grid line just crossed
(thanks to odometry) and is therefore able to shrink the corresponding dimension of the ellipse.

Fig. 2-6 convincingly shows that alternately going over horizontal and vertical grid lines is important
to keep the ellipse dimension small.

Fig. 2-6: Passing grid lines change the shape of the ellipses

grid lines

x-axis

y-
ax

is

assumed trajectory

real trajectory

Grid line detection on the assumed position

grid
growing ellipses

x-axis

y-
ax

is Crossing a horizontal grid line
reduces the y dimension of the ellipses

Crossing a vertical grid line
reduces the x dimension of the ellipses

3 D Gauss
distribution
16 EPFL-LAMI Ph. Mächler

The PPD model
2.3 The PPD model

The shape of the Position Probability Distribution (PPD) depends mainly on the robot’s characteris-
tics. This section examines the PPD shape for two wheeled robots like the Khepera®. A first idea of the
distribution was given by an experiment which is presented in the introduction and later confirmed by
mathematical derivation.

2.3.1 Introduction

Fig. 2-7 shows the result of an experiment in which a robot is launched several times from the same
start position for a constant distance. The shape of all destination positions looks more like a “banana”
than an ellipse. The result can be intuitively explained considering a constant wheel speed for both
wheels but influenced by an individual speed error which represents the odometry error. The real
speed can be described by (x indicates the left ‘L’ or right ‘R’ wheel). An
independent gaussian distribution for each wheel speed error results in the PPD shape showed in
fig. 2-7.

Fig. 2-7: Minor wheel speed difference causes a strong change of the robot direction

Due to minor wheel friction , the real speed Vx does not correspond to the driven wheel speed
 , hence). Experiments show that the average friction is about +/- 0.3%, so

the distance covered is not affected in a crucial way. On the other hand the robot’s direction is much
more sensitive than the distance covered. The change in direction can be calculated as follows:

The equation shows that the smaller the wheelbase the stronger the impact on the robot’s direction due
to different wheel friction. This lateral drift (change of direction) is much stronger than the drift in the
direction of motion.

ω
∆Vx

Vx ω rwheel⋅ ∆Vx±=
∆Vx

∆α

VL ω rwheel⋅ ∆VL±=

VR ω rwheel⋅ ∆VR±=

d
is

t w
h

ee
l

∆VL ∆VR=

∆VL ∆VR<

∆VL ∆VR>

PPD shape

∆V
ω rwheel⋅ ω rwheel⋅ Vx≈

∆α

∆α
∆t V1 V2–()⋅

distwheel
----------------------------------=

∆t ∆V1 ∆V2–()⋅
distwheel

--=
ωx rwheel⋅ ∆Vx+ Vx=

ω1 ω2=
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 17

Chapter 2: Supervised Passive Positioning System (SPPS)
2.3.2 Geometrical calculation of the PPD model

We assume a rotation of the robot around a fixed point R. The deviation of the two wheels are not
equal ∆VL≠∆VR but constant. The radius r of the rotation depends therefore on the wheel speed differ-
ence |∆VL–∆VR| and the wheelbase L. A lateral drift of the wheels will be ignored (see fig. 2-8).

Fig. 2-8: Derivation of a PPD model

The following calculation derives an equation for x, y and α, depending only on VL, VR and L. The
resulting x and y is the position and α the direction of the robot.

The relation between the wheel speed and the angle is described in eq. 2-1:

This double equation (eq. 2-1) allows the extraction of r and α as functions of VL, VR and L:

y and x can now be calculated by trigonometry:

The resulting equations (eq. 2-3) supplies the position (x and y) of the robot, depending on the con-
stant wheel speed VL, VR, the wheelbase L, and the time t.

L
r

P

P ′

VL
VR

α
R

x

y

old

(0,0)

(x,y)

VLt

r L
2
---+

VRt

r L
2
---–

----------- α= =Vcircumferencet rα= (Eq. 2-1)

r
L
2

VL VR+()
VL VR–()

--------------------------=

α
VL VR–

L
--------------------t=

VLt r L
2
---– 

  VRt r L
2
---+ 

 =

α
VRt

r L
2
---–

VRt

L
2

VL VR+()
VL VR–()

-------------------------- L
2
---–

--------------------------------------= =

VRt 2 VL VR–()⋅
L VL VR+() L VL VR–()–
---=

(Eq. 2-2)

y
L
2

VL VR+()
VL VR–()

-------------------------- 
  VL VR–

L
--------------------t 

 sin=y r α()sin⋅=

x
L
2

VL VR+()
VL VR–()

-------------------------- 1
VL VR–

L
--------------------t 

 cos–=r x– r α()cos⋅=

(Eq. 2-3)
18 EPFL-LAMI Ph. Mächler

The PPD model
2.3.3 Calculation and display of the PPD shape

In order to illustrate the distribution of the final position of the Khepera, we have to transform the
eq. 2-3 into the following form:

We assume a constant wheel speed Vx and use a geometrical model to transform the variables:

The relation between (VL, VR) and (r, α) is already calculated (see eq. 2-2). We have now to find a
geometrical relationship between (x, y) and (r, α):

Equation 2-6 calculates the velocity (VL, VR) as a function of the position (x, y), this means the veloc-
ity needed for both wheels to reach the position (x, y) under the following conditions:

• The wheel speed is constant.
• All positions on the y-axis (x=0) result in a solution that is , because of the geometrical derivation.

x g VL VR,()=

y h VL VR,()=

VL k x y,()=

VR l x y,()=
(Eq. 2-4)

α 2⁄

α 2⁄

(x,y)

(0,0)
P

P ′

r

s β()tan

β

s

x

y

R

r s
β()cos

----------------- s2 s2 β()tan2+ s 1 β()tan2+= = =

s x
2

y
2

+
2

---------------------= y
x
--- β()tan=Replacement of s and β:

x
2

y
2

+
2

--------------------- 1 y2

x2
-----+⋅ x

2
y

2
+

2
--------------------- 1

x
--- x2 y2+⋅ x2 y2+

2x
----------------- r= = =

α 2 π
2
--- β– 

 ⋅ π 2
y
x
--- 

 atan– α= = =

(Eq. 2-5)

∞

r L
2

VRL

VL VR–
--------------------+

L VL VR+()
2 VL VR–()
------------------------------ x2 y2+

2x
-----------------= = =

α
VL VR–

L
--------------------t π 2

y
x
--- 

 atan–= =

VL VR+

VL VR–
--------------------- x2 y2+

Lx
-----------------=

VL VR–
L
t
--- π 2

y
x
--- 

 atan– 
 =

B:

A:

VL VR+
x2 y2+

tx
----------------- π 2

y
x
--- 

 atan– 
 =B’ =A B:
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 19

Chapter 2: Supervised Passive Positioning System (SPPS)
We showed already in section 2.3.1 that the resulting velocity distribution (VL, VR) can be represented
by a gaussian distribution around VX (see fig. 2-9). This distribution will generate the “banana” shape.
We assume a wheel speed Vx which is composed of the pretended wheel speed *Vx and an error ∆Vx
which is modeled according to a gaussian distribution.

Fig. 2-9: Gaussian distribution of the wheel speed

 is the pretended wheel speed and represents the standard deviation. We choose an interval from
*Vx - ∆Vx until *Vx + ∆Vx covering 95% of the entire gaussian-surface:

Equation 2-7 shows that the standard deviation and therefore the size of the PPD model (banana)
depends only on the assumed maximal speed error ∆Vx.

In order to calculate the PPD of the final robot location (which is a function of the gaussian distributed
velocities), we must multiply the velocity probability function by the Jacobian determinant of the
velocities with respect to the x and y locations:

A–B’:

A+B’: VL x,y() 1
2t
----- π 2

y
x
--- 

 atan– 
  x2 y2+

x
----------------- L+ 

 =

VR x,y() 1
2t
----- π 2

y
x
--- 

 atan– 
  x2 y2+

x
----------------- L– 

 =

(Eq. 2-6)

p Vx() 1

2πσ
--------------e

Vx µ–()2

2σ2

 
 
 

–

=

Gaussian distribution: µ *Vx=

σ 1
2
---∆V

x
=

Vx
*Vx+∆Vx*Vx-∆Vx *Vx

p Vx()

µ σ

1

2πσ2
-----------------e

x2

2σ2
--------- 

 –

xd

2σ– ∆Vx–=

2σ ∆Vx=

∫ 95%≈σ 1
2
---∆V

x
= because (Eq. 2-7)

σ

fxy x,y() fVL
VL x,y()()fVR

VR x,y()() Σ JVLVR
X VL VR,() Y VL VR,(),)(⋅=

JVLVR
x,y()

VL∂
x∂

VL∂
y∂

VR∂
x∂

VR∂
y∂

=Jacobian Matrix:

(Eq. 2-8)
20 EPFL-LAMI Ph. Mächler

The PPD model
Inverting the product and the Jacobian:

This final equation represents the probability of each position of the banana, located on the position
(x, y).

We use Mathematica®1 to calculate the equations and to visualize the PPD. The following image in
fig. 2-10 shows the PPD produced by a Khepera® robot, moving straight ahead for 3 meters (see the
scale beside the graphic in mm) with a wheel speed (*Vx) of 100mm/sec and a speed deviation of max-
imal ±1% (∆Vx =1mm/sec, σ=0.5) for each wheel. The deviation of 1% is the result of some practical
experiments with a Khepera robot on a clean table. Another robot, or the rolling conditions, will cer-
tainly change this value. However, the characteristics of the PPD shape will remain the same. The
wheelbase L is 52mm and corresponds to that of a Khepera®.

Fig. 2-10: PPD shape (right side). Path length 3m; straight ahead; wheel slip 1%

It is to be noted that the angular deviation is far bigger than the forward deviation. The robot has a lat-
eral error of about 1 meter, as compared to a forward error of about 30 mm. The banana is like a part of
a very thin arc, evenly decreasing to the end.

1. Mathematica® is a commercial software product by Wolfram Research Inc. [Wolfram, 1992].

fxy x,y() Σ
fVLVR

VL x,y() V, R x,y()()
Jxy VL x,y() VR x,y(),()

---=

Jxy VL VR,()

x∂
VL∂

---------- x∂
VR∂

y∂
VL∂

---------- y∂
VR∂

=Inverted Jacobian Matrix:
(Eq. 2-9)

250

500

750

1000
2700

2800

2900

3000

0

0.00001

0.00002

0.00003

250

500

750

1000 0 200 400 600 800 1000 1200
2400

2600

2800

3000

3200

3400

3600

Attention:
Scale is distorted
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 21

Chapter 2: Supervised Passive Positioning System (SPPS)
2.3.4 Differences between the circular and the PPD model

Fig. 2-11 shows the impact of the just developed PPD–shape and demonstrates the difference to the
traditional circular approach. A Khepera® robot starts at point Pt and turns slowly to the right. After a
certain time ∆t, a signal is supplied by the light sensor, indicating a grid line underneath the robot. The
robot assumes its position at point Pt+∆t which is not on a grid line and has therefore to be corrected
according to one of the two probability distribution models:

• PPD model: The three dimensional PPD (see fig. 2-10) is cut by the grid lines, which are known by
the robot. The resulting two dimensional cut is shown on the right side on fig. 2-11. The highest point
(maximum) of the cut indicates the position with the highest probability (A).

• Circular model: The three dimensional model of the circular gauss distribution (see fig. 2-6) is cut
by the grid lines. The resulting position B is always the closest grid line element to Pt+∆t.

It can be clearly seen that the two models produce two very different results. This intuitive example
does not show the PPD distribution in real proportion to the circular distribution to make the graphic
more clear. However, it shows the importance of choosing the correct position distribution model.

Fig. 2-11: Difference between the PPD and traditional circular approach

2.3.5 Deformation of the PPD by curves and corners

Robots move rarely straight ahead. Therefore it is important to analyze in which manner their PPD–
shape changes when they take curves and corners. Unfortunately, the equations derived above for calcu-
lating the PPD–shape depend on constant wheel speeds (VL and VR). Therefore, corners and variable-
radius curves cannot be calculated. The following iterative approach will be used to calculate this kind
of PPD–shape (see section 2.3 "The PPD model"):

We use Mathematica® to sweep Vx from (*Vx – ∆Vx) to (*Vx + ∆Vx) and for the following visualiza-
tion of the PPD. There is no significant difference between the PPD shape calculated by the derived
equation or by the iterative calculation because of the high numerical precision of Mathematica®. In
order to visualize the path covered by the robot, we use only the iterative calculation for all further sim-
ulations.

 PPD distribution

circular distribution

likelihood

grid

maximum

maximumA

B

S

x

y

α

y-axis

PPD correction
circular correction

calculated trajectory

unintended drift
to the left side Pt+∆t

Pt

y
L
2

VL VR+()
VL VR–()

-------------------------- 
  VL VR–

L
--------------------t 

 sin=

x
L
2

VL VR+()
VL VR–()

-------------------------- 
  1

VL VR–

L
--------------------t 

 cos–=

(Eq. 2-10)
22 EPFL-LAMI Ph. Mächler

The PPD model
2.3.6 Examples

The following examples illustrate the behavior of the PPD in curves and corners. The right graphic
shows the same PPD as the left one, but from a top view. The dotted line on the right graphic indicates
the robot’s ideal trajectory without any wheel slip. All examples show the PPD 4 times (for each meter).
A short source listing of the PPD simulator generating the following examples can be found in the
"Appendix" on page 87.

Example 1: Curve

The following simulation in fig. 2-12 shows a robot constantly turning right for 4 meters. The left
wheel is turning 4.08% faster than the right one (left: 102mm/sec, right: 98mm/sec) in order to perform
a curve. The maximal wheel speed derivation is 1% for both wheels.

Fig. 2-12: Example 1: PPD behavior in a curve

Note: It is interesting to observe that the orientation of the PPD changes only slowly and it does not
have at all the same direction as the robot.

Example 2: Turning back after one meter

This simulation in fig. 2-13 shows the PPD of a robot turning left for 90° after one and two meters.
The maximal wheel speed derivation is 1% for both wheels.

Fig. 2-13: Example 2: PPD behavior after a turn back

Note: The orientation of PPD doesn’t correspondent to the average orientation during the experiment,
therefore the orientation of the second PPD is not 45° as expected ().

-289.289

1438.32

3165.93

x-Axis (mm)

-809.047

918.564

2646.17

y-Axis (mm)

1

331.5

663

289

1438.32

3165.93

x-Axis (mm)

-203.675 1523.94 3251.55
x-Axis (mm)-809.047

918.564

2646.17

y-Axis (mm)

1. arc

2. arc

3. arc
4. arc

endstart

-2440.63

-843.311

754.013

x-Axis (mm)

-1378.49

218.83

1816.15

y-Axis (mm)

1

293

586

0.63

-843.311

754.013

x-Axis (mm)

-2440.63 -843.311 754.013
x-Axis (mm)-1378.54

218.782

1816.11

y-Axis (mm)

first turn to the leftsecond turn to the left

start

end

1. arc

2. arc

3. arc
4. arc

0° 90°+
2

-------------------- 45°=
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 23

Chapter 2: Supervised Passive Positioning System (SPPS)
Example 3: Turning back after 2 meters

The last example in fig. 2-14 shows the PPD of a robot moving straight ahead, but turning back (180°
turn) after 2 meters. The maximal wheel speed derivation is 1% for both wheels.

Fig. 2-14: Example 3: PPD decrease after a turn back

Note:

• The robot will again, after 2 meters, reach its starting point. Nevertheless, the corresponding second
PDD is bent (downwards), like after a move in the direction of the negative y-axis. This illustrates that
the PDD is more influenced by the covered trajectory than by its final position.

• The third PPD is much smaller than the previous PPD which shows that the size of a PPD can also
decrease. Nevertheless, the PPD is strongly bent, indicating that the orientation of the robot is some-
what uncertain in contrast to its position.

The result becomes clearer by comparing the comportment of PPDs and water waves. Outspreading
waves can be reconcentrated by obstacles and regain more power. For instant waves on the beach are
created by a similar effect. Fig. 2-15 shows the re-concentration of a PPD step by step.

Fig. 2-15: Spreading out and concentrating of the PPD

2.3.7 Conclusion
• It is interesting to note that the shape of the PPD remains a segment of an arc. Even the thickness of

the line is independent of the trajectory.
Condition: the wheel’s drift has to be constant. The difference consists only in radii and orientations.

• The latest example shows also that a certain motion strategy can shrink the PPD. This result is sur-
prising but nevertheless understandable. To better comprehend, follow the dotted line in fig. 2-14
which indicates the trajectory of the robot with a constant drift to the right side.

-1071.32

 -13
2.27374 10

1071.32

x-Axis (mm)

-61.3179

1010.

2081.32

y-Axis (mm)
1

232

464

32

 -13
2.27374 10

1071 32

x-Axis (mm)

-1071.32 -13
2 27374 10

1071.32
x-Axis (mm)-61.3179

1010.

2081.32

y-Axis (mm)

start 1. arc

2. arc

3. arc

4. arc

turn back

1 2

4
start end

3

-912.1 0. 912.1
x-Axis (mm)197.8

1109.9

2022.

y-Axis (mm)

Starting point

PPD concentration

Reflection
24 EPFL-LAMI Ph. Mächler

Statement of the problems
2.4 Statement of the problems

The suggested grid-solution is an easy way to correct odometry errors with limited additional
expenses. Nevertheless, this simplicity hides some problems which will be described in the following
section.

2.4.1 Angular drift, caused by inaccuracy robot direction

Because the robot knows the geometry of the painted grid on the floor, an independent correction of
the x and y position while crossing a grid-line seems to be an easy way to continuously correct the cor-
responding dimension of the robot’s position (see fig. 2-16). Unfortunately, this approach ignored the
angle α of the robot, whose estimation accuracy will decline with time. This causes a strong angular
drift of the robot, which cannot be recognized by this algorithm. The robot will get lost.

Fig. 2-16: Wrong correction because of confused grid lines

We notice that this angular drift is the main reason for the position error. The distance and speed error
while moving straight ahead are comparatively small (see section 2.3 "The PPD model").

2.4.2 Information distribution of a grid

Another problem of this approach is the information distribution on the grid. Not every region of the
grid field have the same positive effect. There are large regions containing no information or a helpful
grid line which was by chance missed by some few cm. An active element is needed directing the robot
to regions containing interesting information. This active element called “grid fitter” is presented later
in section 2.6.

Robot

x-axis

y-
ax

is

x position correction

y position correction

α

x correction is expected and
therefore considered instead
of an y correction => Error

x-y correction
confusion

grid

estimated path

real path
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 25

Chapter 2: Supervised Passive Positioning System (SPPS)
2.5 Strategy for PPD, robot position and direction correction

The strategy for odometry correction is divided into two sections.

• This section describes how to use the knowledge of the PPD to correct in a passive manner the esti-
mated position of the robot.

• The section 2.6 on page 28 describes how to influence the trajectory of the robot in order to improve
the result of the passive correction system.

2.5.1 Passive correction, using the PPD

The robot’s position is chiefly obtained by odometry. The suggested algorithm corrects the odometry
errors by knowing the evolution of the PPD motion and by taking advantage of the thin PPD–shape.

The following conditions have to be satisfied:

• The initial position and starting direction of the robot have to be known.
• The robot has to be equipped with a light sensor fixed underneath to detect the painted grid.
• The robot must know the characteristics of the painted grid (organization, grid distance).

2.5.2 Correction of the position

The robot starts from a known position and updates its PPD and therefore its position Pi continuously
by odometry (see fig. 2-17). When the robot crosses a grid line (Pr) in the real world (see Pr in the left
image), it will choose the intersection position between its PPD and the grid line as its new corrected
position (see Pc on the right image). In case of several matching points, the cross-point with the highest
PPD distribution wins (see also fig. 2-11 for other examples of intersections between PPDs and grid
lines).

Fig. 2-17: Correction of the assumed position by matching the PPD with the grid

Note: Although the robot on position Pi is much closer to the vertical grid line, the final corrected
position will be placed on the horizontal grid line (and moreover far away from the robot). Less care-
fully computed PPD or an intuitive solution would lead to a wrong position located on the vertical line.

Calculated internal world

floor light sensor

calculated cross-point

assumed position

real position

grid gridPr

Pi

Pc

PPD

Real external world
26 EPFL-LAMI Ph. Mächler

Strategy for PPD, robot position and direction correction
2.5.3 Correction of the angular error

As already mentioned, the angular error is the most significant factor of odometry error. Therefore,
correcting the direction is very important. The matching point Pc of the PPD (see fig. 2-17) is not only
the new robot’s position, but contains also information about the angular error. This means that every
point on the PPD depends on a certain wheel speed difference VL–VR (see section 2.3 "The PPD
model") and therefore on a certain angular drift dα.

Fig. 2-18: Each point of the PPD indicates the angular drift

Fig. 2-18 shows a plot of the wheel speed difference VL–VR in the PPD. An intersection point of the
PPD with a grid line supplies the average wheel speed difference and therefore the average angular
drift. Condition: Wheelbase L and the traveling time t are known; speed is constant.

-404.166

 -14
-5.68434 10

404.166

x-Axis (mm)

216.801

620.967

1025.13

y-Axis (mm)

-15

0

15

-15

0

15

αd
VL VR–

L
-------------------- td=
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 27

Chapter 2: Supervised Passive Positioning System (SPPS)
2.6 Integration of a path planner “grid fitter”

The classification algorithm has to be backed up by a “path planner” moving the robot (and therefore
the sensors) to an optimal position. This biological inspired approach is used by different researchers
such as Rudolf Bauer [Bauer R., 1995] or Georg Hartmann [Hartmann G. et al, 1995]. Both papers
show, that an adequate path planner can drastically improve the position quality of robots and ants,
which are based on odometry.

In this experiment, a “grid fitter” influencing the robot’s planned trajectory is implemented in order to
take advantage of the different type of information distributed on the grid lines. The type of information
depends on the region, which can be divided into 4 zones:

• V zones supply information about the x position of the robot.
• H zones supply information about the y position of the robot.
• C zones are difficult to interpret and should be therefore avoided by the robot.
• N zones supply no direct information, but are still necessary to distinguish between V and H zones.

It is clear that the robot should pass alternating V and H zones, separated by N zones. At the same
time, C zones should be avoided because they provide several cross points with the PPD and the grid
lines. The C zone will not be further considered in this paper.

The “grid fitter” change slightly the planned trajectory of the robot. However, the resulting advantage
is relevant and will be illustrated by the following example (see fig. 2-19).

Fig. 2-19: The modified path (dotted line) leads to many more V-H transitions

4

3

2

A B C D E F G

5

1

x-axis

y-
ax

is

grid

V-zone

H-zone

C-zone

N-zone

corrected path
by the grid fitter
28 EPFL-LAMI Ph. Mächler

Integration of a path planner “grid fitter”
The robot is asked to follow the solid line, starting at position A5. While driving to the right side (to
F4), the robot goes past four V-zones, which allows adjustment of the x position four times. During this
time, the y position and the direction are ignored in favor of the freshly calibrated x position. After that,
the robot will turn right, but unfortunately going past a C zone containing no useful information. Close
to the point F3, the robot crosses finally a H-V zone, supplying significant position information. The
way back to the left side of the scene (E2-A1) is similar to the first trajectory segment (A5-F4). The
lack of V-H transitions prevents a sufficient odometry correction.

Fig. 2-20 illustrates the events produced by the intended path (upper diagram) and the corrected path
(lower diagram). It can be seen that the corrected path contains more useful V-H transitions (compare
with (see fig. 2-19).

Fig. 2-20: Zone events, caused by the intended and corrected way

2.6.1 Including the grid fitter into a navigation system

The navigator steers the robot to a chosen destination, considering known objects in a map and some
unexpected events. The navigator can normally be separated into a path planner and a pilot (see fig. 2-
21):

• Path planner (global navigator):
The path planner calculates the path defined by the task describer (a), considering the obstacles indi-
cated in the environment map (b). The path planner will previously calculate the result (c) and hand it
over to the pilot step by step (for example left, right, slightly right, stop, ...).

• Pilot (local navigator):
The pilot has no knowledge of the environment, nor of the aim of the task. It reacts to different motion
suggestions submitted by the path planner (c), grid fitter (e) and obstacle avoider (d). Each unit sup-
plies a motion suggestion (like right, left, strong right), combined with a mathematical priority
(urgent, when convenient, mandatory). The pilot has to select or to combine these suggestions by
selection or fusion.

H

V

H

V

t

t

V zone H zone C zone transition supplying informationLegend:

Intended path (solid line)

Corrected path (dotted line)
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 29

Chapter 2: Supervised Passive Positioning System (SPPS)
Fig. 2-21: The grid fitter can easily be inserted into a standard path planner

It is important to understand that the grid fitter is only included in the navigator in order to improve
the odometry correction algorithm. The illustration (see fig. 2-21) shows that the “grid fitter” module
has the same structure as the other modules (path planner and obstacle avoider) influencing the pilot.
The integration of the grid fitter into the navigator produces no complications, if the interface of these
modules is well defined. A call from the pilot to the grid fitter (and other modules) could be defined as
follows:

void GridFitter(int actual_position,int actual_direction,
 int actual_speed,int *sug_direction,int *sug_priority);

The grid fitter module gets the actual position, direction and speed of the robot from the pilot and
returns the suggested direction with a certain priority. Obviously the grid fitter has a local knowledge
about the grid.

Environment map
Start

End

Task description

Start

End

Obstacle avoider

Path planner

Start

End

Start

End

Start

End

Pilot

Grid match before
Grid match afterwards

Grid fitter

suggested in this paper

a b

c

f

d

e
Motion suggestion, combined

with a priority, indicating the
importance of the suggestion

Navigator
30 EPFL-LAMI Ph. Mächler

Integration of a path planner “grid fitter”
2.6.2 Grid fitter implemented by potential fields

The grid fitter optimizes the odometry correction algorithm by guiding the robot into interesting V
and H zones (see section 2.6). This task can easily be modeled by potential fields and the following
rules (see fig. 2-22):

• Single (isolated) grid lines (V and H zones) attract the robot (striped circles).
• Grid cross points (C zone) repel the robot (black circles).
• The robot’s speed and direction are also considered in this potential field. This means that the attrac-

tive zones behind the robot have a much lower influence than attractive zones in front of the robot.
The robot can be seen as a moving mass with a certain speed and direction. Of course, the potential
field does not change the absolute speed of the robot, which would be the case for a moving mass.

• V and H zones have to be crossed over alternately, thus when the robot has crossed some vertical
lines, it has to be attracted in a stronger way by the horizontal ones.

The arrows in fig. 2-22 indicate the attractive and repulsive power of the zones.

Fig. 2-22: Potential fields guide the robot over V and H zones

4

3

2

A B C D E F G

5

1

x-axis

y-
ax

is

grid

V-zone

H-zone

C-zone

N-zone

attractive potential fieldsrepulsive potential fields

Robot
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 31

Chapter 2: Supervised Passive Positioning System (SPPS)
2.6.3 Other tasks of the grid fitter

The robot is not simply attracted and repelled by the potential fields. In order to improve the correc-
tion of the angular drift, the PPD should have a certain angle to the grid line (horizontal and vertical)
while crossing it. This situation improves the recognition of angular errors. The following illustration
(see fig. 2-23) shows the difference, if the PPD is crossing in a parallel way the grid line (left image) or
with a certain angle (right image).

Fig. 2-23: Diagonal grid line crossing improves the recognition of angular errors

The left image shows the PPD going past the grid line at right angles. The intersection (grid line and
PPD) is flat and supplies no exact cross point. In the right image, the intersection supplies an exact
cross point, because the PPD has a certain angle to the grid line.

Please note that the orientation of the PPD is important and not the orientation of the robot. In certain
circumstances, the PPD could have a good angle to the grid line caused by its “inertia”, even if the robot
crosses it at right angles (see fig. 2-24).

Fig. 2-24: Angle between PPD and grid line is important (not PPD and robot path)

Tasks of the grid fitter:

• Avoiding bad and going past good zones (see section 2.6.2 "Grid fitter implemented by potential
fields").

• Crossing grid lines with a certain angle in order to improve the quality of the intersection.
• Minimizing the size of the PPD by adequate motion maneuvers.

Intersection PPD-grid is flat Intersection PPD-grid is useful

Robot

Robot

flat
precise

gridgrid

intersection
intersection

grid

PPD

Bad: Intersection PPD-line is flat

Good: Intersection PPD-line is useful

Robot
32 EPFL-LAMI Ph. Mächler

Integration of a path planner “grid fitter”
2.6.4 Practical tests

The experiment was done by a real Khepera robot which calculated simultaneous its position by a cor-
rected and uncorrected odometry algorithm. Fig. 2-25 shows the result of the uncorrected (left image)
and the corrected (right image) calculations which was performed during the same experiment-run.

• Without any correction: The left image shows the robot starting on a known position & direction
and performing a trajectory indicated by small squares . The actual position of the robot is based on
pure odometry. Because of the odometry error, the robot starts to drift to the left side, which is indi-
cated by the solid line (calculated trajectory). Each detection of a grid line is marked by a cross on
the calculated trajectory. It can be seen that the distance between the crosses and the corresponding
squares (which indicate the real cross points) increases continuously. The final error is about half a
square unit, which means about 5 cm (one square has a length of 10 cm).

• With correction: The right image is the result of the same experiment as described before, but it
shows the result of the corrected odometry calculation. Therefore the solid line is replaced by a trace
of several small “bananas” which indicates the PPD. The size is constantly growing due to the accu-
mulated odometry error. Each time a grid line is detected by the light sensor, the PPD is cut by the
closest grid lines. The intersection is marked by a cross , which is obviously always on a grid line.
The corresponding real position is shown by little squares (identical to the left image). The assumed
robot position is corrected towards the intersection marked by a cross . At the same time, the PPD
size can be reduced, because of the known odometry error. The average size of the PPD stays constant
and is an indicator for the reliability of the robot position.

Fig. 2-25: Experiment without and with odometry correction

Robot Robot

Start Start

EndEnd

calculated robot trajectory

Odometry
without correction

Odometry
with PPD correction

real robot position

calculated robot position

calculated PPD position

real robot position

calculated robot position
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 33

Chapter 2: Supervised Passive Positioning System (SPPS)
2.7 Conclusion

The presented algorithm allows a two wheeled robots, equipped with a single light sensor underneath,
to efficiently correct their odometry by detecting grid lines on the floor. Some simplifications1 make the
algorithm light enough to run local on a Khepera robot equipped with a Motorola 68331 Microproces-
sor with 128K Ram and 256K Rom. The grid could also be represented by grooves in the ground.
Robots can thus navigate with minimum external help depending on the intended trajectory.

This algorithm demonstrates also an optimal exploitation of available information by using a new
model of position probability distribution (PPD) and an interacting pilot (Grid Fitter). The examples
show that the direction of the PPD is not always at right angles to the robot trajectory. The direction fol-
lows slowly the robot’s direction and can have a completely unexpected shape after a narrow curve.
This effect could be interesting in the future in order to shrink the size of the PPD as a function of the
trajectory actually effected (see section 2.3.6 "Examples"). This effect is similar to the re-concentration
of water waves after reflection by a concave object. However, the position distribution probability can
shrink but not the direction distribution, which makes a reasonable use of this special point question-
able.

The experiment showed that the system is stable enough to miss three or more grid lines in case of
sensor problems or other unfavorable conditions. However, the system will rapidly lose its position
after passing the maximal odometry error due to misinterpretation of the following grid signals and the
resulting position corrections in the wrong direction. Once in this state, there is no way back to syn-
chronize the robot with its real position.

1. Because of the low CPU power of the Khepera robot (68311 @ 16MHz), neither the shape of the PPD
nor the 3D cut with the grid lines could be calculated in real time. Therefore, the PPD was approached
by several sample points representing the PPD. These sample points can be updated 10 times per sec-
ond which allows to perform real time applications. The expenditure of intersection calculation can be
ignored.
34 EPFL-LAMI Ph. Mächler

C

A
P
T
E
R

H

3 Unsupervised Passive Positioning System (UPPS)

In the former chapter, the robot used the grid dimension and its initial position. The algorithm pre-
sented now allows a robot to recognize its position and to navigate without prior information regarding
its environment. What is going to be used as a landmark is initially unknown and practically no specific
preprocessing of the sensor signals is done. The robot nevertheless extracts meaningful information
from its environment and uses it to build a map. Both landmark definitions and the map are continu-
ously adapted. It can be shown that navigation without predefined categorization takes better advantage
of the sensor abilities and extracts more information from the environment.

Fig. 3-1: Robot exploring an unknown environment1

The result shows that a robot can reliably recognize and rediscover self-defined landmarks suitable for
its sensor capability as well as create a map of its environment.

1. Cartoon by Isabelle Follath, Zürich, source [Pfeifer R., 1996] permitted by Prof. R. Pfeifer
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 35

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.1 Unsupervised classification approaches

This section shows some general methods of unsupervised classification. Unsupervised classification
is a huge field and can be grouped into three approaches. The main differences between these
approaches are explained in the following paragraphs.

3.1.1 Statistical approach

Statistical approaches are generally based on a probability model. These models are usually invented
or constructed by statisticians who are aware of the overall problem and their special attributes. Statisti-
cal approaches provide therefore a probability of being in certain predetermined classes and is unable
to create or change these classes by itself.

3.1.2 Machine learning approach

Machine learning is difficult to define. It generally encompasses automatic computing procedures that
learn a task from a series of examples by classifying and selecting significant parts of the example.

The decision-tree approach which can be created by Q-learning is a typical example of machine
learning techniques. The classification is guided by proceeding a given sequence of logical steps,
encompassing the complexity of the problem. This technique allows to represent and to classify com-
plex problems.

Genetic algorithm1 is one of the most examined techniques in machine learning. It allows to deal with
more general types of data. Their combination can be very different. However the evaluation of all these
combinations demand a lot of CPU power.

Similar to the statistical approach, machine learning techniques demand generally a certain back-
ground of human knowledge to construct the algorithm. However, the operation is assumed without any
human intervention.

3.1.3 Neural network approach

Classification can also be done other than by technical and mathematical frameworks. Since classifi-
cation is an essential feature of natural intelligent systems, it is interesting to study how nature solves
this problem and tries to copy the solution. The brain owes its capability to about 1011 neurons. Each of
them is connected to about 104 other neurons, constituting an enormous “computer power”.

1. Genetic Algorithm is an evolutionary algorithm which generates several individuals from some
encoded forms known as a “chromosomes” or “genomes”. Chromosomes are combined or mutated to
breed new individuals. An offspring's chromosome is created by joining segments chosen alternately
from each of two parents' chromosomes which are of fixed length.
GAs are useful for multidimensional optimization problems in which the chromosome can encode the
values for the different variables being optimized.
36 EPFL-LAMI Ph. Mächler

Unsupervised classification approaches
The following rather simple mathematical description is widely used in the domain of computer sci-
ence to model the function of a neuron. It consists of a number of input nodes xi and one output node s
(see fig. 3-2). Each input xi is multiplied by wi and added up with the other inputs. The resulting sum
is normalized by a transfer function . The exact nature of will depend on the neural network model
under study. A few examples of the most frequently used transfer functions are shown below:

Fig. 3-2: Three different representations of an artificial neuron

An artificial neural network consists of several layers of interconnected neurons. Each neuron pro-
duces a nonlinear function of its input, which may come from another neuron or from the main input.
This construction incorporates any degree of non-linearity, allowing very general functions to be mod-
eled.

The neural network approach combines the complexity of some statistical techniques with the
machine learning strategy of imitating human intelligence. However, this is done on a more “uncon-
scious” level. The neural network is able to create and adapt autonomous classification rules, but makes
a learned concept non-transparent to the user.

ρ
δ δ

Σ

x1

x2

xn

x3

w1

w2

w3

wn

Sρ
δ ρ xi wi⋅

i 1=

n

∑=

s1 δ ρ() 1

1 e
kρ–

+
-------------------= = s2 δ ρ() e

kρ
e

kρ–
–

e
kρ

e
kρ–

+
------------------------ kρ()tanh= = = s3 δ ρ()

1 ρ 0≥
0 ρ 0<




= =

0

0

1

0

0

1

0

0

1
s3

s1 s2

ρρρ
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 37

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.2 Experimental Set-up

This chapter gives an overview of the aim and algorithm used to carry out this experiment.

3.2.1 Aim

A robot moves randomly in an unknown static environment (see fig. 3-3) and is repelled by obstacles.
It records information from its sensors in order to recognize significant signals as landmarks. The robot
has no prior knowledge about the environment nor of the type or character of its own sensors. The robot
should learn to recognize any significant signals as landmarks, store them into a memory as well as
compare them with new landmarks in order to rediscover familiar situations and positions.

Fig. 3-3: Standard environment offers several stimuli

Fig. 3-3 illustrates a robot environment without prior defined landmarks, containing a lot of obstacles
(even similar ones), several color spots, ramps etc. Recognizing these stimuli with a pre-programmed
algorithm would not be very efficient. However, the environment offers a lot of unique characteristics,
which are not obvious to recognize:

• Point A shows the only slope on which the robot climbs in directing himself toward the light source.
• Point B is the only diagonal wall illuminated by the light source.
• Point C shows the only diagonal (compass sensor) wall which is not illuminated by the light source.
• Point D shows the only wall which the robot has to climb up.
• Point E is the only corner which is not illuminated by the light source.

ramp
Ligth source compas

color-spotobjectground-slope (inclination)

D

A
C

B

E

North

Light source
38 EPFL-LAMI Ph. Mächler

Experimental Set-up
There are a lot more (less obvious) landmarks which can be extracted from this robot’s standard envi-
ronment. The example also shows that it would be difficult to preprogram these stimuli as landmarks
because:

• They are not always foreseeable.
• They are too varied (special processing for each landmark).
• They could change with time (in a slow manner, no dynamic environment).

The aim of this experiment is to show that unforeseen stimuli can be linked with the robot’s position
and can therefore be used as a landmark in order to stabilize the odometry error. This allows restriction
of the odometry error to a certain limit. The robot can also use its own self-discovered landmarks to cre-
ate a cognitive1 map, allowing it to navigate in an unknown environment.

3.2.2 Experience set-up

I used a Khepera simulator programmed by Olivier Michel [Michel O., 1996] to test the algorithm.
The simulated robot is equipped with eight short distance sensors (about 5 cm range), eight ambient
light sensors, an odometry module calculating its estimated position, a compass and a linear camera
which reads a horizontal line of 64 pixels with a view angle of 36 degree in front of the robot. This can
be used to recognize obstacles and wall contours in front of the robot. The environment consists of a
field of about 15 x 15 x diameter of the robot.

Fig. 3-4: Equipment of the extended Khepera robot

The simulator was written in C and runs on a SUN Ultra 1 (143 MHz) allowing the robot to move
twice as fast as in reality.

1. A cognitive map can be defined as the internal representation of the geometric relations among notice-
able points in the animal’s environment. In operational terms, an animal using such a map must be
able to determine its position relative to home, or any other charted point, even when it has been dis-
placed inadvertently to an arbitrary location within its environment. Quoted from [Wehner R., 1992].

8 distance and ambient light sensors

compass

view of one dimensional camera

15 x robot diameter

15
 x

ro
bo

t d
iam

ete
r

simulated environment:

camera

Khepera robot (base)

visionOdometry
module
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 39

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.2.3 Algorithm overview

The signals coming from different sensors are partially mixed together and directed into several unsu-
pervised classifiers creating clusters (see chapter 3.4 "Classification", page 45). Each classifier is based
on a different type of neural network in order to take advantage of each specific characteristic. The
classes thus created are analyzed by the statistics module, which selects “usable” classes and stores
them into a memory including its estimated robot position. These entries are compared with new
incoming classes. In case of a sufficient match, the robot position will be corrected to the position pre-
viously stored with the class. Fig. 3-5 shows the described algorithm.

Fig. 3-5: Sensor signal data processing and recognition of significant features

The statistical module analyzes the incoming classes based on its frequency and search for significant
classes which can be used as a reference point. Therefore, the activation of such significant classes has
to be:

• not too seldom (because it might represent noise)
• not frequent (it might represent different positions which is not interesting at all)
• not activated successively (because it doesn’t represent a single point)

This is inspired by Nake [Nake F., 1974] and others [Schmidhuber J., 1997] who suggest that most
interesting data exhibits an ideal ratio between expected and unexpected information. The numerical
limits for these three criterions was found empirically.

Im
age

D
irection

D
istance

Classification BClassification A

=?

Statistics Memory

Landmark

match

classes

classes

OK*

*Frequency of the classes has to be
 significant, this means:
- not too seldom (these could be created by noise)
- not frequent (not interesting at all)
- no successive events (no single position)

odometry correction

si
gn

al
 e

va
lu

at
io

n

Odometry
module

M
otor

speed

Position
calculation
40 EPFL-LAMI Ph. Mächler

Normalization
3.3 Normalization

The aim of this project is to use raw sensor signals and to avoid task specific signal preprocessing as
much as possible. Nevertheless, minimal noise filtering and signal normalization is difficult to avoid
and is presented in this section. The reason for the normalization is not only to simplify the experiment
but also to adapt the signals to the characteristics of the used classifiers. Even the application of unsu-
pervised neural network contains some limitations, i.e. the classification of several sinusoidal sensor
signals of different frequencies cannot be done without a Fourier preprocessing.

3.3.1 Distance and ambient light sensors

Because of the poor quality of the distance and ambient light sensors, a simple two state value is used
to distinguish distance from obstacles or bright from dark regions. A threshold value of 300 (corre-
sponding to an object distance of 2.5 cm) was chosen.

3.3.2 Camera preprocessing

The image of the camera was simulated and calculated by a pseudo reflectance image model [Song
H., 1996], assuming a diffuse light source and a Lambertian object’s surface (matte surface, no texture).

Fig. 3-6: Calculation of light intensity, first approximation

The measured light intensity c can be approximated by the equation in fig. 3-6, using as variables:
The distance of d, the ambient light a, the reflexivity of object r and the angle between the surface and
the camera view α. Each object transition causes a strong change in d and α, which is very suitable for
edge detection.

The edge extracting process is a little unusual and therefore further explained in fig. 3-7. The environ-
ment (point A) is taken by a camera (point B) which produces according to the Lambertian theory the
image shown in point C. Edge detection is done by the 2nd derivative of the normalized, discrete camera
image (showed in point D). After that, the image is stretched until the far left edge reaches the left bor-
der and the far right edge reaches the right border (point E). This conversion makes the image stable
against rotation and any kind of movement, as long as the same obstacles (contours) are visible to the
camera.

d Object’s distance
a Ambient light
r Object’s reflexivity
α Angle between the surface

and the camera view
c Intensity of light

c
r a αcos⋅ ⋅

d2
---------------------------≈

Camera

α

d
r

c

a

Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 41

Chapter 3: Unsupervised Passive Positioning System (UPPS)
The resulting image is preprocessed in two different ways in order to feed them into two separate neu-
ral networks (NN):

• In the Gaussian neuron distribution, neurons are stimulated according to the position of the edges in
image E. The neighboring neurons are stimulated as well but less, according to a gauss distribution.
This makes the network less sensitive to minor position changes of an edge in the image E.

• In the group neuron distribution, neurons are arranged into groups according to how many edges are
seen in image E. In our example, five edges can be seen in image E, though the far left and the far
right ones are not interesting because of their fix positions. So we get 3 edges which activate group 3.
The individual activation of these 3 neurons correspond to the distance between the edges and the left
border (point F). All other neurons of the other groups are not activated. This kind of preprocessing
makes the second NN very sensitive to a change in the number of edges, which is often ignored by the
first NN, especially if the edges are close to each other.

Fig. 3-7: Two different images preprocessing to improve classification

Camera

1

2
3

4 5

1

2
3 4

5

c

x2

2

d

d
c x() l>

c x()

Extremities 1 & 5
become borders

Light intensity

x

x

x

Input gaussian
distr. for each neuron

x

{

{

{

{

x

1 2 3 4 5 6

Distance of each
edge from the left
border

3 edges, thus into group 3

n

1

Gaussian Neuron Distribution Group Neuron Distribution

group number

wall

A

B

C

D

E

F

G
H

42 EPFL-LAMI Ph. Mächler

Normalization
Fig. 3-8 shows a screen shot of the same “image processing” performed by the simulator. The on-
board camera K2131 simulated on the robot “sees” four obstacles which produce the image and the
double derivation shown in the diagram on fig. 3-8. The image is stretched until detected corners (dou-
ble derivation) reach the borders and “smoothed” by a Gaussian distribution in order to reduce the reac-
tion of the network by small lateral object shift. This operation makes the relative position of the inner
two objects to the outer objects decisive, instead of the whole image. The distance of the inner two
objects from the left border is used to activate group number two of the second neural network. Each
group is activated depending on the number of detected inner objects. This preprocessing makes the
network sensitive to emerging and disappearing objects.

Fig. 3-8: Screen-shot of the camera image normalization

Fig. 3-9 illustrates the characteristics of these two kinds of preprocessing and why they are used
together.

• The first situation in fig. 3-9 shows a Khepera robot approaching 3 obstacles. Two obstacles are one
behind the other and are therefore recognized as one obstacle by the group neuron distribution pre-
processing. Therefore group 2 is activated. While approaching the obstacles, the robot changes its
angle of vision and suddenly distinguishes all three obstacles, which causes the activation of group 3
in the group neuron distribution preprocessing. The same striking event is hardly recognized by the
gaussian neuron distribution’s preprocessing.

• The second situation in fig. 3-9 shows the opposite case. The group neuron distribution preprocessing
always recognizes three obstacles. On approaching the obstacles, the angle of vision changes and
therefore the activation of the neurons in group neuron distribution preprocessing also changes.
However, this change is very small compared to the change in the gaussian neuron distribution.

1. K213 is a vision turret produced by K-Team (http://diwww.epfl.ch/lami/robots/K-family/K213.html)

robot

view

obstacles

real camera image
2nd derivation of the

Input activation for NN 1

Input activation for NN 2

image (normalized)
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 43

Chapter 3: Unsupervised Passive Positioning System (UPPS)
Fig. 3-9: Effect of camera processing

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4

α

α

α

α

α

α

α

α

neuron

neuron

neuron

neuron

group-#

1

1

1

1

Khepera

Khepera

Khepera

Khepera

Situation 2

Situation 1

different

different

Gaussian Neuron
Distribution

Group Neuron
Distribution

1 2 3 4
group-#

1 2 3 4
group-#

1 2 3 4
group-#
44 EPFL-LAMI Ph. Mächler

Classification
3.4 Classification

This section explains the need to classify the robot sensor information and how this can be done. After
that, the methods applied are described and how they are modified to solve the problem.

The principal idea is to merge all raw sensor signals together and to treat them in the same way inde-
pendently of the source. A self-organizing process clusters the signals in classes which correspond to
the environmental situations. However, two exceptions have to be considered:

• Analog and digital signals should be treated differently in order to take advantage of the classifier
characteristics. Digital signals always use the full input range from zero to one which is not the case
for analog signals. Strong range differences decrease the efficiency of neural networks.

• The raw camera image is filtered and processed by an edge detection algorithm before further use (see
chapter 3.3 "Normalization", page 41).

Robot sensors supply continuously various informations like object distance, ambient light, compass
direction as well as some image information. All this information can be represented by a single sample
point S(t) in an n-dimensional input space. The dimension of the input space depends on the sensor
type. A distance sensor usually provides only a one-dimensional number, which is the distance. On the
other hand, a color sensor supplies normally a three dimensional value (red, green, blue).

Fig 3-10 shows an example of a two dimensional input space created by a distance sensor and a com-
pass (both supply one dimensional information).

Fig. 3-10: 2-D robot sensor space defined by a distance sensor and a compass

The n-dimensional sensor input space is filled up with sample points S(t) during a run. Storing all
these sample points would be useless and would overflow the memory. It is much more efficient to
organize accumulations of sample points into classes which will then be used for further treatment.

The process of putting points into a common group is called “clustering” or “unsupervised classifica-
tion”. The accumulation of sample points corresponds to a robot situation which is encountered fre-
quently i.e. following a straight wall with a constant distance. Such a cluster of sample points can be
“bound together” and used as a reference for further use without even knowing what it “means”.

α

d
d

angle α()
0

90 180 270 360α

class
class

classS(t)

w
al

l

di
st

an
ce

d(
)

Robot Khepera

common robot situations
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 45

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.4.1 The Growing K-means Algorithm

The K-means algorithm can be implemented by a competitive network. The output neurons, of which
the weight vector is closest to the correct pattern vector, becomes the winner neuron. This is reminis-
cent of the K-means algorithm, in which the cluster center with the shortest Euclidean norm distance to
the input pattern vector, acquires the pattern and earns the right to respond to that pattern.

As previously mentioned, a pattern vector of n dimensions may be considered as representing a point
within an n-dimensional Euclidean space. The K-means algorithm identifies vectors which are geomet-
rically close together based on the assumption that geometrically close points belong together.

Before presenting details of the standard K-means algorithm, a more precise notion of the metrical
distance is needed. The Euclidean norm of a vector x=[x1, x2, x3, ... , xn] is defined as shown in equa-
tion 3-1:

Equation 3-1 represents the length of the vector x. As we wish to discover the distance or length
between two vectors within the pattern space, we need only to apply the equation 3-1 to the vector dif-
ference x and z of the same order n as shown in equation 3-2:

After defining the distance between pattern vectors, we need a procedure that will establish a set of
clusters (with associated cluster centers); for example the distance between an input vector and the clos-
est cluster center serves to classify the vector.

The K-means makes the assumption that the number of cluster centers is known a priori. The version
implemented in the experiment ignores this assumption which allows to trim the neural network regard-
ing to the optimal distance between the cluster centers (vigilance) and not to the maximal number of
cluster centers. On the other hand, this makes the system sensitive to the temporal order in which input
data are presented.

Description of the algorithm:

Before describing the K-means algorithm, some nomenclature must be established. We follow the
notation in [Pandya A.S. et al, 1996]. Let x(p) represent the pth input vector. The complete set of input
vectors will then be {x(1), x(2), ... , x(p)}. The cluster center for each of the K clusters will be represented
by z1, z2, ... , zk. The notation Sj = {x| x is closest to cluster j} will be used to represent the set of sam-
ples that belong to the jth cluster center. Nj indicates how many samples belong to the cluster j. The K-
means algorithm is implemented in the following steps:

x xi
2

i 1=

n

∑= (Eq. 3-1)

x z– xi zi–()2

i 1=

n

∑= (Eq. 3-2)
46 EPFL-LAMI Ph. Mächler

Classification
K-means (batch version)

1. Initialize:
Choose the number of clusters. For each cluster i pitch an initial vector Wi. This initial vector can be
arbitrary or simply the first K input vectors.

2. Classification by closest prototype:
Search for Sj to which x(p) belongs. Each sample vector x(p) is attached to one of the K clusters
according to the following criteria:

3. Move prototype center to cluster:
After allocating all member vectors to their clusters, the centers have to be adapted such that the
sum of the distances from each member vector to the new cluster center is minimized. The equation
3-5 calculates the new cluster center of the cluster j containing Nj members.

4. Checking for convergence:
The algorithm jumps back to step 2 if the prototype is still moving after one cycle. The neural net-
work has learned the example if the prototype does not move anymore.

The K-means algorithm can be implemented in a two layer neural network. Each output neuron
defines a class j which is described by the vector Wj. Fig. 3-11 shows the simple network structure:

Fig. 3-11: Network structure of the K-means algorithm

Growing K-means

The Growing K-means classifier that I have used does not exist in literature. We extended the standard
K-means classifier with the ability to acquire new output neurons if the existing ones are not sufficient
close to the new input vector. The name was inspired by the Growing Neural Gas theory [Fritzke B.,
1997] which has the same ability as well.

(Eq. 3-3)W 1 W 2 … W K, , ,{ } random or first K input vectors=

(Eq. 3-4)x
p()

S j if x
p()

W j– x
p()

W i– for all i 1 2 … K i j≠, , , ,=<∈

z j
1

N j
------ x

p()

x p() S j∈
∑= (Eq. 3-5)

output neuron layer

Wj=(w1j, w2j, ... , wnj)

Input layer X=(x1, ... ,xn)

w1j w2j

j

w3j

Z1 Z2 Z3
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 47

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.4.2 Adaptive Resonance Theory (ART)

The ART network has been introduced by Carpenter & Grossberg in 1987 [Carpenter et al, 1987a]. It
is, broadly speaking, an unsupervised clustering network where the cluster size can be controlled and
the cluster formation can continue during the network’s operation. The input pattern can be binary
(ART-1) or analog (ART-2). The input neurons have no vicinity relationship. This means that the activa-
tion of adjacent inputs has the same importance as the activation of inputs far away from each other.
More information can be found in [Carpenter et al, 1987b], [Grossberg S., 1988], [Pandya A.S. et al,
1996], [Hertz J. et al, 1991], [Fausett L., 1994] and [Freriks L.W. et al, 1992].

ART networks attempt to address the stability-plasticity dilemma. Grossberg describes the stability-
plasticity dilemma as follows:

How can a learning system be designed to remain plastic, or adaptive, in response to signifi-
cant events and yet remain stable in response to irrelevant events? How does the system know
how to switch between its stable and its plastic modes to achieve stability without chaos? In
particular how can it preserve its previously learned knowledge while continuing to learn new
things? What prevents the new learning from washing away the memories of prior learning?

So ART networks contain a mechanism which allows new patterns to be learned without forgetting or
degrading old knowledge. This ability is very useful for robot application because the environment of
robots (representing the input of the ART) cannot be registered and learned in a regular and repeated
manner. The sensor information depends on the robot’s position, which is random or even locally repet-
itive if the robot stays in the same spot. Therefore old knowledge has to be preserved from newer ones,
even if the older knowledge has not been confirmed for a long time.

The degree of pattern similarity in a cluster and therefore also the number of clusters can be controlled
by a vigilance1 test. A new cluster (neuron) will be created if a new input pattern fails the vigilance test
with the existing clusters. This helps to overcome the stability-plasticity dilemma (which is the ability
to constantly learn new experiences without ignoring old ones.)

Fig. 3-12: General ART architecture

1. The vigilance is a common parameter in ART networks which describes the minimal distance
between cluster centers. It can be changed during an experience (on-line).

F1
1 2 3 N4 5 6

F2
1 2 3 M4 5 6

Gain 2

Gain 1

R

Reset

LTMLTM

Vigilance

C

+

-

+

+ +

+

-

Input vector

Recognition Layer

Comparison Layer

Gain controller Attentional subsystem Orienting subsystem
48 EPFL-LAMI Ph. Mächler

Classification
The ART architecture got its name because of the information oscillating between the two layers until
a stable situation is achieved. Fig. 3-12 illustrates the ART-1 architecture which consists of 3 parts: a
gain controller, an attentional subsystem and an orienting subsystem.

The attentional subsystem is the central part of the ART-1 network and consists of two layers, a bot-
tom layer F1 (also called comparison layer) and a top layer F2 (also called recognition layer). Each new
input vector containing N elements will be copied into the F1 layer before starting the learning algo-
rithm. The input vector can only contain digital values. The final classification decision is indicated by
a single firing neuron in the F2 layer (winner take all). The synaptic connections (weights) between
these two layers are modifiable in both directions. These connections are called Long Term Memory
(LTM) and contain the “knowledge” of the network.

The input vector stored in the F1 layer is transferred through the weights (LTM) towards the F2 layer
and back again to the F1 layer. This response from the F2 layer is compared with the original input vec-
tor by a vigilance check performed by the orientation subsystem. The vigilance is the maximum dis-
tance between the input vector and the cluster center corresponding to the firing recognition layer
neuron.

If the vigilance check fails, a previously unallocated neuron will be allocated to a new cluster category
corresponding to the input vector. If the test passes, the winner neuron (inhibiting the other neurons in
the recognition layer) is trained such that its associated cluster center in feature space is moved toward
the input vector. This mechanism of inhibiting other neurons is common in artificial neural architec-
tures, inspired by the visual neurophysiology of the biological systems.

The outstanding features of ART are:

• Only one parameter has to be adjusted: vigilance:
The vigilance represents a measure of the distance between the input vector and the cluster center. A
previously unallocated neuron will be allocated to the new cluster category if the vigilance-test fails.

• ART attempts to address the stability-plasticity dilemma:
meaning the ability to constantly learn new experiences without ignoring old ones. This capability is
mainly based on the fact that ART can constantly allocate new cluster categories.

• The learning process is performed on-line i.e. the net can learn in the same cycle while responding to
an input stimulus.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 49

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.4.3 Simplified Fuzzy ART

As the name implies, Simplified Fuzzy ART (SFA) is a simplification of the Fuzzy ARTMAP which
was developed at Boston University by Steve Grossberg and Gail Carpenter [Carpenter et al, 1991c]
(see also [Kasuba, 1993] and [Dubrawski et al, 1994] for a good introduction).

The fuzzy in the term SFA refers to the fact that the network incorporates fuzzy logic. The ART portion
refers to Grossberg and Carpenter’s Adaptive Resonance Theory, which was already described in the
previous section. The MAP portion in the Fuzzy ARTMAP refers to the ability to map input and output
events. This leads the ARTMAP to be a supervised learning system, thus the MAP part was removed in
order to get an unsupervised learning system.
Fig. 3-13 shows an overview of the Simplified Fuzzy ART algorithm.

Fig. 3-13: Sketch of a Fuzzy ART network

The Simplified Fuzzy ART is a two-layer neural network able to classify input vectors of d dimen-
sionality by one winner category. The number of categories can be increased at any time. The following
two characteristics make the network unusual compared to other neural networks:

• The comparison of an input vector and neuron weights is based on fuzzy logic. The fuzzy AND oper-
ation used is defined in eq. 3-6. Section 3.5.3 describes the resulting effect.

• The Simplified Fuzzy ART algorithm described later can be simplified by normalization of the input
vector. This is done by complement coding of the input vector which therefore represents the presence
and the absence of a particular feature. The input vector with the elements (a1, a2, ... , ad) is doubled
by its complement vector (a1, a2, ... , ad) with ai=1-ai. The full input vector I has a dimension of 2d.
The norm of is always d, since:

Output node activationT1 T2 T3 TM

Input layerI1 I2 I3 I2d

Sensor Input layerI1 I2 Id

Vigilance

RESET

Complement Coder

Winner category
O1 O2 O3 OM

Wj1 Wj2 Wj(2d)

Top-down weights

(winner take all)

δ

Fuzzy AND: A B∧() min A B,()= (Eq. 3-6)

I

I a a,() ai
i 1=

d

∑ d ai
i 1=

d

∑–
 
 
 

+ d= = = p pi
i 1=

d

∑=where: (Eq. 3-7)
50 EPFL-LAMI Ph. Mächler

Classification
The Fuzzy ART algorithm:

The network requires a mechanism to form an activation of the output layer in response to the input of
the network. When a “complement coded” input vector is presented to the network, the output nodes
become activated as showed in eq. 3-8.

 is kept at a small value close to zero, usually about 10-7. This value has been found by experience
by [Kasuba, 1993] and is independent of the application. It only avoids a division by zero in the start
condition. The winning output node is the node with the highest activation (winner take all):
Winner=max(Tj).

The match function (see eq. 3-9) calculates the degree to which the complement coded input vector I
is a fuzzy subset of Wj. If the match function value is greater than the vigilance parameter , the net-
work is said to be in resonance which means that the output node j is good enough to encode the input
vector I.

The top-down weight vector Wj from the output node is updated according to eq. 3-10 if the match
function in eq. 3-9 is greater than . is the learning rate which can be slowly decreased to reduce
change of the weight with time. Greater values of result in faster learning.

If no winning output node can be found, a new output category has to be created, assigning to it a new
vector of adaptive weights initialized with . Thus new patterns may fit in and modify the shape
of the existing category, if they match closely, or require establishment of new categories when neces-
sary. Since the weights values may only decrease during the adaptation process, the learning method is
convergent.

As opposed to other neural network types, no source code example could be found, neither on the
WEB nor in the literature. Therefore it is worth investing two pages for a C-source in the Appendix on
page 83.

T j I()
I W j∧

α W j+
--------------------= (Eq. 3-8)

α

δ

I W j∧
I

I W j∧

d
------------------- δ≥= (Eq. 3-9)

δ β
β

W j
new β I W j

old∧() 1 β–()W j
old

+= (Eq. 3-10)0 β 1≤<

W j
new

1=
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 51

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.5 Discussion of unsupervised classifiers

The three unsupervised classifiers mentioned above are derived from three different ideas. However,
they are based on the same mathematical principle. All three neural networks use euclidean distance
between the new input vectors and the classes. This is not astonishing because there is no more infor-
mation available for a better decision.

Therefore, the euclidean distance plays a central role and is very decisive for the similarity of classes.
The unsupervised classifiers used are designed (or modified) in such a manner as to have a stable maxi-
mum euclidean distance between classes. Therefore the network keeps the ability to learn new input
vectors at any time. Assumption: Unallocated classes can be recruited at any time.

In order to analyze the differences between the unsupervised classifiers, they were implemented into
the Khepera simulator to classify all sensor information. During about 10 minutes of random move-
ment, 15’000 sensor examples were simultaneously presented to all classifiers. This experiment was
repeated several times but with different vigilance parameters. The result is shown in the following sec-
tions:

3.5.1 Significant versus entire number of classes

The only relevant parameter to trim the behavior of the unsupervised classifiers is the maximal euclid-
ean distance called vigilance. A small vigilance increases the number of classes and vice versa.

Fig. 3-14 shows the number of significant classes1 produced by all three unsupervised classifiers as a
function of the entire number of classes used. It can be seen that there is a more or less a linear relation-
ship between the number of significant and used classes. This is comprehensible because both depend
on the decreasing vigilance.

Fig. 3-14: Almost linear relationship between significant and used classes

1. see chapter 3.2.3 on page 40 for definition of a significant class.

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

ART
Growing K-means
Fuzzy ART

Number of used classes

N
um

be
r

of
 s

ig
ni

fic
an

t c
la

ss
es

52 EPFL-LAMI Ph. Mächler

Discussion of unsupervised classifiers
3.5.2 Quality versus quantity of significant classes

The euclidean distance between class prototypes must be short in order to separate sensory experi-
ences corresponding to significantly different environmental situations. On the other hand, too small
classes (in the spatial sense) might be reactivated very rarely and might probably represent a hardly
reproducible event. A compromise for the number of classes has to be found.

The diagram in fig. 3-15 shows how often a significant class was reactivated as a function of the total
number of classes. The data are collected during the same experiment as described above. The descend-
ing lines in the diagram show that classifiers containing too many classes are less efficient. The reason
is that these classes are too specific for a special input vector and therefore not reliable enough to recog-
nize a noisy landmark.

Fig. 3-15: The reactivation of significant classes is better for small neural networks

3.5.3 Class distribution in the input space

Increasing the number and types of classifying systems gives a more reliable characterization of the
environment. Each classifier has an other way to separate clusters from each other. The different types
of cluster shapes showed in fig. 3-16 increase the probability that all significant features of the environ-
ment are reliably enclosed. The cluster distribution showed in fig. 3-16 was generated by the classifiers
applied in the simulator, but processing artificially generated two dimensional random values. This was
necessary in order to present the distribution characteristics on a two dimensional figure.

It is interesting to mention, that the Fuzzy ART region marked by A and B in fig. 3-16 belongs to the
same class, in spite of their very different places. This shows that a significant class could be put into a
much larger region of another class without splitting it up.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

ART
Growing K-means
Fuzzy ART

Number of used classes

N
um

be
r

of
 r

ea
ct

iv
at

ed
 s

ig
ni

fic
an

t c
la

ss
es
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 53

Chapter 3: Unsupervised Passive Positioning System (UPPS)
Fig. 3-16: Different cluster shapes for a 2D input space

3.5.4 Representing the environment by classes

Fig. 3-17 shows how the produced classes (black traces) represent the environment consisting of walls
(squares) and light sources (crosses). The simulated environment produced about 19% good
classes (a, b), 33% risky classes (c), 12% too large classes (d, e) and 36% unsuitable classes (f). Only
classes of type a, b and c were used to create landmarks in order to recalibrate the robot’s odometry
error. We can make the more precise following comments about these classes:

• a) A just perfect class: Small and unique, perfect for position recalibration.
• b) A usable but large class, produced probably by the walls on both sides of the robot.
• c) Small but scattered class representing a risk of confusion during assignment of a position.
• d) Too large class, produced by the light source, unusable for odometry calibration.
• e) Too large class produced by the camera seeing a special obstacle constellation in front of the robot.
• f) Too large and too distributed class.

Fig. 3-17: Different environment representation by classes

Fuzzy ART Growing K-means

Prototype of the enclosed cluster Prototype hidden by another cluster

B

A

a) Perfect class b) Good class but very large c) Good class but risk of

d) Unsuitable class, too large e) Unsuitable class, too large f) Unsuitable class, too distributed

position assignment
54 EPFL-LAMI Ph. Mächler

Classes become landmarks
3.6 Classes become landmarks

During the robot’s mobility, each classifier produces a stream of classes. It is almost impossible to
link classes directly to significant robot situations because the classes are too sensitive to signal noise or
minor changes of the environment. Therefore we combine several classes from all class streams
together into a new unity called landmark. Fig. 3-18 illustrates how to make this class combination.

Fig. 3-18: Combining three class streams into a landmark

The statistical module already mentioned (see section 3.2.3 "Algorithm overview") selects a signifi-
cant class from all class streams. This class becomes the “kernel” of the future landmark (illustrated as
class number eight in the example above). The kernel will be surrounded by fifteen former and fifteen
future classes of the same class stream. In addition, the chronological identical class stream of the other
classes are merged into the same landmark as well.

A landmark is a significant class combined with its adjacent classes thus increasing the uniqueness of
a landmark and decreasing the risk of confusion. Additionally a landmark contains some further infor-
mation such as the estimated robot position, time, direction, etc. Our simulated robot environment con-
tains about 300 landmarks. However, only a few will be used regularly. Fig 3-19 illustrates “in reality”
how a landmark is created by one or several significant classes and its surrounding “normal” classes.

Fig. 3-19: A landmark is a significant class combined with the adjacent classes

Classifier F-ART

Classifier GKM

Classifier ART 3 9 153 6 8

6 711 714 1

6421010

significant class

Class numberstime

Se
ns

or
s

Landmark
(class stream)

28

Class stream

landmarks

classes

significant classesrobot

wall

class stream
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 55

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.7 Landmark comparison by Levenshtein Distance

Landmarks (a set of classes) created by a robot at the same position and in equivalent circumstances
are rarely identical; they always differ by some entries: some former classes may be missing, new ones
may have been added.

A powerful algorithm for string comparison is needed which can handle such missing and additional
entries in a string. The problem is similar to a database engine searching entries by an approximate key-
word. For instant, the keyword “color” should also find entries containing the word “colour”, even if the
string itself is almost completely different. The Weighted Levenshtein Distance (WLD) developed in the
seventies by V.I. Levenshtein [Levenshtein V.I., 1975] is a widely used algorithm to compare two
strings of discrete elements in a tolerant way.

3.7.1 Introduction

The Levenshtein Distance (LD) is a distance measurement of two discrete string elements for example
the string A=“ec” and B=“fc”. The LD of A and B is defined as the minimum number of editing opera-
tion needed to convert string A into string B by using the following three operations:

• Deleting of an element.
• Insertion of an element.
• Substitution of an element.

In our example, the LD of string A=”ec” and string B=”fc” is 1 (one substitution of the first element).
The LD can be evaluated by a dynamic programming algorithm, see [Reuhkala E., 1983].

The Weighted Levenshtein Distance (WLD) is a generalization of the unweighted Levenshtein Dis-
tance (LD) which additionally assigns a cost to each operation. The WLD is defined as the minimum
total cost required to convert string A into string B and can be evaluated using the same dynamic pro-
gramming algorithm as for the LD.

3.7.2 Recursive mathematical definition

The WLD algorithm (see eq. 3-1) was mainly used for speech processing and molecular biology. Gen-
erally, the WLD algorithm can be used to compare strings of discrete elements in a tolerant way, for
example to look up words in a database by slightly derivating key words. The following discussion
explains the general algorithm. Let’s call the two strings a and b with the length of i and j, so the WLD
can be defined in the following recursive manner:

xn: The first n elements of the chain x
x[n]: The nth element of the chain x
costdel: Deletion cost of an element
costins: Insertion cost of an element
costsub: Substitution cost of an element

The WLD is defined as the minimum total cost required to convert string a into string b by using dele-

L ai b j(,) min

L ai 1– b j(,) costdel+

L ai b j 1–(,) costins+

L ai 1– b j 1–(,)
0 if a i[] b j[]=

costsub if a i[] b j[]≠



+








= (Eq. 3-1)
56 EPFL-LAMI Ph. Mächler

Landmark comparison by Levenshtein Distance
tion, insertion and substitution. The recursion is completed by adding the value specified in eq. 3-2, if at
least one string becomes empty.

This recursive formulation is a very long calculation because every operation will cause three sub-
operations. Fig. 3-20 shows the combination tree needed to compare two strings containing each two
characters. The tree shows that there are 13 different combinations of deletion, insertion and substitu-
tion to proceed until one string gets empty.

Fig. 3-20: Combination tree to compare two strings with each two characters

Table 3-1 shows in the general manner the number of comparisons required to compare two strings of
equal length n (the case n=2 correspond to fig. 3-20):

It can be seen that the recursive implementation is unsuitable for long strings. The reason is that the
calculation expenditure grows by the power of three for each new element in the string. For instance,
the Levenshtein Distance L(ai-1,bj-1) is calculated three times. The first time directly on the first recur-
sion level and a second time on each following level after a deletion followed by an insertion or after an
insertion followed by a deletion.

string length n number of comparison c

1 3
Approximations:

2 13

3 63

4 321

5 1’683

6 8’989

7 48’639

8 265’729

9 1’462’563

10 8’097’453

Table 3-1: Number of comparison required for the recursive definition and it’s approximation

L 0 0(,) 0=

L an 0(,) n costdel⋅=

L 0 bn(,) n costins⋅=

(Eq. 3-2)

22

1020 01 001002 0111

12

11

21 11

01 0010 01 0010

del subins

c 0.3 e
1.71n⋅= c 0.00377 n

9.29⋅=

string length nstring length n

nu
m

be
r

of
 c

om
pa

ri
so

n
c

nu
m

be
r

of
 c

om
pa

ri
so

n
c

Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 57

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.7.3 Flat implementation of the LD

The recursive definition of the LD is intuitive, but too costly for an implementation. In fact, there
exists only (i+1) times (j+1) different combinations for the string ai and bj. Therefore, the problem can
be represented by a matrix of i+1 columns and j+1 rows (see table 3-2). Each cell contains the Levensh-
tein Distance of the string part corresponding to the column and row index.

The value of all cells in the first row (i=0) and the first column (j=0) can be calculated by the termina-
tion condition (see eq. 3-2):

From now on, every upper left free cell can be calculated by eq. 3-1 with the following replacements:

L(ai-1,bj) is the value over the cell
L(ai,bj-1) is the value left of the cell
L(ai-1,bj-1) is the value in the diagonal upper left cell

The final Levenshtein distance can be found after calculating every cell in the right under cell (grey
result cell).

Note: To make global string shifts invariant, the LD algorithm can be changed so that deletion and
insertion cost zero at the beginning and at the end of the strings.

3.7.4 Code example for WLD

The following algorithm may be used for the computation of the WLD. String A will be transformed
into string B using the matrix M (flat implementation). The weights are shown as functions, thus
d(A(3)) denotes the “cost” of deleting the third character 3 of string A, i(..) denotes the insertion cost
and r(A(i),B(j)) denotes the cost to replace the character i in string A with the character j in string B.
The unweighted Levenshtein distance (LD) is a special case with r(...)=d(...)=i(...)=1.

/* Algorithm Weighted Levenshtein Distance */
begin
M(0,0):=0;
for x:=1 step 1 until length(A) do M(x,0):=M(x-1,0)+d(A(x));
for y:=1 step 1 until length(A) do M(0,y):=M(0 ,y-1)+i(B(y));

for x:=1 step 1 until length(A) do
 for y:=1 step 1 until length(B) do
 begin
 m1:=M(x-1,y-1)+r(A(x),B(y));
 m2:=M(x-1,y)+d(A(x));
 m3:=M(i,y-1)+i(B(y));
 M(x,y):=min(m1,m2,m3);
 end
WLD:=M(length(A),length(B));
end

0 1 2 ... j

0 0 1 2 ... j

1 1

2 2

... ...

i i result

Table 3-2: First setting up of the LD table containing up to now only the termination value (see eq. 3-2)
58 EPFL-LAMI Ph. Mächler

Landmark comparison by Levenshtein Distance
3.7.5 Graphical example

In order to demonstrate the efficiency of the Levenshtein Distance algorithm, a short example1 will be
shown. We want to calculate the distance between the word “STEPHAN” and “STEFANIE”.

First, we can fill the first row (string length =0) and the first column (string length =0) with the values
corresponding to the condition specified in eq. 3-2. After that the other cells can be calculated corre-
sponding to eq. 3-1, starting with the upper left free cell. It is useful to mark each cell which case of
eq. 3-1 was used (ins, del, rep, eq=equal). This can be used later to reconstruct the shortest operation
chain. Table 3-3 shows the complete resulting matrix. The lower right cell (highlighted) shows the
result of 4 operations.

To identify the minimal operation steps to go from “STEPHAN” to “STEFANIE”, we start on the
right lower cell and search the cheapest way through the matrix to the left upper cell. “Cheap” means to
follow the preceding cell along with the smallest distance value. The resulting path is highlighted in
table 3-3.

The result can be read by following the highlighted path from the left upper cell to the right under cell.
Cells marked by [eq] has to be ignored, so you get the following operation chain:

• Step 1, table position [4,3]: Delete the ‘P’ in “STEPHAN”
• Step 2, table position [5,4]: Replace the ‘H’ of “STEPHAN” by a ‘F’
• Step 3, table position [7,7]: Insert an ‘I’
• Step 4, table position [7,8]: Insert an ‘E’

Some very nice Levenshtein simulators on the WEB are cited in the Appendix on page 86.

3.7.6 Calculation of substitution cost

The explained WLD algorithm was slightly enlarged to better fit the demanded task. The substitution
cost (costsub) is taken as a constant value in the original WLD algorithm. Because of the high sensitivity
of the unsupervised classifier, even close events will be declared by different class numbers, which sup-
press any relationship between these two classes from the WLD algorithm. Therefore the substitution
cost (costsub) is calculated by measuring the euclidean distance of the two concerned classes in the sen-
sor input space. The class numbers are not used in this calculation, since they are chosen arbitrarily and
contain no distance information.

1. The example was inspired by http://www.media-eng.bielefeld.com/~mlab/hholzgra/fh_diplom

(length) (0) S (1) T (2) E (3) F (4) A (5) N (6) I (7) E (8)

(0) 0 [eq] 1 [ins] 2 [ins] 3 [ins] 4 [ins] 5 [ins] 6 [ins] 7 [ins] 8 [ins]

S (1) 1 [del] 0 [eq] 1 [ins] 2 [ins] 3 [ins] 4 [ins] 5 [ins] 6 [ins] 7 [ins]

T (2) 2 [del] 1 [del] 0 [eq] 1 [ins] 2 [ins] 3 [ins] 4 [ins] 5 [ins] 6 [ins]

E (3) 3 [del] 2 [del] 1 [del] 0 [eq] 1 [ins] 2 [ins] 3 [ins] 4 [ins] 5 [ins]

P (4) 4 [del] 3 [del] 2 [del] 1 [del] 1 [rep] 2 [rep] 3 [rep] 4 [rep] 5 [rep]

H (5) 5 [del] 4 [del] 3 [del] 2 [del] 2 [rep] 2 [rep] 3 [rep] 4 [rep] 5 [rep]

A (6) 6 [del] 5 [del] 4 [del] 3 [del] 3 [rep] 2 [eq] 3 [rep] 4 [rep] 5 [rep]

N (7) 7 [del] 6 [del] 5 [del] 4 [del] 4 [rep] 3 [del] 2 [eq] 3 [ins] 4 [ins]

Table 3-3: Levenshtein distance table for the word “STEPHAN” and “STEFANIE”
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 59

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.7.7 Recognizing identical landmarks by WLD

A freshly received landmark will be compared with landmarks which only contain the same signifi-
cant class. Fig 3-21 shows the sensor signals produced by two different classifiers (I and II). The classi-
fier II discovers a trigger class #2 (framed with a bold rectangle), which even appears twice by chance.
All class streams (I and II) of the same time sequence are compared with the corresponding class
streams of other landmarks already stored which contain the same significant class (#2). The example
in fig. 3-21 shows three suitable landmarks (A, B and C) which are already stored in memory. The sim-
ilarity of class streams is measured by the WLD.

Fig. 3-21: Landmark comparison by analyzing all class streams

9

31
153

2

64
11

3 9 153 6 8 8 642 21010

Classifier I Classifier II

Sensor signals

2 2 742 9 7 3 642 32222

5 3 152 3 7 8 642 81022

3 3 153 3 8 8 642 2810

A:

B:

C:

S:

Landmarks stored in memory

I II

8

3

2

Perfect matching class in a class stream

Existing class, but shifted in a class stream

Not existing class in this class stream

Significant class which is generating and selecting a landmark

9

Landmarks already stored in the memoryA-C:

compare
levenshtein

distance

Classifier n

class stream

sensor
input
space

compare
levenshtein

distance
60 EPFL-LAMI Ph. Mächler

Landmark comparison by Levenshtein Distance
Result of the three landmarks comparison:

• Landmark A was generated due to the same trigger class (#2). However, almost every classes in the
class stream are different (white number on black background) indicating a completely dissimilar
landmark.

• The landmark B is different as well (mainly because of class stream I). This can happen, if the sen-
sors-group, analyzed by classifier II, is not sensitive for a specific dissimilarity. That's why several
class streams are analyzed independently.

• Landmark C is determined as identical to the received landmark, because all class streams are suffi-
ciently similar.

3.7.8 Estimated robot position supports landmark recognition

The presented Levenshtein distance recognizes landmarks very reliable, even if some classes are
missing or added. However, similar environments produce similar classes and therefore similar land-
marks which could confuse later processing. Thus the assumed robot position becomes relevant if the
Levenshtein algorithm identifies several matching landmarks. The conditions to appoint a matching
landmark depends therefore on the Levenshtein distance dlev and the estimated position difference ddist.
Each distance is a dimension of a two dimensional space and the final difference is the scalar distance
between the investigated landmark and zero (see fig. 3-22). A new landmark will be generated if no
landmark inside a certain threshold can be found.

Fig. 3-22: Similarities of landmarks depend on Levenshtein distance and position error

dlev

ddist

new landmark

0

Closest landmark to 0 is the winner

L
ev

en
sh

te
in

 d
is

ta
nc

e
er

ro
r

Estimated position error

threshold
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 61

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.8 Constraining robot movements

An autonomous robot moving without any strategy in a two dimensional space will not find enough
landmarks to calibrate its odometry. Some hints could help to take advantage of available landmarks.
Steering the robot actively to landmarks requires knowledge about the characteristics of the sensor sys-
tems, knowledge about the landmarks and the direction/distance of landmarks/obstacles. The robot
doesn’t possess this information, so an active steering system cannot be implemented in this way.

A possible solution for a steering system is to let the robot be attracted by any “interesting” signal
event. “Interesting” means stimulating; the short range distance sensor of the robot supplies only inter-
esting information, if the robot is close to an obstacle. This signal can be used in a fitness function to
train a NN for a “wall following behavior”. In the same way, the camera supplies only interesting infor-
mation if the robot heads to an object presenting sufficient contrast. This signal can be used in a NN fit-
ness function to visit edges and objects.

The fitness function can be described as following:

A The robot has to move (cover a certain trajectory over time). This excludes stops, turning on the
spot and bumping into obstacles.

B Any kind of active sensor event produces a positive feedback. This has basically two effects:
B1: The robot is attracted by walls and obstacles, through the short range distance sensors.
B2: The robot is attracted by obstacles (in general contours) located in the view of the camera.

The rules B1 and B2 are contradictory because the robot has to give up the wall (or obstacle) attrac-
tion to aim an object (or contour) in the free space. Therefore the rules for B1 and B2 cannot be com-
bined in the same fitness function and have to be used separately to train for instance two different NNs.
The NNs are applied randomly, influenced by the presence of walls and contours. However, at this time
the NN was not implemented but the expected result was programmed to save time for more important
parts of this experiment.

Combining these behaviors allows the robot to explore the environment by following interesting stim-
uli as shown in fig. 3-23.

Fig. 3-23: Robot path attracted by walls and contours

The expected result by combining these behaviors is shown by gray lines in fig. 3-23. The robot
explores the environment by following interesting stimuli. Thanks to the camera, it can even overcome
empty areas to reach other objects.

= Edges which represent significant targets for the camera
62 EPFL-LAMI Ph. Mächler

Introduction to concepts
3.9 Introduction to concepts

For us humans it is normally not very difficult to become familiar with a new environment. We scan it
for objects and remember their spatial relationships. When explaining the route to a tourist, we link suc-
cessive objects (bridges, monuments, etc.) with spatial information (left, facing, 50 feet, etc.). Of
course, what is a striking object depends on our perception. Living in a different sensory world, a dog
would rather select odor traces than monuments. Because of its different sensor ability, a dog “sees” its
environment differently and therefore it uses different concepts. A real outdoor environment offers a
huge quantity of information like colors, compass-direction, light, distance, etc. Human beings and
superior animals (agents) are able to process this flood of information and abstract concepts like door,
road and object, which are used to handle the environment on a higher level. Thus, the concepts depend
strongly on the task and the sensor abilities and are therefore different for humans, animals and robots.

The Webster1 defines a concept as follows:

A concept is the collection of objects and other entities that are assumed to exist in some area
of interest and the relationships that hold among them. A conceptualization is an abstract, sim-
plified view of the world that we wish to represent. For example, we may conceptualize a family
as the set of names, sexes and the relationships of the family members. Choosing a conceptual-
ization is the first stage of knowledge representation.

A short definition for robot application could be:

Organization and interpretation of the robot’s sensory input in a way suitable for its capabili-
ties and requirements.

The application of concepts is not new [Pfeifer R., 1996], [Scheier Ch., 1996] and many recognition
algorithms (specially in Artificial Intelligence) leave the creation of concepts to the machine in order to
increase the flexibility and to reduce pre-wired and therefore unsuitable influences by the designer. But
automatic concept creation is normally applied on quite a high abstraction level, for example to recog-
nize objects or situations, based on sensor and status information which are preprocessed in a more con-
ventional manner. Such preprocessing always leads to a loss of information which could be important
and therefore reduces the power of automatic concept creation.

The concepts in this paper are based on landmarks, which are created without any model or specific
preprocessing, which make the concept very adaptive to the environment. Therefore the automatic con-
cept creation depends on the raw sensor signals [Kuipers B., 1997]. Ideally, such a system should be
completely sensor-independent and free of any preprocessing. Of course, this is a quite theoretical con-
sideration and some minimal preprogrammed functions like constant speed and constrained robot
movement have to be implemented. However, we want to investigate the limitations of such a method
for automatic sensor concept creation and see how close an experiment can approach this theoretical,
ideal case.

The following section shows the dependencies of automatic concept creation:

1. FOLDOC (Free On-Line Dictionary Of Computing): http://wombat.doc.ic.ac.uk
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 63

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.9.1 Concept quality depending on frequency

The object’s frequency is important to define concepts. Fig. 3-24 shows a scout looking for a mail box
in a town. He will use significant objects like trees and churches as a concept to find his way again. On
the other hand, the same scout looking for his tent in a forest will not use trees but houses as a concept.
It is interesting to note that an empty space like a clearing can also be a significant concept.

Fig. 3-24: Object’s frequency influences the concept’s quality

3.9.2 Concept quality depending on the sensor ability

Different sensor abilities influence the concept as well. A blind person uses mainly his tactile capabil-
ities and the surrounding noise to orientate in a environment. They are normally much better developed
than the tactile capability of “normal” persons, of which orientation is based mainly on vision. There-
fore, the concepts of the environment can be very different depending on the sensor’s ability.

Fig. 3-25 shows a Roman and a dog (agents) observing the same monument. They link different con-
cepts to the monument due to different sensor abilities.

Fig. 3-25: Different concepts for the same object depending on the sensor ability

house
church tree

clearing
(clairière)

Aim: tent
Aim: mail box

Environment: TownEnvironment: Forest

Town
good concepts:
- Tree
- Church
bad concepts:
- House

Forest
good concepts:
- House
- Clearing

(nothing)
bad concepts:
- Tree

• artistic
• graceful
• baroque...

• inedible
• can’t play with it
• doesn’t smell like humans
64 EPFL-LAMI Ph. Mächler

Landmarks become places
3.10 Landmarks become places

Landmark recognition can be done without any knowledge about sensor and environment and is very
useful for sporadic odometry correction every time a landmark appears. However, landmark recognition
is not a reliable reproducible process. Small change in the environment or a robot trajectory drift can
disable or regenerate a landmark. That’s not bad because the new landmark will be rediscovered next
time and is therefore useful for odometry correction. On the other hand, reliable navigation and path
planing is not possible due to the unstable detection of landmarks.

A further abstraction level called places has to be introduced. A place has to be recognized if the robot
is close to it, even if some containing landmarks are not detected. Landmark and place recognition have
the following different characteristics:

• The spatial position of classes inside the landmarks is decisive in order to use landmarks for odometry
correction.

• The temporarily succession of landmarks inside the places is decisive in order to rediscover the same
place, even if some landmarks are missing or shifted.

3.10.1 Recognizing places from the landmark stream

A place is defined by a spatial accumulation of landmarks and represents therefore a significant robot
position (e.g. corner, narrow corridor or rare optical event). The landmark position is defined relative to
the position inside the place. Fig. 3-26 shows a robot’s path producing 12 landmarks (small rectangle).
The corner groups 5 landmarks into a place A. In the same way, the rising light (hidden behind a bend)
groups 4 landmarks to a place B.

Fig. 3-26: Accumulations of landmarks become places

camera
sees lightnoise

noise

noise
corner produces
several landmarks

wall

robot

path

Landmark
Place (Markov chain)

path

landmark

place A
place B
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 65

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.11 Place identification by Markov Chain

It is evident that a place (that is a sequence of landmarks) offers a better guarantee of proper identifi-
cation than just one landmark. However, landmark sequences of the same place (Splace) always differ
due to the drift of a robot’s trajectory. The experiment shows that only some subparts of the sequence
stay identical, but their associated position may also have drifted. The Weighted Levenshtein Distance
cannot distinguish between missing and shifted landmarks and is therefore unsuitable for place recogni-
tion.

Markov chains are a better tool to recognize sequences because they are sensitive to landmark transi-
tions and not to their position in the sequence. So it is probable that a place corresponding to a sequence
of landmarks can be deduced. Fig. 3-27 shows a short overview of the Markov chain theory (see also
[Collins L, 1975] and [Ross S. M., 1997]).

Fig. 3-27: Definition of First Order Markov Chain

Markov chain is an efficient and elegant tool for describing and analyzing any kind of probabilistic
changes of state. Markov models which describe the changes can also be used to forecast future states.
The basic concept of Markov chain is best explained by a short example.

3.11.1 Concept of probability

In our real world, we often attach a probability to the occurrence of every event. There is a probability
that an airplane will crash or that I will win the main prize in the lottery this year. For most course of
action we must assume or estimate the probability of such events. Thus in the case of airplanes, insur-
ance companies need to know the probability of such events in order to charge the right rate to their
customers. In case of wrong probability estimation, the company will either go bankrupt or it will
charge rates of such high value that its clients will seek insurance coverage elsewhere.

Moreover, insurance companies also need to predict the probability of such events in the future to
adopt the rates as early as possible. This change of probability can be predicted by a Markov model.

T0,0

T0,1

T0,2

T1,2T2,2

T2,1

T1,1

T2,0

T1,0

S0

S1S2

Sx: State (landmark)
Ti,j: Transition from state i to j

Markov Chain

T i j,
j 1=

N

∑ 1=

ai j, P Qt L j= Qt 1– Li=[]= T i j, 0≥1 i j N≤,≤
Qt: temporary state only for explanation
66 EPFL-LAMI Ph. Mächler

Place identification by Markov Chain
3.11.2 A simple Markov model

Information relating to the observed probabilities of past trends can be organized into a matrix which
is the basic framework of a Markov model. I would like to use an example found in “Models of the evo-
lution of spatial patterns in human geography” [Harvey D., 1967] which uses the probabilities of
inhabitant movement between London city, its suburbs and the surrounding country between 1950 and
1960. The inhabitant movement (transition) during these ten years can be described in the following
table (see fig. 3-28).

The three locations in this matrix forms the states of the model and each element the transition value
(probability of moving from one state to any other state). Therefore we assume that of all the people liv-
ing in London in 1950, 60% were still in London in 1960, 30% had moved to the suburbs and 10% had
moved to the country. Thus, each row of the matrix, unlike the columns, sums to 100%. So the transi-
tion matrix describes the probability of movement from one state to any other state during a specified or
discrete time interval (10 years). Let us further assume that 50% of the total population of the three
states lives in London, 30% in the suburbs and 20% in the country. This leads to the following initial
state:

The initial state vector refers to the state of the system in 1950. would refer to the state of the
system in 1960, to 1970 and so on. Using theorems of matrix algebra we can obtain by multiply-
ing the initial state vector by so that

Thus, in 1960, 44% of the habitants of the three states will live in London, 32% in the suburbs and
24% in the country. We assume that the transition probabilities and the total population in the three
states remains stable during the following 10 years. So we can calculate the population in 1970 .

Note that between 1950 and 1960 the suburban proportion increased from 30% to 32% but in the next
decade declined to 31.6%.

London Suburbs Country

London 0.6 0.3 0.1

Suburbs 0.2 0.5 0.3

Country 0.4 0.1 0.5

Fig. 3-28: Transition probability matrix [T] of English inhabitants

S
0

S1
0

S2
0

S3
0, ,() 0.5 0.3 0.2, ,()= =

S
0

S
1

S
2

S
1

S
0

T

S
1

S
0

T⋅ 0.5 0.3 0.2, ,()
0.6 0.3 0.1

0.2 0.5 0.3

0.4 0.1 0.5

× 0.44 0.32 0.24, ,()= = =

T

S
2

S
2

S
1

T⋅ 0.44 0.32 0.24, ,()
0.6 0.3 0.1

0.2 0.5 0.3

0.4 0.1 0.5

× 0.424 0.316 0.260, ,()= = =
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 67

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.11.3 Implementation of Place recognition by Markov Chain

Each place is represented by a ergodic1 transition matrix:

The size N of the matrix is fixed and defined by the number of different landmarks. Each cell contains
the probability of transition from landmark i to landmark j. Remember that each row of the matrix sums
to 1.0. Each new landmark sequence Snew has to be compared with all transition matrixes Mk (repre-
senting places). The following equation calculates the index w of the transition matrix Mw representing
the most probable place for Snew:

Bayes transformation allows to calculate the posteriori probability from the likelihood
:

The probability that Mk contains the sequence Snew is identical for every k, because new sequences
have are by default independent to all existing place matrixes. Therefore P(Mk) is constant for all k.
P(Snew) is independent of k and can therefore be ignored as well. So w can be calculated as following:

The winning transition matrix Mw represents the place with the highest probability of belonging to
place Snew. Real correspondence has to be verified by a normalized score L(Snew, w) which has to be
over the threshold T:

The new sequence Snew corresponds to the winner place Mw if the normalized score exceeds the
threshold T, otherwise a new place Mnew will be added to the database. The threshold T of about 0.008
was found empirically.

1. Ergodic relates to a process in which a sequence or sizable sample is equally representative of the
whole (as in regard to a statistical parameter), involving or relating to the probability that any state
will recur, especially having zero probability that any state will never recur.
Ref: http://pespmc1.vub.ac.be/ASC/ERGODIC.html

Mplace

a1 1, a1 j, a1 N,

ai 1, ai j, ai N,

aN 1, aN j, aN N,

=

ai,j:Transition from
landmark i to j

N: Maximal number of
landmarks

M: Ergodic Markov
chain for a place

w argmax
k

 P Mk Snew()=

A posteriori probability of
being in place k given the new
sequence of landmarks.

index of winner place

P Mk Snew()
P Snew Mk()

P Mk Snew()
P Snew Mk() P Mk()⋅

P Snew()
--=

A posteriori prob. Likelihood A priori prob.

Bayes
identity:

w argmax
k

 P Snew Mk()=

L Snew w()
P Snew Mw()

P Snew Mnew()
----------------------------------- T>=Normalized score:
68 EPFL-LAMI Ph. Mächler

Place identification by Markov Chain
In contrast to the posteriori probability , the likelihood can easily be calculated
as following:

 is an element of the Markov matrix indicated by the xth and yth element of the landmark
sequence string Snew. It is obvious, that the multiplication results in a very low number which could
become very close to the computer’s capacity. So it is advantageous to use the following equation to
implement the normalized score L(Snew, w):

After finding the winning transition matrix index w, we have to integrate the landmark sequence string
Snew into the Markov matrix Mw. This can be done by incrementing the corresponding matrix cell by a
value (i.e.) followed by a normalization to satisfy the row sum of 1. The comparison of places can
also directly be done using the corresponding Markov matrix. See also Duda & Hart on page 349 for
further explanations [Duda & Hart, 1973]. The following equation delivers the index w of the nearest
Markov Matrix to Mnew out of all the examined Markov Matrix Mk.

P Mk Snew() P Snew Mk()

P Snew Mw() a
Snew

0 Snew
1,

a
Snew

1 Snew
2,

a
Snew

2 Snew
3,

… a
Snew

n 1– Snew
n,

⋅ ⋅ ⋅ ⋅=

a
Snew

x
Snew

y,

a
Snew

0 Snew
1,

W
log a

Snew
1 Snew

2,
W

log …⋅ ⋅ a
Snew

0 Snew
1,

new
log a

Snew
1 Snew

2,
new

log …⋅ ⋅– Tlog> a ℜ +
a 0>,∈

10
N

w min
k

ax y,
new

ax y,
k

–()
2

y 1=

N

∑
x 1=

N

∑=
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 69

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.12 What’s the difference between Levenshtein and Markov?

Markov chains and Levenshtein distance are used in this thesis to measure the distances between two
strings. However, they have very different characteristics because of there individual mathematical
background which is the reason to apply both algorithm independently.

The table 3-4 shows five different cases of string matching performed by Levenshtein and Markov
algorithms. Each case is proceeded by Levenshtein and Markov and is described in two boxes. The
upper box explains the operation done by the algorithm independent of the task. The lower box
(framed) explains the consequences depending on the task and is shaded if the consequences have a
negative effect.

It can be seen, that both algorithms complement one another very well. There are only a few cases in
which the algorithm does not suit the demands.

String manipulation Levenshtein Distance Markov Chain

Missing element
Each former B element has to be
replaced by an A or C element.

This replacement will generate a
high Levenshtein distance.

=> HIGH difference

The new transition A->C was unknown
and produce therefore a negative effect.

However, the extended A and C ele-
ments have no important effect.

=> LOW difference
DESIRED! Missing and deformed

classes makes the landmark “fuzzy” and
unsuitable for position calibration.

DESIRED! Missing landmarks can
happen and should not harm

the place recognition.

Added element
A part of the A and B element have to

be replaced by the elements X.
This replacement will generate a

high Levenshtein distance.
=> HIGH difference

Adding a new elements X leads to a new
A->X and X->B transition and several

new and therefore punishing
X->X transitions

=> HIGH difference
DESIRED! New and deformed

classes makes the landmark “fuzzy” and
unsuitable for position calibration..

NOT DESIRED! Adding one new
landmark to a place could happen and
should not harm the place recognition.

Element oscillation
An unstable element oscillating

between two states generates always a
high distance and cannot be learned by

the Levenshtein algorithm.
=> HIGH difference

A Markov chain is able to store several
transition chains which connects ele-
ment A and C. So unstable elements

have no punishing effect.
=> LOW difference

NOT DESIRED! Class oscillation due
to unsuitable classification can happen.

DESIRED! Single landmark oscillation
should not harm place recognition.

Shifting element The second part of the A element has to
be replaced by elements B which will
produce a high Levenshtein distance.

=> HIGH difference

The shrank A element and the extended
B elements have no important effect and

produces no new transitions.
=> LOW difference

DESIRED! Shifted classes make land-
mark unusable for position calibration.

DESIRED! Shifted landmark positions
should not harm place recognition.

Noise influence Single different elements (noise)
doesn’t influence the Levenshtein dis-

tance in an important manner.
=> LOW difference

Noise (even of short time) produce a lot
of new transitions (A->N, N->B and

several N->N) increasing the distance.
=> HIGH difference

DESIRED! Noisy classes doesn’t harm
the position of a landmark

DESIRED! Several new landmarks
(noise) indicates different places

Table 3-4: Different characteristics for Levenshtein and Markov algorithm

A B C

A C

A X B

A B

A D C

A B C

A

A

B

B

A B

A B NNN
70 EPFL-LAMI Ph. Mächler

Places become a map
3.13 Places become a map

The robot’s position has to be matched with a map in order to execute a purposeful task. There are
many different kinds of maps [Devy M., 1995] [Kampmann P., 1991] [Knieriemen T., 1991]. One
approach is to project the environment on an already existing map in order to recognize the position by
different matching algorithms [Piaget J., 1970] [Kurz A., 1994]. Another way is to project the environ-
ment on a topological map (cognitive map [Mataric M., 1990]), which does not contain the cartesian
position, but a perception of the objects and how to find the way from one object to another.

This is also our approach. Maps are linked together in a topological map. Each link means an experi-
ence’s trajectory to travel from one place to another. The robot recognizes its position by comparing its
actual place with the places stored in the map. The estimated robot’s position (by odometry) is only
used to distinguish several identical places in the map.

The environment showed in fig. 3-33 generates about 40 places. Fig 3-29 shows some of the most
important places which are sometimes overlapped. Place recognition is very reliable. They never get
mixed up. However, places are sometimes not recognized due to too few landmarks.

Fig. 3-29: Typical distribution of the most important places

As already mentioned, each place is linked with all reachable neighboring places. These links contain
distance and direction information which allows to go from one place to another until the destination is
reached. This network of links may be slightly distorted from reality and does not represent the environ-
ment true to scale. However, traveling from place to place is possible and should be largely sufficient
for navigation. Fig. 3-30 shows how a real place distribution (left image) is projected in the robot’s
memory (right image).

Fig. 3-30: Distorted representation of the environment

some places

obstacles

placesLink between places

Real landmark distribution Distorted landmark distribution
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 71

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.14 Algorithm controlling

Fig. 3-31 gives an overview about the interconnections of the different levels and the processing order
divided into phases.

Fig. 3-31: Complete algorithm divided into levels and temporal phases

A
B C

DE
F

G

H
I J K

L
M

A
C

A
BC

D
FR

P

ClassesLandmarks

Significant classes

Lan
dm

ar
k

le
ve

l

Pl
ac

e l
ev

el

C
on

ne
ct

io
n

le
ve

l

ZA

ZB

ZC

ZG

ZE

ZF

place

ZD

Landmark

Obstacles

Sensor A
Sensor B
Sensor C

Classification:

1 2 1 3

1 2 1 3

time

(same class)Class level:

links

ex
pl

or
at

io
n

ph
as

e
co

or
di

na
tio

n
ph

as
e

lin
ki

ng
 p

ha
se

place

Significant class

N
av

ig
at

io
n

in
ac

cu
ra

te
 p

os
iti

on
re

lia
bl

e
re

co
gn

iti
on

P
os

it
io

ni
ng

ac
cu

ra
te

 p
os

iti
on

un
re

lia
bl

e
re

co
gn

iti
on

M
ap

st
ra

te
gi

c
co

nn
ec

tio
ns

of
 p

la
ce

s

72 EPFL-LAMI Ph. Mächler

Algorithm controlling
3.14.1 Interconnections between the different levels

The raw sensor signals are classified and examined for significant classes which are used to initiate
landmarks. They are stored on the landmark level including the robot’s estimated position. In case of
reactivation of the same landmark, this mentioned position is used to calibrate the robot’s odometry.

An accumulation of several landmarks (see A, B, C) define a place (ZA). Place recognition is done by
Markov chain (see chapter 3.11 "Place identification by Markov Chain", page 66) and therefore more
efficient because recognition does not depend on reliable recognition of a single landmark. The place
position corresponds to the average landmark position and is therefore not stable. It is only used to indi-
cate the approximate spatial relationship between places. These relationships (links) are stored in the
connection level and represent experienced trajectory between places.

This step by step learning, proceeding through interactions between an agent and its environment, and
leading to increased performances, is akin to the development of intelligence in infants, such as
described by the psychologist Jean Piaget [Piaget J., 1970]. Corresponding to this, the levels used in
this experiment can be compared with the classification in biology. The following comparison gives an
idea of the system similarity without claiming a real dependence:

• In the “exploration-phase”, the preprocessing part of nerve signals adapts to the capacity of the sen-
sor. This means, for example, that the preprocessing part of the eyes can recognize a straight line,
even if the picture on the retina is far away from a straight line. This adaptation of the visual prepro-
cessing part is very flexible, so turning over the visual view by wearing special glasses will be com-
pensated.

• In the “coordination-phase” sequences or dependences on events will be recognized in a fortuitous
manner. For example, the ability to touch and feel obstacles demands coordination of action and per-
ception which will be learned from experiences.

• In the “strategy-phase” the learned sequences will be linked together in order to reach an aim. For
example, the learned ability to control the movement of legs will be combined in order to walk, or in
order to grasp an object, the hand, arm and body have to move together.

Of course, this division of the learning strategy is very abstract and cannot be observed in nature in
such a divided way.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 73

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.14.2 Learning phases

Acquiring “classes”, “landmarks” and “places” while exploring randomly the environment cannot be
done simultaneously; it implies a three-phase strategy of which timing is shown in fig. 3-32. Their start-
ing are shifted and they never completely stop.

Fig. 3-32: Transition of the learning phases

The meaning of the phases is explained below. Please refer to fig. 3-31 for better understanding:

1) In the exploration phase, the robot moves aimlessly in its environment, gaining experience about its
sensors. The signal events (see Sensor A-C in fig. 3-31) are classified and most landmarks are cre-
ated. The classifiers (consisting of several neural networks) become more and more rigid, which
stabilizes the classes in the sensor input space. After a certain time, the classes are rigid enough to
allow the coordination phase to be started. However, the robot will never completely quit the explo-
ration phase in order to stay adaptive to new nonclassified sensor events.

2) In the coordination phase, accumulated landmarks are grouped into places (in fig. 3-31 landmarks
I, J, K and R become place Zc). During this phase, the mutual positions of landmarks inside the
same place become stabilized, independently of the global place position itself. A typical place
contains about 20 landmarks, but only about 5 are discovered for each pass. As before, the coordi-
nation phase will never completely quit so that the robot can stay adaptive to future landmark
changes.

3) In the linking phase, the places are linked together, which creates a topological map. The links
results from the allowed movements of the robot (see chapter 3.8 "Constraining robot movements",
page 62). Each link contains a weight, which is reinforced after each use. These reinforced links
allows to predict a future place and is an indicator for the reliability of the robot’s odometry.

ti

phase intensity
exploration phase

link phase
coordination phase

never zero
74 EPFL-LAMI Ph. Mächler

Experimental results
3.15 Experimental results

This section describes the experiment results of this chapter obtained.

3.15.1 Landmark distribution

The described algorithm was tested on a simulated robot environment containing static obstacles (see
fig. 3-33). The freedom is reduced to some paths showed by gray lines in the sketch on the right side.
During this constrained movement about 150 landmarks are extracted from the camera, compass and
distance sensor signals. The reason why some spots are chosen as landmarks is not always intuitive for
a human. Some of them were generated as the robot was located in corners which activated more dis-
tance sensors than usual. Others were generated by the appearance of objects in the camera view.

Sometimes the opposite question comes up. Why is this position not recognized as a landmark? The
reason therefore is often an unsuitable sensor which is not able to recognize the for human so obvious
stimulus. This unsimilar world representation confirms the striven aim to take fully advantage of the
robot’s sensor ability unconsidering the human world representation. On the other hand, communica-
tion with the robot (i.e. task order) can not be performed if there is no minimal common language
(world representation). It seems, that the robot needs a certain minimal supervisor for landmark defini-
tion in order to establish a common definition for communication between these two worlds.

Fig. 3-33: Robot environment with all created landmarks from all classes

Fig. 3-33 shows all significant classes used by all landmarks (which can contain several landmarks)
and gives therefore an overview which kind of situation the robot judge as interesting. Fig. 3-19 on
page 55 shows significant classes as filled circles, which correspond to the in figure fig. 3-33 above.
The reason for the occasionally high concentration is that several classifiers produce a significant class
at the same time (or just one behind the other), which will lead to one landmark, but however produces
the overcrowd representation. Each landmark is stored with an associated estimated position which will
be used to calibrate the robot position while it is running. Every time the robot rediscovers a landmark
on a plausible position, it corrects its odometry, setting it to the position which was associated to the
landmark. The result is an odometry error which it will not cross over a certain boundary.

Significant classes

Obstacles

Paths used
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 75

Chapter 3: Unsupervised Passive Positioning System (UPPS)
3.15.2 Odometry error correction

This subsection shows the efficiency of the odometry error correction. The lower, filled graph in
fig. 3-34 shows the absolute odometry error (maximum peak is about a third of the robot’s diameter).
There is always a small absolute position error which never exceeds a certain limit if regularly some
landmarks can be found. This limit describes the minimal distance between two identical landmarks
and is an estimated parameter of about half the robot’s diameter. The upper graph shows the correction
made by the rediscovered landmarks (same scale). Every positive peak of the curve means a right iden-
tification and therefore decreases the odometry error. Notice that there are also wrongly identified land-
marks indicated by negative peaks. The reason for such faulty updates are several identical landmarks
inside the described minimal distance. Such mistakes increase the odometry error, but they are quickly
compensated.

Fig. 3-34: Stabilized error due to landmark synchronization

3.15.3 Place production

Fig. 3-35 shows the number of places as a function of calculation iterations (1000 iterations per unit
corresponds to about one minute). It can bee seen that the number of places first grows fast and then
becomes more and more flat. Place production will never completely stop. Due to the absence of a
supervising model, noise and sensor errors can always be interpreted as a new landmark which can lead
to a new place.

The growing number of landmarks can be compensated by two different methods:

• The first method consists in freezing the classifier which stabilized the learned landmarks. However,
there is a risk of freezing the classifier too early which makes any future learning impossible. Another
disadvantage is that this approach excludes dynamical environments as well.

• Another method is to use “garbage collection”, which means erasing old landmark entries. This
approach avoids the problems mentioned above, but demands an extensive data management (see
chapter 4 "Discussion and conclusion").

20 40 60 80 100
0

0.5

1

1.5

Time [s]

Odometry Error and its correction signal

O
do

.E
rro

r (
fil

le
d)

 a
nd

 C
or

re
ct

io
n

(th
in

)

“good” landmarks

“bad” landmarks

odo. error
decreases
landmark

odometry

delta
0

0

correction

error

1/4 robot
diameter
76 EPFL-LAMI Ph. Mächler

Experimental results
Fig. 3-35: Place evolution in time

3.15.4 Structured environment

The algorithm works quite well in disordered environments, due to the (often unique) diversity of the
sensor input. On the other hand, the information variance of structured environments is often too little
to guarantee a reliable operation of the algorithm. Fig. 3-36 shows the class production of a structured
environment which contains almost as many classes as shown in fig. 3-33. However, they are of worse
quality. The reason therefore is that the structured environment contains many rightangle corners,
which make their corresponding class no longer significant and will hardly ever be used as landmark.
Therefore, the classes located close to corners (see fig. 3-36) represent slight deviations of the “typical”
corner class, this means they are slightly changed by noise and other influences.

Fig. 3-36: Structured environment leads to little and less reliable class production

0

5

1 0

1 5

2 0

2 5

3 0

3 5

Amount of Places
Creation of new Places

RecognizedPlaces

0

5

1 0

1 5

2 0

2 5

3 0

3 5

Amount of Places
Creation of new Places

Recognized Places

nu
m

be
r

of
 p

la
ce

s

time (x 1000 calc. iterations)

nu
m

be
r

of
 p

la
ce

s

time (x 1000 calc. iterations)

Significant classes

Obstacles
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 77

Chapter 3: Unsupervised Passive Positioning System (UPPS)
The recognition of such classes is therefore less reliable, affecting the landmark and the place recog-
nition algorithm. Fig. 3-37 shows the efficiency of the odometry error correction algorithm for a struc-
tured environment (compare to fig. 3-34). The lower graph indicates the absolute position error and the
upper graph the correction made by landmark recognition.

A positive peak of one horizontal line unit means a recognition of a “good” landmark decreasing the
odometry error; a negative deflection indicates the recognition of a “bad” landmark which increases the
odometry error. It can be observed, that there are noticeable less correction events than compared to
fig. 3-34.

After a certain time, the odometry error exceeds the limit of one robot diameter due to missing land-
marks. No further corrections can be proceeded because rediscovered “good” landmarks, with an
assumed distance of more than one robot diameter, are pronounced as unlikely and therefore ignored.
The system lost its position and needs to be externally calibrated.

Fig. 3-37: Landmarks synchronization is less stable and fails after a certain time

It is very difficult to predict which environment type allows a continuous and stable odometry correc-
tion (as sown in fig. 3-33) or which environment will fail (fig. 3-36). It depends not only on the diver-
sity of the environment but also of the sensor and odometry quality of the robot. The experiment
demonstrated that different environments influence more the quality of landmarks (number of rediscov-
eries) than the number of landmarks. However, the number of rediscovered landmarks is not suitable as
an indicator for the environment quality because “good” and “bad” landmarks cannot be distinguished
during the process.

0

2 0

4 0

6 0

8 0

100

120

140

160

Delta correction

Odometry error

odometry error exceeds maximum value

od
om

et
ry

 e
rr

or
 [

ro
bo

t d
ia

m
et

er
]

0

de
lta

 c
or

re
ct

io
n

0

2

-2

1

0.4

Time [sec]
78 EPFL-LAMI Ph. Mächler

Discussion and conclusion
C

A
P
T
E
R

H

4 Discussion and conclusion

This thesis showed the successful implementation of two original positioning systems, correcting the
robot’s odometry by supervised and unsupervised algorithms. Both algorithms meet the same objective,
that is to require as few as possible environmental changes (adding artificial landmarks) or supplemen-
tary information (about natural or artificial landmark features). Their sensor configuration is minimal:

• The supervised positioning system in chapter 2 uses only one light sensor underneath the robot and a
mathematical model of the positioning probability distribution. More sensors or sensors of better
quality would make the model much simpler. A new position probability distribution for a two
wheeled robot was developed and allowed the examination of the odometry error behavior (drift) of
such robots.

• The unsupervised positioning system in chapter 3 uses no external help and no knowledge about the
environment or sensor configuration. The experience shows that a robot can extract and recognize
suitable landmarks from pure sensor signals without any knowledge about the environment or its sen-
sor configuration. This allows stabilization of the odometry error within a certain boundary. Associa-
tion of landmarks generate concepts comparable to very basic human concepts such as “chairs” or
“doors”. The autonomous and unsupervised creation of concepts takes better advantage of the sensor
capabilities and is adaptive to small changes in the environment. However, the proposed architecture
is designed for static environment.

Since the detailed discussion about the first experiment is given in section 2.7 on page 34, we will
focus here on the second experiment which brings a contribution to adaptive robotic research. Leaving
the choice of suitable landmarks to the robot is a promising way to optimize the use of their sensors and
take advantage of neural network plasticity. However, the following four critical points should be kept
in mind:

• Common language
The map developed by a robot according to the approach presented will never equal the one humans
would draw. A common language remains to be established if the user wants to describe a path, point
a target, describe a task, etc. to the robot.
A possible solution would be to guide the robot to the target point in order to make it learn this posi-
tion. However, there is a risk that the robot will not judge the destination point as interesting, prevent-
ing the robot from storing it. Therefore it seems that the robot has to be supervised for landmark
definition in order to establish a common definition for the same landmark (see section 3.15.1 on
page 75).
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 79

Discussion and conclusion
• Choice of landmarks
The learned landmarks should present a full set of all previously encountered and future situations.
This aim is difficult to achieve because slight changes of the environment such as illumination can
completely change the robot’s world perception. The same environment can be suddenly appear
unrecognizable after such a slightly change. On-line learning systems (such as neural network) are
always challenged by this kind of danger. This is in contrast to batch learning systems which can, in
principle, encounter the full set of all possible input vectors.

• Convergence
Due to the absence of a model defined by a supervisor, the robot will never stop recovering new sig-
nificant events in the environment. The number of discoveries will decrease but never stop, because of
noise and sensor errors.
One solution is to freeze the learned landmarks after a certain time. Since the movement is random,
there is always a risk of freezing the network too early, which would ignore new unexplored zones.
However, this solution would limit the system to static environments.
Another solution is to erase landmarks which have not been used any more for some time (garbage
collection). This technique avoids the disadvantage mentioned above. The main problem of this
approach is the fact that landmarks are defined by classes which are stored in a neural network and
therefore have to be deleted as well. Erasing clusters in a feed forward network like K–means can be
easily performed because the activation of a cluster is defined by the directly connected weights. On
the other hand, the activation of a cluster in an ART (Adaptive Resonance Theory) network is influ-
enced by all weights due to its oscillation of information. Therefore deleting a cluster influences the
activation of all other clusters. The resulting consequences are difficult to foresee.

• Multi-modal versus single-modal classification (fusion of different sensor types)
Combining all types of sensor inputs into one data stream for unsupervised classification gives much
flexibility, but makes it much harder to take advantage of specific characteristics of a single sensor
type. Especially the combination of linear and nonlinear sensors makes a sensor specific classification
almost impossible. The paper presented by Virginia R. de Sa and Dana H. Ballard [de Sa, Ballard,
1998] tries to avoid this problem by detecting “interesting events” in the combination of all sensors
types, but classifying each single sensor type separately. This allows a better adaptation of the neural
network to specific sensor characteristics. On the other hand, features which are coded by the rela-
tionship between different sensor types cannot be discovered. Fig. 4-1 shows a basic example of cor-
relating the right and the left distance sensors (same sensor type) of a robot in order to detect
significant events (corridor). Only a correlated classifier can detect the corridor as a significant situa-
tion.

Fig. 4-1: Some significant situations can only be recognized by sensor correlation

This thesis shows that a robot is able to extract significant reference points from an unknown environ-
ment without any knowledge of its sensor configuration. Due to the unsupervised classification, the
extracted reference points are well adapted to the sensor abilities and to the stimulus supplied by the
environment. The reference points were used to correct the odometry error and enable the robot to fol-
low its trajectory on a topological map.

sensor right

sensor left

robot

corridor

distance right
distribution density

wall right

wall left empty space
distance left single significant

situation recognized by cor-
related classifier

separation of uncorrelated
classifier

wrong classification of
uncorrelated classifiers
80 EPFL-LAMI Ph. Mächler

Discussion and conclusion
4.1 Future work

A robot creating its own world representation is the dream for many researcher. The large variety of
different worlds makes this subject interesting for further investigations in several topics, for example:
How far can such an unsupervised system learn and usable interpret its environment without any super-
visor? Is the advantage of an agent depending world representation bigger than the effort which has to
be done for the creation of an autonomous world presentation? Is a further development of such an
autonomous systems still controllable? Is there a method to build some bridges between these two
words for minimal communication and task control?
Two concrete topics would be a logic continuation of this work:

• The topological map was not used for path planning but this would be an interesting and demanding
future task, because of the different and unforeseeable reliability of the reference points. However, the
critique mentioned in the conclusion above has to be considered. Further investigations would be nec-
essary in order to find some common ground on which to base the world perception of the robot and
the user. This common ground must not affect the liberty and independency of the robot to build it’s
own world perception.

• The principal idea could also be used to improve existing navigation systems by recognizing and
identifying suitable (natural) landmarks for the robot sensor configuration already used. This infor-
mation can later be used to develop to perfection the positioning system by improving the already
existing landmarks instead of installing new artificial ones. Such kinds of environment analysis could
for example point up that moving some tables drastically improves the uniqueness of a place, which
makes it possible to perform robot positioning without using special sensors and landmark systems.

• A further suggestion for future work is to support the algorithm by an active pilot such as described in
[Recce & Harris, 1998]. The assumption is that an agent, initially placed in an unknown environment,
starts to explore its close surrounding and periodically returns to the point of departure in order to cre-
ate an egocentric map. The advantage of this exploration strategy is that the odometry error can be
kept small and consistent for the explored zones which are close to the point of departure. After suffi-
cient knowledge of the closer surrounding, the exploration zone can be gently expanded until the
whole environment is covered.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 81

Discussion and conclusion
82 EPFL-LAMI Ph. Mächler

Appendix
C

A
P
T
E
R

H

5 Appendix

This appendix contains some practical implementation tips and other hints in form of program source
codes written in C and Mathematica. Although the general attitude to omit source code in theses, I
added these lines to support other people working on the same field. The fact that I couldn’t find any
implementation tips in literature or on the WEB reaffirmed this decision.

5.1 Different ways to calculate the odometry... 84

5.2 Levenshtein simulators on the WEB .. 86

5.3 PPD simulation with Mathematica... 87
Download: ftp://lamiftp.epfl.ch/pub/maechler/these/ppdsim.m

5.4 Simplified Fuzzy ARTMAP ... 89
Download: ftp://lamiftp.epfl.ch/pub/maechler/these/fuzzyartmap.c
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 83

Appendix
5.1 Different ways to calculate the odometry

This section describes, besides the traditional method, a vector approach to calculate the odometry of
an autonomous robot which doesn’t use an angle α to describe the robot direction. The vector algorithm
is more straightforward and avoids the problem of jumping from 360° to 0° and vice versa. This non-
linearity can spoil the precision of calculation and demands special case treatment for route calculation.
For example, the calculation of the correction angle (between -180° and +180°) to reach the aim
direction for a robot with the present direction demands 4 different case treatments and
can’t be calculated in one formula1. More details about odometry calculations can be find in [Campion
G., 1996] and [Canudas C., 1992].

5.1.1 Odometry calculation describing the direction of the robot by an angle

Fig. 5-1 gives a very rough overview about the geometrical relationship of a traditional odometry cal-
culation approach.

Fig. 5-1: Rough overview of the traditional approach for odometry calculation

1. Four cases to calculate the from and :

∆α
αaim α present

∆α α aim α present ∆α

α present αaim–

αaim α–
present

360° α present αaim–()–

360° αaim α–
present

–







=

x

y

y’

y

x x’

α'

α

V

V’

x' x V αcos t∆⋅+=

y' y V αsin t∆⋅+=

α' α ω t ∆+= 





x∆ V t αcos∆=

y∆ V t αsin∆=

α∆ ω t ∆= 





ẋ

ẏ

α̇

V αcos

V αsin

ω
=

ω

The rotation speed is proportional to the speed difference of the two wheels:

ω
VL VR–

distwheel

rwheel ωL ωR–()⋅
distwheel

---= =

Forward speed is proportional to the average wheel speed:

V
vL vR+

2

rwheel

2
-------------- ωL ωR+()⋅= =

distwheel

ωR

ωL

VR

VL
84 EPFL-LAMI Ph. Mächler

Appendix
5.1.2 Odometry calculation describing the direction of the robot by a vector

A normalized vector can be used in order to avoid the non-linearity of odometry calculation by using
the robot direction α. This idea is not new, but less intuitive and therefore rarely used.

First, the forward dfor and lateral dlat displacement is calculated based on the turning angle and radius
which is calculated in a similar way as described in the section before. Fig. 5-2 shows how the displace-
ment vector can be calculated by the normalized direction vector stretched by dfor added with the
perpendicular normalized vector stretched by dlat. Fig.

Fig. 5-2: Displacement calculation based on the normalized direction vector of the robot

The following program written in C shows the kernel of the odometry routine:

// Global variables: position_x, position_y, norm_vec_x, norm_vec_y

void odometry(double delta_left_speed, double delta_right_speed)
{
 double angle, radius, forward, lateral, help_norm_vec_x, help_norm_vec_y;

 if (delta_left_speed!=delta_right_speed) /* Robot is turning */
 {
 /* divide by dist between wheels measured in increments */
 angle = (double)(delta_left_speed-delta_right_speed)/KHEP_WHEEL_DIST;
 radius = (KHEP_WHEEL_DIST/2)*(delta_left_speed+delta_right_speed)/
 (delta_left_speed-delta_right_speed);
 forward = radius*sin(angle);
 lateral = radius*(1.0-cos(angle));
 }
 else /* Robot moves straight ahead */
 {
 angle = 0.0;
 forward = delta_left;
 lateral = 0;
 }

 position_x+=forward*norm_vec_x + lateral*norm_vec_y;
 position_y+=forward*norm_vec_y - lateral*norm_vec_x;
 /*
 |- -| |- -| |- -|
 | x | | cos(a) sin(a) | | x0 |
 | | = | | * | |
 | y | | -sin(a) cos(a) | | y0 |
 |- -| |- -| |- -|
 */
 help_norm_vec_x=norm_vec_x;
 help_norm_vec_y=norm_vec_y;
 norm_vec_x = cos(angle)*help_norm_vec_x + sin(angle)*help_norm_vec_y;
 norm_vec_y =-sin(angle)*help_norm_vec_x + cos(angle)*help_norm_vec_y;
}

Thanks to Laurent Tettoni for his advice ...

d V

⊥ V

x

y

y’

y

x x’

dfor

dlat

α

∆α
α'd

d V d for⋅ ⊥ V dlat⋅+= ⊥ V 90()cos 90()sin

90()sin– 90()cos
V 0 1

1– 0
V==

V

V'

∆x x' x–() V= xd for Vydlat+= ∆y y' y–() V= yd for Vx– dlat=
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 85

Appendix
5.2 Levenshtein simulators on the WEB

In many applications, it is necessary to determine the similarity of two strings. A widely-used notion
of string similarity is the Levenshtein (or edit) distance: the minimum number of insertions, deletions,
and substitutions required to transform one string into the other. More information can be found on
under http://www.cs.princeton.edu/~ristad/papers/pu-532-96.html.

There are some very good and instructive Levenshtein simulators on the web. Therefore it is worth to
mention it in this section:

• http://www.cut-the-knot.com/do_you_know/Strings.html
Very nice Java applet which measures the Levenshtein distance between two strings. The applet is
very intuitive and can even compare the result between Levenshtein and Hamming distance.

• http://www.cedar.buffalo.edu/Linguistics/Forms/Strmatch.html
This simulator allows to experiment with an extended version of the Damerau-Levenshtein string
similarity metric. It matches a user supplied corrupted string with a lexicon of 21299 words.

• http://lithwww.epfl.ch/~fbuchs/Leven/src/publ/Grid.html
This Java applet performs pattern classification of numbers based on Levenshtein. The Java applet
offers a graphical user interface to draw a number which will be recognized.
86 EPFL-LAMI Ph. Mächler

Appendix
5.3 PPD simulation with Mathematica
(* == *)
(* PPD SIMULATOR FOR THE KHEPERA ROBOT *)
(* *)
(* September 1996 at LAMI-DI EPF Lausanne by Philip Maechler *)
(* *)
(* Tips: *)
(* - Never use var. names starting with capital letter or containing '_'! *)
(* - Type '<<filename' to start the script in Mathematica. *)
(* - Don't stop a turning calculation or you have to restart the kernel. *)
(* - Un-Tab this file before exporting to a text processor *)
(* Last change: September 11, 1996 *)
(* ============================== Variable definitions ====================== *)
fieldDimension=200; (* Size of the 2-dimensional array field in pixels *)
v1=100.0; (* speed of the left wheel (1) in mm/sec *)
v2=100.0; (* speed of the right wheel (2) in mm/sec *)
base=52; (* wheelbase. Wheel distance in mm (Khepera 52mm) *)
slip=1; (* slip of the wheels in +/-% *)
time=40.0; (* experiment duration in sec. *)
iterationStep=1; (* iteration steps for the calculation (default=1) *)
resolution=10; (* # of calculation for each dimension *)
timeSnapShot=10; (* snapshot of the LPF every x seconds 0=off *)
turnTime1=20; turnAngle1=180 Degree //N (* Turn: timedelay 0=off *)
turnTime2= 0; turnAngle2=-90 Degree //N (* Turn: timedelay 0=off *)
turnTime3= 0; turnAngle3= 90 Degree //N (* Turn: timedelay 0=off *)
startAngle=0 Degree //N; (* start angle direction of the robot *)
modeTraceWay=False; (* mark the covered way by the robot on the floor *)
modeTraceLine=True; (* mark only the covered trajectory if slip=0 *)
modeRecursiveDirect=True; (* Recursive or direct calculation mode *)
modeOnlyCorner=False; (* show not the whole PPD, only 4 corners *)
(* ============================== Initialization ============================ *)
Clear[field];
field=Table[0, {fieldDimension}, {fieldDimension}];
If[modeRecursiveDirect,,modeTraceWay=False];
borderZmax=0;
borderXmin=100000; borderXmax=-100000; borderYmin=100000; borderYmax=-100000;

(* ============================== plotPoint ================================= *)
(* plotPoint sets a point in the field array *)
(* modeCalibrate : =True: just adapt border limits / =False: set point *)
(* modeFixOrInc : =True: the hight of the point is fix or increment =False *)
(* value : value for the fixed point or for the increment steps *)
Clear[plotPoint];
plotPoint[posX_, posY_, modeCalibrate_, modeFixOrInc_, value_] := Block[
 {arrayX, arrayY}, (* local variables *)
 If[modeCalibrate,
 If[borderXmin>posX,borderXmin=posX,];
 If[borderXmax<posX,borderXmax=posX,];
 If[borderYmin>posY,borderYmin=posY,];
 If[borderYmax<posY,borderYmax=posY,];
 ,(*else*)
 arrayX=Round[(fieldDimension-4)*(posX-borderXmin)/borderWidth]+2;
 arrayY=Round[(fieldDimension-4)*(posY-borderYmin)/borderWidth]+2;
 If[(arrayX>=1) && (* Boundary check *)
 (arrayY>=1) &&
 (arrayX<=fieldDimension) &&
 (arrayY<=fieldDimension) ,
 If[modeFixOrInc,
 If[field[[arrayY, arrayX]]<value, field[[arrayY,arrayX]]=value,];
 ,(* Else *)
 field[[arrayY,arrayX]]+=value;
];(* EndIf *)
 If[field[[arrayY,arrayX]]>borderZmax, borderZmax=field[[arrayY,arrayX]],];
 ,(* Else *)
 Print["*** ERROR in function plotPoint *** Point out of range:"];
 Print["field index: x=", arrayX, "; y=", arrayY, " dV1=", runV1, " dV2=", runV2];
](* EndIf *)
](* EndIf modeCalibrate*)
]
(* ============================== recursiveCalc ============================= *)
Clear[recursiveCalc];
recursiveCalc[runV1_, runV2_, modeCalibrate_, modeTraceWay_] := Block[
 {help, runTime, angle}, (* local variables *)
 x=0.0; (* start point x *)
 y=0.0; (* start point y *)
 angle=startAngle; (* start angle *)
 For[runTime=iterationStep, runTime<=time, runTime+=iterationStep,
 help=((runV2 + (runV1-runV2)/2)*iterationStep);
 x+= ((Sin[angle]) help); (* new x position of the robot *)
 y+= ((Cos[angle]) help); (* new y position of the robot *)
 angle+=(runV1-runV2)/base //N; (* new direction of the robot *)

 If[runTime==turnTime1, angle+=turnAngle1,];
 If[runTime==turnTime2, angle+=turnAngle2,];
 If[runTime==turnTime3, angle+=turnAngle3,];

 If[timeSnapShot!=0,
 If[Mod[runTime,timeSnapShot]==0,
 plotPoint[x, y, modeCalibrate, False, 1];
 ,];(* EndIf without else *)
 ,];(* EndIf without else *)

 If[modeTraceWay,
 plotPoint[x, y, modeCalibrate, True, 1]
 ,];(* EndIf without else *)
 If[modeTraceLine,
 If[(runV1==v1 && runV2==v2),
 plotPoint[x, y, modeCalibrate, True, borderZmax/3];
 ,](* EndIf without else *)
 ,](* EndIf without else *)
];(* For *)
 plotPoint[x, y, modeCalibrate, False, 1];
] (* Block *)
(* ============================== directCalc ================================ *)
Clear[directCalc];
directCalc[runV1_, runV2_, modeCalibrate_] := Block[
 {x, y}, (* local variables *)
 If[runV1!=runV2,
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 87

Appendix
 x=(base/2+runV2*base/(runV1-runV2))*(1-Cos[(runV1-runV2)/base*time]);
 y=(base/2+runV2*base/(runV1-runV2))*Sin[(runV1-runV2)/base*time];
 ,(*else*)
 x=0;
 y=runV2*time;
];(*EndIf*)
 plotPoint[x, y, modeCalibrate, False, 1];
] (* Block *)
(* ============================== main function ============================= *)
For [runV1=v1-(v1/100*slip), runV1<=v1+(v1/100*slip), runV1+=(v1/100*slip*2)/resolution,
 If[modeRecursiveDirect,
 recursiveCalc[runV1, v2-(v2/100*slip), True, modeTraceWay];
 recursiveCalc[runV1, v2+(v2/100*slip), True, modeTraceWay];
 ,(*else*)
 directCalc[runV1, v2-(v2/100*slip), True];
 directCalc[runV1, v2+(v2/100*slip), True];
];(*EndIf*)
];
For [runV2=v2-(v2/100*slip), runV2<=v2+(v2/100*slip), runV2+=(v2/100*slip*2)/resolution,
 If[modeRecursiveDirect,
 recursiveCalc[v1-(v1/100*slip), runV2, True, modeTraceWay];
 recursiveCalc[v1+(v1/100*slip), runV2, True, modeTraceWay];
 ,(*else*)
 directCalc[v1-(v1/100*slip), runV2, True];
 directCalc[v1+(v1/100*slip), runV2, True];
];(*EndIf*)
];
If[modeTraceWay, plotPoint[0, 0, True, True, 1],]; (* consider start point in field *)
If[borderXmax-borderXmin>borderYmax-borderYmin,
 borderWidth=borderXmax-borderXmin;
 borderYmin-=(borderWidth-(borderYmax-borderYmin))/2;
 borderYmax=borderYmin+borderWidth;
,(*else*)
 borderWidth=borderYmax-borderYmin;
 borderXmin-=(borderWidth-(borderXmax-borderXmin))/2;
 borderXmax=borderXmin+borderWidth;
];
If[modeOnlyCorner,
runV1=v1-(v1/100*slip);runV2=v2+(v2/100*slip);recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1+(v1/100*slip);runV2=v2-(v2/100*slip);recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1-(v1/100*slip);runV2=v2 ;recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1+(v1/100*slip);runV2=v2 ;recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1 ;runV2=v2+(v2/100*slip);recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1 ;runV2=v2-(v2/100*slip);recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1+(v1/100*slip);runV2=v2+(v2/100*slip);recursiveCalc[runV1, runV2, False, modeTraceWay];
runV1=v1-(v1/100*slip);runV2=v2-(v2/100*slip);recursiveCalc[runV1, runV2, False, modeTraceWay];
,(*else*)
For [runV1=v1-(v1/100*slip), runV1<=v1+(v1/100*slip), runV1+=(v1/100*slip*2)/resolution,
 For [runV2=v2-(v2/100*slip), runV2<=v2+(v2/100*slip), runV2+=(v2/100*slip*2)/resolution,
 If[modeRecursiveDirect,
 recursiveCalc[runV1, runV2, False, modeTraceWay];
 ,(*else*)
 directCalc[runV1, runV2, False];
]; (* EndIf *)
]; (* For *)
]; (* For *)
];(*EndIf*)
If[modeTraceWay, plotPoint[0, 0, False, True, borderZmax],]; (* Mark start point *)
ListContourPlot[field,
Axes -> True,
 AxesLabel ->{"x-Axis (mm)", "y-Axis (mm)"},
(*ColorFunction -> (GrayLevel[1-#*2]&),*)
ColorFunction -> (GrayLevel[Which[#==0,1,
#<0.15,0.5,
#>=0.15,0]]&),
ContourLines -> True,
Contours -> 30, (* chooses n equally spaced contours between the maximum and minimum z values.*)
ContourShading -> True,
Frame -> False,
Ticks -> {{{1,borderXmin}, {fieldDimension/2,borderXmin+(borderXmax-borderXmin)/2//N},
{fieldDimension,borderXmax}},
 {{1,borderYmin}, {fieldDimension/2,borderYmin+(borderYmax-borderYmin)/2//N},
{fieldDimension,borderYmax}}}
];
ListContourPlot[field,
Axes -> True,
 AxesLabel ->{"x-Axis (mm)", "y-Axis (mm)"},
ColorFunction -> (GrayLevel[If[#==0, 1, 0]]&),
ContourLines -> True,
Contours -> 30, (* chooses n equally spaced contours between the maximum and minimum z values.*)
ContourShading -> True,
Frame -> False,
Ticks -> {{{1,borderXmin}, {fieldDimension/2,borderXmin+(borderXmax-borderXmin)/2//N},
{fieldDimension,borderXmax}},
 {{1,borderYmin}, {fieldDimension/2,borderYmin+(borderYmax-borderYmin)/2//N},
{fieldDimension,borderYmax}}}
];

ListPlot3D[field,
 AxesLabel ->{"x-Axis (mm)", "y-Axis (mm)", ""},
 Ticks -> {{{1,borderXmin}, {fieldDimension/2,borderXmin+(borderXmax-borderXmin)/2//N},
{fieldDimension,borderXmax}},
 {{1,borderYmin}, {fieldDimension/2,borderYmin+(borderYmax-borderYmin)/2//N},
{fieldDimension,borderYmax}},
 {1,borderZmax/2//N,borderZmax}},
 PlotRange -> {1,borderZmax},
 Mesh -> True,
 ClipFill -> None
];
If[modeRecursiveDirect, Print["Recursive calculation"], Print["Direct calculation"]];
Print["WheelSpeed left=", v1, "mm/sec right=", v2, "mm/sec; Slip=", slip, "%."];
Print["Simulated duration =", time, "sec, iteration steps =", iterationStep, "sec."];
Print["Visualisation field =", fieldDimension, "x", fieldDimension, " ; ", resolution, " values for each
∆V1 and ∆V2."];
Print["Start point: 0,0 with ", startAngle/Pi*180//N, "Degree angle."];
If[modeRecursiveDirect,
If[turnTime1>0, Print["1. turn point after ", turnTime1, "sec. Correction angle=", turnAngle1/Pi*180//N,
"Degree."],];
If[turnTime2>0, Print["2. turn point after ", turnTime2, "sec. Correction angle=", turnAngle2/Pi*180//N,
"Degree."],];
If[turnTime3>0, Print["3. turn point after ", turnTime3, "sec. Correction angle=", turnAngle3/Pi*180//N,
"Degree."],];
,];(*EndIf without else*)
88 EPFL-LAMI Ph. Mächler

Appendix
5.4 Simplified Fuzzy ARTMAP
/***/
/* Simplified Fuzzy ARTMAP */
/* from Tom Kasuba, described in AI Expert November 1993 */
/***/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#define CATEGORY_NUMBER 2
#define INPUT_WIDTH 2
#define INPUT_2WIDTH (2*INPUT_WIDTH)
#define PATTERN_MAX 5
#define NODE_MAX 40
#define MIN(a,b) ((a)<(b)?(a):(b))
#define TRUE -1
#define FALSE 0
float vigilance, vigilance_baseline=0.4, epsilon=0.0001 , alpha=0.0000001;
float W[NODE_MAX][INPUT_2WIDTH], AND[NODE_MAX][INPUT_2WIDTH];
float NODE_ACTIVITION[NODE_MAX], NODE_MATCH[NODE_MAX];
int CATEGORY_USED[CATEGORY_NUMBER], NODE_CAT[NODE_MAX];
int _mismatch_vigilance=FALSE , _mismatch_category=FALSE;
int mode_used=0;
/***/
void createOutputNode(float *input, int supervisor)
{
 int i;
 if (mode_used+1>=NODE_MAX)
 { printf("No place for more nodes\007\n"); return;}
 printf("Creating new output node nr. %d for input: ", mode_used);
 for (i=0; i<INPUT_2WIDTH; i++)
 { W[mode_used][i]=input[i]; printf("%5.3f ", input[i]); } printf("\n");
 NODE_CAT[mode_used]=supervisor;
 mode_used+=1; /* Increment output node counter */
}
/***/
void outputNodeActivation(float *input)
{
 int i, node;
 float div_upper, div_lower;
 for(node=0; node<mode_used; node++)
 {
 for(i=0;i<INPUT_2WIDTH;i++)
 AND[node][i]=MIN(input[i], W[node][i]);
 div_upper=0.0;
 for(i=0;i<INPUT_2WIDTH;i++)
 div_upper+=AND[node][i];
 div_lower=0.0;
 for(i=0;i<INPUT_2WIDTH;i++)
 div_lower+=W[node][i];
 NODE_ACTIVITION[node]=div_upper/(alpha+div_lower);
 NODE_MATCH[node]=div_upper/INPUT_WIDTH;
 }
}
/***/
void display(void)
{
 int i, node;
 printf("OutputNodeActivation [%d]:", mode_used);
 for (node=0; node<mode_used; node++)
 printf("%5.3f ", NODE_ACTIVITION[node]); printf("\n");
 printf("Match function [%d]:", mode_used);
 for (node=0; node<mode_used; node++)
 printf("%5.3f ", NODE_MATCH[node]); printf("\n");
 printf("Vigilance :%f\n", vigilance);
 for (node=0; node<mode_used; node++)
 {
 printf("Top-Down weights [%d]:", node);
 for (i=0; i<INPUT_2WIDTH; i++)
 printf("[w=%5.3f a=%5.3f] ", W[node][i], AND[node][i]);
 printf("\n");
 }
}
/***/
void search_winner_node(int supervisor)
{
 int node_disabled[mode_used], node, node_win;
 for (node=0; node<mode_used; node_disabled[node++]=FALSE);
 for (;;)
 {
 node_win=-1;
 for (node=0; node<mode_used; node++)
 if (node_disabled[node]==FALSE)
 if (node_win==-1)
 node_win=node;
 else
 if (NODE_ACTIVITION[node]>NODE_ACTIVITION[node_win])
 node_win=node;
 if (node_win==-1)
 { printf("!!! No node could be found. Create a new one...\n"); break; }
 printf("Winner node %02d: ", node_win);
 if (NODE_MATCH[node_win]<vigilance)
 { /* start if2 */
 mismatch_vigilance=TRUE; /* Suppress activation of the output node*/
 node_disabled[node_win]=TRUE;
 printf("!!! VIGILANCE MISMATCH! Match of node %d = %f (vig=%f). Try again...\n",
 node_win, NODE_MATCH[node_win], vigilance);
 }/* ende if2 */
 else
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 89

Appendix
 { /* start else2 */
 if (NODE_CAT[node_win]==supervisor)
 { /* start if3 Winning output node encode the same category */
 int i;
 for(i=0;i<INPUT_2WIDTH;i++)
 W[node_win][i]=AND[node_win][i];
 _mismatch_vigilance=FALSE; /*there was no mismatch*/
 _mismatch_category=FALSE;
 printf("!!! Winner node %d found! Correspond to supervisor category %d. Weights addapted.\n",
 node_win, supervisor);
 break;
 }/* ende if3 */
 else
 { /* start else3 */
 vigilance=NODE_MATCH[node_win]+epsilon;
 _mismatch_category=TRUE;/* There is a category mismatch */
 node_disabled[node_win]=TRUE;
 printf("!!! CATEGORY MISMATCH! Node %d is not cat. %d.", node_win, supervisor);
 printf(" Set vigilance to %f. Try again...\n", vigilance);
 }/* ende else3 */
 }/* ende else2 */
 }/* ende for */
}
/***/
void training(float *input, int supervisor)
{
 if (CATEGORY_USED[supervisor]==FALSE) /* Never used this category */
 { /* start if1 */
 printf("\007*****Categorie was never seen... create a new one*****\n");
 createOutputNode(input, supervisor);
 CATEGORY_USED[supervisor]=TRUE;
 }/* ende if1 */
 else
 { /* start else1 */
 vigilance=vigilance_baseline;
 outputNodeActivation(input);
 search_winner_node(supervisor);
 display();
 /*---*/
 if((_mismatch_vigilance==TRUE) || (_mismatch_category==TRUE)) /* Create an output node (if4)*/
 createOutputNode(input, supervisor);
 }/* ende else1 */
 /***/
 printf("press RETURN to continue...\n"); getchar();
}
/***/
int use(float *input)
{
 int node, node_win;
 outputNodeActivation(input);
 for (node=node_win=0; node<mode_used; node++)
 if (NODE_ACTIVITION[node]>NODE_ACTIVITION[node_win])
 node_win=node;
 return(NODE_CAT[node_win]);
}
/***/
void main(void)
{
 int i, pattern;
 float input[INPUT_2WIDTH];
 float INPUTS[PATTERN_MAX][INPUT_WIDTH], CATEGORY[PATTERN_MAX];
 for(i=0;i<CATEGORY_NUMBER;i++) CATEGORY_USED[i]=FALSE;
 INPUTS[0][0]=0.3 ; INPUTS[0][1]=0.3 ; CATEGORY[0]=0; /* inside */
 INPUTS[1][0]=0.7 ; INPUTS[1][1]=0.7 ; CATEGORY[1]=0; /* inside */
 INPUTS[2][0]=0.1 ; INPUTS[2][1]=0.1 ; CATEGORY[2]=1; /* outside */
 INPUTS[3][0]=0.9 ; INPUTS[3][1]=0.9 ; CATEGORY[3]=1; /* outside */
 INPUTS[4][0]=0.1 ; INPUTS[4][1]=0.8 ; CATEGORY[4]=1; /* outside */
 printf("===\n");
 for(pattern=0; pattern<PATTERN_MAX; pattern++) /*start work loop*/
 {
 for(i=0;i<INPUT_WIDTH;i++)
 { input[i]= INPUTS[pattern][i];
 input[i+INPUT_WIDTH]=1-INPUTS[pattern][i]; }
 printf("%d. sample: (", pattern);
 for(i=0;i<INPUT_2WIDTH;i++)
 printf("%5.3f ", input[i]);
 printf(") ---\n");
 training(input, CATEGORY[pattern]);
 }
 printf("RESULT:\n");
 for (i=0; i<mode_used; i++)
 printf("Node %d with weights [%5.3f,%5.3f] is allocated to category %d\n",
 i, W[i][0], W[i][1], NODE_CAT[i]);
 printf("Learning of the 5 pattern finished. Try now the network (CTRL-C to stop):\n");
 for (;;)
 {
 printf("Enter a point (x and y position between 0 and 1):");
 scanf("%f %f",&input[0], &input[1]);
 input[2]=1.0-input[0]; input[3]=1.0-input[1];
 printf("The pos(%f,%f) belongs to category %d\n", input[0],input[1], use(input));
 }
}

90 EPFL-LAMI Ph. Mächler

References
C

A
P
T
E
R

H

6 References

[Abidi et al., 1992] Mongi A. Abidi, Rafael C. Conzalez, Data Fusion In Robotics and Machine
Intelligence, Academic Press Inc., San Diego, 1992, 546 pages, ISBN 0-12-
042120-8

[Bauer R., 1995] Rudolf Bauer, Active manoeuvres for supporting the localisation process of
an autonomous mobile robot, Robotics and Autonomous Systems Nr. 16,
1995, 8 pages (39-46)

[Borenstein J., 1994] Johann Borenstein, The CLAPPER: a Dual-Drive Mobile Robot with Internal
Correction of Dead-reckoning Errors, Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, San Diego, CA, May
8-13, 1994, pp. 3085-3090.

[Borenstein J., 1995] Johann Borenstein, Internal Correction of Dead-reckoning Errors With the
Compliant Linkage Vehicle, Journal of Robotic Systems, Vol. 12, No. 4, April
1995, pp. 257-273

[Borenstein et al, 1996] J. Borenstein, H.R. Everett, L. Feng, Where am I? Systems and Methods for
Mobile Robot Positioning, Wellesley, MA: A.K. Peters, March 1996, 282
pages, http://www-personal.engin.umich.edu/~johannb/position.htm

[Borenstein, Feng, 1996] Johann Borenstein, Liqiang Feng, Measurement and Correction of
Systematic Odometry Errors in Mobile Robots, IEEE Transaction on
Robotics and Automation, Vol. 12, No. 6, December 1996, 12 pages

[Brooks, 1993] Rodney A. Brooks, Lynn Andrea Stein, Building Brains for Bodies, MIT AI
Lab Memo #1439, 15 pages, August 1993

[Brown et al, 1992] C. Brown, H.F. Durrant-Whyte, J. Leonard, B. Rao, B. Steer, Distributed
Data Fusion Using Kalman Filtering: A Robotics Application, In M. A. Abidi
and R.C. Gonzalez Data Fusion in Robotics and Machine Intelligence,
chapter 7, pages 267-309, Academic Press, 1992 [Abidi et al., 1992]

[Braitenberg, 1984] V. Braitenberg, Vehicles. Experiments in Synthetic Psychology, MIT Press,
Cambridge, 1984

[Campion G., 1996] Guy Campion et al., Structural Properties and Classification of Kinematic
and Dynamic Models of Wheeled Mobile Robots, IEEE Transactions on
Robotics and Automation, Vol. 12, No. 1, February 1996

[Canudas C., 1992] C. Canudas de Wit and O. J. Sørdalen, Exponential Stabilization of Mobile
Robots with Nonholonomic Constraints, IEEE Transactions on Automatic
Control, Vol. 37, No. 11, November 1992

[Carpenter et al, 1987a] Gail A. Carpenter and S. Grossberg, ART 2: Self-Organization of Stable
Recognition Codes for Analog Input Patterns, First IEEE Conference on
Neural Networks, San Diego, California, June 21-24, 1987. In Conference
proceedings, vol. II (1987), page 727-735
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 91

References
[Carpenter et al, 1987b] Gail A. Carpenter and S. Grossberg, ART 2: Self-Organization of Stable
Category Recognition Codes for Analog Input Patterns, Applied Optics, vol.
26 (1987), no. 23, page 4919-4930

[Carpenter et al, 1991c] Gail A. Carpenter, S. Grossberg, D. Rosen, Fuzzy ART: Fast Stable Learning
of Analog Patterns by an Adaptive Resonance System, Neural Network, 1991,
Vol. 4, page 759-771

[Catling I., 1994] I. Catling, Advanced Technology for Road Transport: IVHS and ATT, Artech
House, Boston, MA, 1994

[Collins L, 1975] Lyndhurst Collins, An Introduction to Markov chain analysis, Concepts and
techniques in modern geography no.1, University of Edinburgh, Norwich,
ISBN-0-902246-43-7, 1975, 36 pages

[Crowley et al., 1993] J. L. Crowley, Y. Demazeau, Prinziples and Techniques for Sensor Data
Fusion, Signal Processing, Vol. 32 Nos 1-2, pages 5-27, May 1993

[Descartes R., 1637] René Descartes, Discours de la méthode, 1637, http://www.ambafrance.org/
HYPERLAB/PEOPLE/_descart.html

[Devy M., 1995] Michel Devy, On autonomous navigation in a natural environment, Robotics
and Autonomous Systems Nr. 16, 1995, 12 pages (5-16)

[Dubrawski et al, 1994] Artur Dubrawski, Patrick Reignier, Learning to Categorize Perceptual Space
of a Mobile Robot Using Fuzzy-ART Neural Network, IROS’94, Laboratory
of Adaptive Systems, Warsaw, Poland & Laboratoire d’Informatique
Fondamentale et d’Intelligence Artificielle, Grenoble, France, 6 pages.

[Duda & Hart, 1973] Richard O. Duda, Peter E. Hart, Pattern Classification and Scene Analysis,
Stanford Research Institute, California, John Wiley & Sons, Inc, 1973, 480
pages, ISBN 0-471-22361-1

[Durieu C., 1995] Cécile Durieu, A Data Fusion Application for Location of a Mobile Robot
Using an Odometer and a Panoramic Laser Telemeter, Intelligent
Autonomous System, 1995

[Everett H., 1995] H. R. Everett, Sensors for Mobile Robots, A K Peters Ltd, Wellesley,
Massachusetts, 1995, 530 pages, ISBN 1-56881-048-2

[Fausett L., 1994] Laurenne Fausett, Fundamentals of Neural Networks; Architectures,
algorithms, and applications, Prentice-Hall International Inc., New Jersey,
1994, 440 pages, ISBN 0-13-042250-9

[Floreano et al., 1996] Dario Floreano, Francesco Mondada, Evolution of Homing Navigation in a
Real Mobile Robot, IEEE Transactions on Systems, Man and Cybernetics,
Part B, Vol 26, Number 3, June 1996, pages 396-407.

[Freriks L.W. et al, 1992] L.W. Freriks, P.J.M. Cluitmans, M.J. van Gils, The Adaptive Resonance
Theory Network: (Clustering-) Behaviour in Relation With Brainstem
Auditory Evoked Potential Patterns, Eindhoven University of Technology
Report 92-E-264, November 1992, ISBN 90-6144-264-8, 102 pages

[Fritzke B., 1997] Bernd Fritzke, Some Competitive Learning Methods, Inst. for Neural
Computation, Ruhr-Universität, Germany, 1997, http://
www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/JavaPaper

[Grewal et al., 1997] M. S. Grewal, A. P. Andrew, Kalman Filtering Theory and Practice, Prentice
Hall, 5th Printing, June 1997. Original publication February 1993

[Grossberg S., 1982] Grossberg, Studies of mind and brain: Neural principles of learning,
perception, development cognition and motor control, Reidel, Boston, 1982
92 EPFL-LAMI Ph. Mächler

References
[Grossberg S., 1988] S. Grossberg, The ART of adaptive pattern recognition by self-organizing
neural network, Computer, Vol. 21, Mar., 1988, page 77-88

[Hall et al., 1990] D. L. Hall, R. J. Linn, A Taxonomy of Multi-Sensor Data Fusion Techniques,
Proceedings of the 1990 Joint Service Data Fusion Symposium, Vol. 1, May
1990, page 593-610

[Hartmann G. et al, 1995]Georg Hartmann, Rüdiger Wehner, The ant’s path integration system: a
neural architecture, Biological Cybernetics 73, Springer Verlag, 1995,
15 pages (483-497)

[Harvey D., 1967] D. Harvey, Models of the evolution of spatial patterns in human geography,
Models in Geography, London, 1967, chapter 14

[Hertz J. et al, 1991] John Hertz, Anders Krogh, Richard G. Palmer, Introduction to the theory of
neural computation, Addison-Wesley, Redwood City CA, 325 pages, 1991,
ISBN 0-201-50395-6

[Kampmann P., 1991] Peter Kampmann, Ein topologisch strukturiertes Weltmodell als Kern eines
Verfahrens zur Loesung von Navigationsaufgaben bei mobilen Robotern,
Diss. Techn. Univ. Muenchen, 1991, 109 pages, ISBN 3-18-147808-3

[Kasuba, 1993] Tom Kasuba, Simplified Fuzzy ARTMAP, AI Expert, November 1993, page
18-25

[Knieriemen T., 1991] Thomas Knieriemen, Autonome mobile Roboter; Sensordateninterpretation
und Weltmodellierung zur Navigation in unbekannter Umgebung, 1991,
258 pages, ISBN 3-411-15031-9

[Kohonen T., 1981] T. Kohonen, Automatic formation of topological maps of patterns in a self
organizing system, Proc. 2nd Scandinavian Conf. on Image Analysis, Espoo,
Finland, 1981, page 214-220

[Kohonen T., 1990] T. Kohonen, The self-organizing map, Proc. of the IEEE, Vol. 78, No. 9, Sep.
1990, page 1464-1481

[Kuipers B., 1991] Benjamin J. Kuipers, Yung-Tai Byun, A robto exploration and mapping
strategy based on a semantic hierarchy of spatial representations, Journal of
Robotics and Autonomous Systems, 8:47-63, 1991

[Kuipers B., 1997] Benjamin J. Kuipers, David Pierce, Map Learning with Uninterpreted
Sensors and Effectors, University of Texas at Austin, Austin TX 78712 USA,
appeared in Artificial Intelligence Journal, 1997, 60 pages

[Kurz A., 1994] Andreas Kurz, Lernende Steuerung eines autonomen mobilen Roboters, Diss.
Techn. Hochschule Darmstadt, 1994, 192 pages, ISBN 3-18-342808-3

[Levenshtein V.I., 1975] V.I. Levenshtein, On the minimal redundancy of binary error - correcting
codes, Information and Control, Vol 28, Nr. 4, August 1975, 23 pages (268-
291), http://theory.lcs.mit.edu/~iandc/Authors/levenshteinvladimiri.html

[Lin et al., 1993] Long-Ji Lin and Stephen Jose Hanson, On-line learning for indoor
navigation: Preliminary results with RatBot, NIPS93, Robot Learning
Workshop, 1993

[Lin L.J., 1993] Long-Ji Lin, Reinforcement Learning for Robots Using Neural Networks,
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1993

[Mächler Ph., 1995] Philip Maechler, Map creator for variable natural landmarks, report: Federal
Institute of Technology, Switzerland, 1995, 14 pages
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 93

References
[Maechler Ph., 1996] Philip Maechler, Navigation and path planning, based on automatic
recognition of significant experiences from the environment, Thesis
Intermediary report, June 1996

[Maechler Ph., 1997] Philip Mächler, Robot odometry correction using grid lines on the floor,
M.C.P.A Pisa, Italy, 1997, 10 pages

[Mallot H.A. et al, 1995] H. A. Mallot et al., View-based cognitive map learning by an autonomous
robot, ICANN ‘95, Max-Planck-Institut für biologische Kybernetik,
Tübingen

[Mataric M., 1990] Maja J. Mataric, Navigating with a Rat Brain: A Neurobiologically-Inspired
Model for Robot Spatial Representation, J-A. Mayer, & S.W. Wilson (eds),
1990, From animals to animats, MIT

[Michel O., 1996] Olivier Michel, Khepera simulator package version 2.0, Freeware mobile
robot simulator downloadable from http://diwww.epfl.ch/lami/team/michel/
khep-sim/index.html

[Nake F., 1974] F. Nake, Ästhetik als Informationsverarbeitung, Springer, 1974

[Newman, 1982] E. A. Newman, P. H. Hartline, The Infrared "Vision" of Snakes, Sci. Amer.
246(3), 1982, page 116-127

[Nicoud et al., 1995a] J.D. Nicoud, Ph. Mächler, Robots for Anti-Personnel Mine Search, IAV’95
Conference, Espoo, June 1995

[Nicoud et al., 1995b] J.D. Nicoud, Ph. Mächler, Pemex-B, a Low Cost Robot for Searching Anti-
Personnel Mines, WAPM’95, Lausanne, June 1995

[Pandya A.S. et al, 1996] Abhijit S. Pandya, Robert B. Macy, Pattern Recogition with Neural Networks
in C++, CRC Press, Florida, 1996, ISBN 0-8493-9462-7

[Pau L. F., 90] L.F. Pau, Mapping and spatial modeling for navigation, 1990, 355 pages,
ISBN 3-540-52771-7

[Pfeifer R., 1996] Rolph Pfeifer, Building “Fungus Eaters”: Design Principles of Autonomous
Agents, SAB96, From Animals to Animats 4, 1996, page 3-12,
pfeifer@ifi.unizh.ch

[Piaget J., 1970] Jean Piaget, L’épistémologie génétique, Que sais-je, Presses Universitaires de
France, 126 pages, 1970, ISBN 2-13-040208-9

[Piasecki M., 1995] Marek Piasecki, Global Localization for Mobile Robots by Multiple
Hypothesis Tracking, Robotics and Autonomous Systems Nr. 16, 1995, 12
pages (93-104)

[Pruski A., 96] Alan Pruski, Robotique mobile, la planification de trajectoire, 1996,
236 pages, ISBN 2-86601-549-5

[Recce & Harris, 1998] Michael Recce, Kenneth D. Harris, Memory for places: A navigation model
in support of Marr’s theory of hippocampal function, Dep. of Anatomy and
Developmental Biology, University College, London, UK, 40 pages.

[Reuhkala E., 1983] E. Reuhkala, Recognition of strings of discrete symbols with special
application to isolated word recognition, Acta Polyt. Scand. Ma 38. Dr. Tech.
dissertation, Helsinki Univ. of Tech. 1983

[Revuz D., 1984] D. Revuz, Markov chains, North-Holland, 1984, 374 pages, ISBN 0-444-
86400-8

[Ross S. M., 1997] Sheldon M. Ross, Introduction to probability models, Academic Press,
ISBN 0-12-598470-7, 1997, 669 pages
94 EPFL-LAMI Ph. Mächler

References
[de Sa, Ballard, 1998] Virginia R. de Sa, Dana H. Ballard, Category Learning Through
Multimodality Sensing, MIT, Neural Computing 10, 1998, pages 1097-1117

[Scheier Ch., 1996] Christian Scheier, Categorization in a real-world agent using haptic
exploration and active perception, SAB96, From Animals to Animats 4,
1996, page 65-74, scheier@ifi.unizh.ch

[Schmidhuber J., 1997] Jürgen Schmidhuber, What’s interesting?, Technical report, IDSIA-35-97,
Lugano, Switzerland, 23 pages, 1997, http://www.idsia.ch/~juergen

[Schürmann J., 1996] Jürgen Schürmann, Pattern Classification, John Wiley & Sons, Inc, Canada,
1996, 370 pages, ISBN 0-471-13534-8

[Song H., 1996] Ho-Keun Song, Jong-soo Choi, Edge detection method for range image using
pseudo reflectance images, Dep. of Electronic Engineering, Chung-Ang
University, Seoul, Korea

[Wehner R., 1992] Rüdiger Wehner, Homing in Arthropods, Chapter 3 of Animal Homing, ed. by
F. Papi, London, Chapman and Hall, 1992, pages 45-144

[Welch S., 92] Sharon S. Welch, Sensors and sensor systems for guidance and navigation II,
1992, 323 pages, ISBN 0-8194-0859-X

[Wolfram, 1992] S. Wolfram, Mathematica Reference Guide, Addison-Wesley, 1993

[Xu H. et al., 95] H. Xu et al., Sensor fusion and positioning of the mobile robot LiAS, IAS’95,
1995
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 95

References
96 EPFL-LAMI Ph. Mächler

Remerciements aux dieux de l’Olympe
C

A
P
T
E
R

H

7 Remerciements aux dieux de l’Olympe

Merci à Jean-Daniel, Zeus souverain veillant sur nous tous, immortels et mortels, dieux et sémi-dieux,
héros et farfelus assistants que nous sommes, la foudre de tes expériences incroyables et le pouvoir de
ton savoir sans frontières, nous ont tous fait vivre au rythme de tes passions scientifiques. Merci de
m'avoir offert une place sur le char du LAMI.

Merci à Laurent, véritable Poséidon, le dieu de la mer. Tu m'as encouragé à voyager au-delà des évi-
dences, le long des chemins de la pensée abstraite au cours de débats surprenants. Ton humour m’a
emporté dans les profondeurs de la langue française et tu m'as permis de hisser les voiles de l'amitié et
du partage. Merci pour ton soutien.

Merci à Jelena, personnification d’Athéna, déesse de la sagesse et de l'intelligence. Mariant force et
indulgence, ta présence s'accompagne toujours de conseils judicieux. Tu prends pitié des faibles et tu
aides les héros (je fais partie de ces derniers, n’est-ce pas?). Tu as su d'une main de fer, me redresser en
tout temps et tes jugements sages m'ont toujours remis sur la bonne voie. Merci pour ta lance et ton
bouclier.

Merci à Yuri, incarnation de Dionysos, dieu du vin et de l'allégresse! Tu as égayé les quelques heures
de liberté de nos vies de pauvres thésards trop responsables par des orgies culturelles, des expéditions
alpines et de folles aventures. Tu m'as permis de découvrir la Suisse Romande avec un regard Hispani-
que. Merci pour les rires et ta bonne humeur.

Merci à Paolo, qui tel Ulysse est doté de talents incroyables. Grâce à ta patience et à ton courage, tu as
franchi le gouffre séparant un Italien d’un Suisse Allemand. Tu as su, avec beaucoup de dextérité, me
secouer les méninges et me souffler quelques unes de tes brillantes idées (on parle de pasta bien sûr!).
Bien qu'étant à l'étranger, merci d'avoir toujours gardé un oeil de cyclope sur mon travail.

Merci à Marie-Jo, notre Iris, messagère des dieux, personnification de l'arc-en-ciel, union entre la
Terre et l'Océan. Toujours présente, toujours prête à secourir, toujours un mot d’encouragement. Tu es
le pilier du LAMI, l'arc sans lequel il ne peut voler. Au service de Zeus, tu sais pourtant créer le lien
entre nous tous.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 97

Remerciements aux dieux de l’Olympe
Merci à Jean-Bernard, qui tel Prométhée, ami de l'homme et pour moi, collègue de bureau inoublia-
ble. Tu es doté de la logique, et tu as tenté, parfois avec grande peine, de me l’inculquer. Tu nous as
donné à tous le feu de ta joie, les flammes de tes projets scientifiques mais aussi ton savoir-vivre et ton
expérience de la vie. Chaudement Merci.

Merci à Olivier C., un Apollon sincère, dieu de la lumière, de la musique et de la mantique. Un dieu
magnifique aux talents multiples dont celui de l'art pastoral. Toujours à l'écoute, ouvert et prêt a dépan-
ner tes amis. Tu n'as jamais hésité à donner un coup de main en cas de besoin. Tes conseils et mille for-
mules se jouent comme les notes émises de ta lyre de l'amitié et de la disponibilité.

Merci à Dario, un Hélios, dieu de la lumière. La nuit, tu traverses la voûte céleste et le jour, tu par-
cours la surface de la terre. Tu es à la recherche de nouvelles cultures et de nouveaux spécimens roboti-
ques. Tu m'as encouragé à m’étendre au delà des frontières Helvétiques et tu m’as poussé à regarder
dans l'au-delà des univers de réseaux neuronaux. Merci pour cet initiation au voyage.

Merci à Alcherio, Esculape modernisé, dieu de la médecine, aux talents rares, tu ressuscites les assis-
tants morts d’overdose de folie scientifique. Ton calme, ton regard scrutateur, tes conseils, tes idées
méticuleuses et ton don de l’organisation nous remettent tous sur le chemin de la guérison. Merci pour
toute ton aide et pour toute tes critiques constructives.

Merci à Sonya, telle Perséphone, ta présence fait refleurir le monde et apporte le bonheur à ceux qui
t'entourent. Mais, enlevée par la sombre et lointaine puissance d’Hadès-Mikado, tu nous replonges cha-
que année dans l'affliction, nous abandonnant au seul espoir de ton retour, synonyme de floraison et de
moissons. Le soutien décidé que tu m'as accordé dans les moments difficiles et l'attachement qui nous
lie ont été comme l'eau et la terre qui ont fait éclore mon coeur et ma thèse; ils me donneront demain la
force d'affronter sans crainte les nouveaux assauts d'Hadès.

Finalement je remercie l’ensemble du jury, Héros sauvant l’humanité par leur analyse sévère et leur
combat pour la victoire de la juste cause, par leur divers odyssées sur la terre, au ciel ou dans les enfers
de nos laboratoires.... Entreprenant des missions dangereuses à des fins morales, pour la conquête d’un
royaume de formules et dévoués à la quête du bien rationnel. L’Humanité se débat avec les monstres de
la technologie bidon, la maladie de l’imperfection et les créatures de foire... Votre esprit d’invention,
vos éternels combats et exploits pour l’accomplissement méthodique d’une science sans limites nous
incitent à vous considérer comme mes mentors. Hercule, Thésée, Orphée, Achille, Dédale ou Icare, qui
que vous soyez, une grand Merci à tous.
98 EPFL-LAMI Ph. Mächler

Publications
C

A
P
T
E
R

H

8 Publications

• Ph. Mächler, Looking for concepts: Unsupervised map construction with unknown sensor configura-
tion, IROS’98, Victoria, Canada, October 1998
The navigation method presented here allows a robot to find its position and its route without prior information
about its environment. What is going to be used as landmark is initially unknown, and no specific preprocessing
of the sensor signals is done. The robot nevertheless extracts meaningful information from its environment and
uses it to build a map. Both landmark definitions and map are continuously adapted. Working without pre-
defined categorization takes full advantage of the sensor abilities.
The result shows that a robot can reliably recognize self-defined landmarks suitable for its sensor capability and
create a map of its environment.

• Ph. Mächler, Without a clue: Unsupervised robot navigation with unknown sensor configuration,
IAV’98, Spain, March 1998
Abstract: The aim of this research project is to perform robot localization and navigation without prior informa-
tion about the environment. A method for the interpretation of different kinds of unknown but significant sensor
signals as “landmarks” is proposed. These landmarks are used to create a topological map containing navigation
information to get from one landmark to another. A navigator steers the robot toward “learned” landmarks to
synchronize the actual robot position with the position previously associated to the landmark. The results show
that a robot can learn to stabilize its odometry error without any prior information about the environment or its
sensor ability. It extracts only adequate environment features which make the algorithm suitable to new and
unknown surroundings.

• Ph. Mächler, Robot odometry correction using grid lines on the floor, M.C.P.A. Pisa, Italy, February
1997
This paper presents an algorithm to correct the odometry error of an autonomous mobile robot only by using a
painted grid on the floor. The estimated robot position is calculated by odometry and is matched with the grid
lines, whose existence is known to the robot. A new “position probability function” was developed and used by
the correction algorithm.
The correction of the odometry error is also based on interactive trajectory modification, in order to reduce the
error when crossing a line.

Publications of other topics:

• Ph. Mächler, Detection Technologies for Anti-Personnel Mines, AVMC’95 Symposium, California,
April 1995

• J.D. Nicoud, Ph. Mächler, Robots for Anti-Personnel Mine Search, IAV’95 Conference, Espoo, June
1995

• J.D. Nicoud, Ph. Mächler, Pemex-B, a Low Cost Robot for Searching Anti-Personnel Mines,
WAPM’95, Lausanne, June 1995

• J.D. Nicoud, Ph. Mächler, Demining Robots, IAS-4 Conference, Karlsruhe, March 1995
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 99

Publications
100 EPFL-LAMI Ph. Mächler

Curriculum Vitae
C

A
P
T
E
R

H

9 Curriculum Vitae

Personal details

Name Philip Mächler
Date of Birth March, 17th 1967
Martial Status Bachelor
Nationality Swiss

Contact address rue Pichard 11 Priv.: +41 21 312 90 72
CH-1003 Lausanne Prof.: +41 21 693 39 07
http://diwww.epfl.ch/lami/team/maechler/ philip.maechler@epfl.ch

Educational background

1994 to 1998 Ph.D. candidate in computer science under Prof. Nicoud in the Microprocessor and
Interface lab at the Federal Institute of Technology, Lausanne.

1987 to 1993 Dipl. El. Ing., Federal Institute of Technology, Zurich.
1983 to 1987 Gymnasium, Zurich, type C (mathematics, natural science).

Professional Experience

1995 to 1998 Working on a Ph.D. thesis on autonomous robot navigation.
1994 to 1995 Developing of a Robot for Anti-Personnel Mine searching, EPF Lausanne.
1992 to 1998 Founding a small company (PHI-Systems GmbH) for the development and

production of a CD-Changer system, containing 777 CD’s and 35 CD-readers.
1990 to 1991 Co-development of a board-computer for an electric mobile vehicle ETHOS,

created by students at EPF Zurich.
1988 to 1989 Assistant teacher in the first official computer course in Zurich to introduce

programming to school-teacher.

Linguistic skills

German Mother tongue (Swiss-German as well)
French Fluent
English Fluent

Others

Sport Mountain-biking, swimming, water-skiing.
Computer Knowledge of several office applications and computer languages incl. HTML.
Thesis: Robot Positioning by Supervised and Unsupervised Odometry Correction 101

	Abstract
	Résumé
	Table of contents
	Table of figures
	1 Introduction
	1.1 Thesis inspiration and justification
	1.2 Organization of this thesis
	1.3 Sensor positioning systems in robotics
	1.4 Data sensor fusion
	1.5 The importance of odometry in robot positioning
	1.6 The problem of modularized data processing
	1.7 Related Work in the field of model-less learning

	2 Supervised Passive Positioning System (SPPS)
	2.1 Overview
	2.2 Introduction to odometry correction
	2.2.1 Properties of odometry errors
	2.2.2 Combining of systematic and non-systematic odometry error
	2.2.3 One-dimensional correction
	2.2.4 Two-dimensional correction
	2.2.5 The traditional ellipse approach to distinguish x and y correction

	2.3 The PPD model
	2.3.1 Introduction
	2.3.2 Geometrical calculation of the PPD model
	2.3.3 Calculation and display of the PPD shape
	2.3.4 Differences between the circular and the PPD model
	2.3.5 Deformation of the PPD by curves and corners
	2.3.6 Examples
	2.3.7 Conclusion

	2.4 Statement of the problems
	2.4.1 Angular drift, caused by inaccuracy robot direction
	2.4.2 Information distribution of a grid

	2.5 Strategy for PPD, robot position and direction correction
	2.5.1 Passive correction, using the PPD
	2.5.2 Correction of the position
	2.5.3 Correction of the angular error

	2.6 Integration of a path planner “grid fitter”
	2.6.1 Including the grid fitter into a navigation system
	2.6.2 Grid fitter implemented by potential fields
	2.6.3 Other tasks of the grid fitter
	2.6.4 Practical tests

	2.7 Conclusion

	3 Unsupervised Passive Positioning System (UPPS)
	3.1 Unsupervised classification approaches
	3.1.1 Statistical approach
	3.1.2 Machine learning approach
	3.1.3 Neural network approach

	3.2 Experimental Set-up
	3.2.1 Aim
	3.2.2 Experience set-up
	3.2.3 Algorithm overview

	3.3 Normalization
	3.3.1 Distance and ambient light sensors
	3.3.2 Camera preprocessing

	3.4 Classification
	3.4.1 The Growing K-means Algorithm
	3.4.2 Adaptive Resonance Theory (ART)
	3.4.3 Simplified Fuzzy ART

	3.5 Discussion of unsupervised classifiers
	3.5.1 Significant versus entire number of classes
	3.5.2 Quality versus quantity of significant classes
	3.5.3 Class distribution in the input space
	3.5.4 Representing the environment by classes

	3.6 Classes become landmarks
	3.7 Landmark comparison by Levenshtein Distance
	3.7.1 Introduction
	3.7.2 Recursive mathematical definition
	3.7.3 Flat implementation of the LD
	3.7.4 Code example for WLD
	3.7.5 Graphical example
	3.7.6 Calculation of substitution cost
	3.7.7 Recognizing identical landmarks by WLD
	3.7.8 Estimated robot position supports landmark recognition

	3.8 Constraining robot movements
	3.9 Introduction to concepts
	3.9.1 Concept quality depending on frequency
	3.9.2 Concept quality depending on the sensor ability

	3.10 Landmarks become places
	3.10.1 Recognizing places from the landmark stream

	3.11 Place identification by Markov Chain
	3.11.1 Concept of probability
	3.11.2 A simple Markov model
	3.11.3 Implementation of Place recognition by Markov Chain

	3.12 What’s the difference between Levenshtein and Markov?
	3.13 Places become a map
	3.14 Algorithm controlling
	3.14.1 Interconnections between the different levels
	3.14.2 Learning phases

	3.15 Experimental results
	3.15.1 Landmark distribution
	3.15.2 Odometry error correction
	3.15.3 Place production
	3.15.4 Structured environment

	4 Discussion and conclusion
	4.1 Future work

	5 Appendix
	5.1 Different ways to calculate the odometry
	5.1.1 Odometry calculation describing the direction of the robot by an angle
	5.1.2 Odometry calculation describing the direction of the robot by a vector

	5.2 Levenshtein simulators on the WEB
	5.3 PPD simulation with Mathematica
	5.4 Simplified Fuzzy ARTMAP

	6 References
	7 Remerciements aux dieux de l’Olympe
	8 Publications
	9 Curriculum Vitae

