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Insects of several species rely on visual landmarks for returning to important locations in their environment.

The \average landmark vector model" is a parsimonious model which reproduces some aspects of the visual

homing behavior of bees and ants. To gain insights in the structure and complexity of the neural apparatus that

might underly the navigational capabilities of these animals, the average landmark vector model was implemented

in analog hardware and used to control a mobile robot. The experiments demonstrate that the apparently complex

task of visual homing might be realized by simple and mostly peripheral neural circuits in insect brains.

1 Introduction

The ability to return to important locations in their

environment (like feeding sites or the nest) is essen-

tial particularly for social insects. Experiments with

honey bees [1] and desert ants [2, 3] demonstrated

that visual information about the landmarks in the

environment of a target location is stored in the in-

sect's brain and subsequently used to �nd back to that

location. The \snapshot hypothesis" asserts that it is

a relatively unprocessed panoramic image of the sur-

roundings of the target location which is memorized

[4, 2, 1]. How a home direction can be derived by

establishing correspondences between this stored im-

age | the \snapshot" | and the image perceived

in another location was speci�ed in the \snapshot

model" and tested in computer simulations [1]. How-

ever, a mathematical simpli�cation of the snapshot

model revealed that the visual information identify-

ing the target location can be compressed into a sin-

gle two-component vector | the \average landmark

(AL) vector" | without a�ecting the homing behav-

ior [5, 6]. Moreover, in the \average landmark vector

(ALV) model" determining the home direction does

not require an image matching process but only a sub-

traction of the AL vectors of current and target loca-

tion. Being parsimonious and underpinned by ethol-

ogy, the ALV model is the basis of the present study.

Visual homing abilities have been investigated in

numerous behavioral experiments, but up to now,

nothing is known about the neural apparatus mediat-

ing these abilities in insect brains. On the contrary,

the neural circuitry for visual motion detection is well

studied, especially in the 
y brain [7]. The reason for

this discrepancy may be that while in the case of mo-

tion detection it is clear what to look for by anatomi-

cal or electrophysiological methods, there is a lack of

functional hypotheses that can guide neurobiological

investigations in the case of visual homing. It may

therefore be worthwhile to start the quest for the

neural apparatus underlying visual homing by con-

structing biologically plausible neural models. In the

approach presented here, it was attempted to ensure

plausibility by imposing the following constraints on

the model:

(1) The model is derived from behavioral data: As

shown elsewhere [6], the ALV model is a mathemati-

cal simpli�cation of the snapshot model which repro-

duces the searching behavior of bees [1].

(2) The medium of the model shares basic com-

putational principles with biological neural networks:

The ALV model is implemented in analog hardware,

where, as in neural systems, the computation is ana-

log, asynchronous, and inherently parallel, and where

the same operations are diÆcult or easy to realize.

Analog circuits as the medium for biological models

have been used before, especially for studying the ele-

mentary motion detectors of the 
y [8, 9]. In contrast

to the \neuromorphic engineering" approach [10, 11],

this project uses discrete analog components instead

of sub-threshold aVLSI circuits.

(3) The model is tested in the real world and not

only in computer simulations: The analog circuit im-
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Figure 1. Average landmark vector model. A: In the target

location (cross), the agent computes the AL vector (thin vec-

tor, wide head) by averaging all landmark vectors (thick vec-

tors), which point towards the landmark cue, in this case the

black-white edge of each landmark (black bars). The inner ring

visualizes the image perceived by the agent. B: In another lo-

cation (in the center of the ring diagram), the robot computes

another AL vector (thin vector, small head). The di�erence

between this AL vector and the stored AL vector (thin vec-

tor, wide head) gives the home vector (thick vector originating

from the center). In addition, some trajectories obtained by

following the continuously updated home vector are shown.

plementing the ALV model controls a mobile robot,

and the homing precision of the robot was systemat-

ically investigated in a series of experiments.

This paper reviews the ALV model of visual hom-

ing (section 2), describes the analog circuit imple-

menting this model and the robot hardware (section

3), presents results of homing experiments with the

robot (section 4), and discusses correspondences be-

tween the analog implementation and neural archi-

tectures (section 5).

2 Average Landmark Vector Model

Figure 1 describes the homing mechanism of the ALV

model. In the simple form presented here, the model

assumes that the agent perceives a one-dimensional,

Figure 2. Robot (height 22 cm, diameter 12.8 cm, weight

1.3 kg). The black ring in the center contains the 32 photo

diodes, the boards above implement the ALVmodel, the boards

below belong to the motor control.

horizonal panorama, which is shown in the inner ring.

In each location, the agent can determine the corre-

sponding AL vector by averaging unit-length \land-

mark" vectors pointing from the location of the agent

towards a speci�c landmark cue, in this case towards

black-white edges (clockwise). The AL vector ob-

tained for the target location is stored (A). The home

vector can then be determined by computing the dif-

ference between the AL vector of the current location

and the stored AL vector (B). By following the contin-

uously updated home vector, the agent will approach

the target location. Note that in the �gure all vec-

tors relate to a �xed world coordinate system, or, put

di�erently, a constant orientation of the agent is pre-

sumed. If the latter can not be guaranteed, the ALV

model requires an external compass reference to align

the AL vectors to the same coordinate system.

3 Circuit and Robot Hardware

3.1 Overview

Figure 3 gives an overview of the analog circuit im-

plementing the ALV model. The implementation

is based on discrete analog components (operational

ampli�ers, multipliers, analog switches). Visual in-

put comes from a horizontal array of 32 photo diodes.

The signals of the photo diodes are ampli�ed. Edges

of one polarity are detected by combining the sig-

nals of two neighboring pixel elements. Lateral inhi-

bition between neighboring edge �lters ensures that
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Figure 3. Overview of the analog implementation of the ALV

model.

exactly one pixel per edge will become active. From

the binary edge-�ltered image the AL vector for the

current location is determined. Using an electronic

compass, the AL vector of the target location is ro-

tated to world coordinates and stored when a switch

is pressed. In the homing process, the stored vector

is transformed back to robot coordinates and sub-

tracted from the AL vector of the current location,

which gives the home vector. The components of the

home vector directly determine the speed of the two

motors.

3.2 Sensor Array

The 32 Si photo diodes are mounted in a horizon-

tal circular array (diameter: 12.8 cm, height above

ground: 12 cm) with an inter-sensor angle of � =

11:25Æ; see �gure 2. An aperture in front of each

diode restricts the opening angle to approximately

� = 8Æ. A thread inside the diode's mounting hole

reduces the in
uence of light from outside the desired

opening angle.

3.3 Sensor Ampli�ers and Edge Filters

The signals of the photo diodes are ampli�ed us-

ing a standard circuit with one operational ampli�er

per diode. Ampli�cation and o�set of each ampli�er

are calibrated in a way that the ampli�ed signals of

all diodes are roughly identical when facing a white

(0.4 V) or a black surface (0 V). The outputs of two

neighboring ampli�ers are compared in order to ex-

tract edges of one polarity that serve as landmark

cue; see schematic in �gure 4. One of the ampli�er

signals is directly fed to the comparator, the other

is slightly attenuated and shifted with the threshold

voltage Vref = 2 V.

The diode connecting the output of one edge-�lter

with the negative input of one of the neighboring edge

�lters implements \lateral inhibition". This mecha-

nism guarantees that the edge detection can operate
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Figure 5. A: Circuit for the computation of the x-component

of the AL vector; the circuit for the y-component is identi-

cal except for the values of the resistor array (dashed sym-

bols). Landmark vectors are encoded in the resistors Rx+(i)

or Rx�(i); values used are 1, 390k, 196k, 150k, 100k, 91k,

82k, 75k, 75k for the �rst quarter of a sine function. B: Volt-

ages (Vx; Vy) produced at the output of the circuit in A, when

only the edge �lter with index i is activated.

with low thresholds, but nevertheless responds with

only one active edge pixel to a sharp visual edge, as

required by the ALV model. In cases where two neigh-

boring edge detectors would be activated because one

sensor is integrating over the edge, lateral inhibition

switches o� one of the edge �lters.

3.4 AL Vector Computation

Because of the binary output of the edge �lters, each

landmark vector in robot coordinates can be encoded

by just two resistors with appropriate values that con-

nect to the input of adder circuits for the x- and

y-component of the AL vector (�gure 5, A). Since

the landmark vectors have positive and negative com-

ponents, the resistors are either connected with the

positive or negative input line of the adder circuit.

A landmark vector is considered in the summation
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Figure 6. A: Circuit for rotation and storage of AL vectors and computation of the home vector. The four switches are shown in

the position used for homing, in the other position the AL vector of the target location is transformed to world coordinates and

stored. The blocks marked \di�erence" compute the di�erence Vd = V+ � V
�

. The time switch at Vb sets the home vector to zero

and thereby stops the robot. B: Analog storage for one vector component.

if and only if the corresponding edge pixel is active.

Figure 5 (B) shows the outputs Vx and Vy if the edge

�lters are activated individually. For simplicity, the

analog circuit computes the sum of all landmark vec-

tors, and not the average; this simpli�cation does not

a�ect the behavior as long as the number of land-

marks is constant.

3.5 Rotation, Storage, Home Vector Computation

The circuit shown in �gure 6 (A) rotates the AL vec-

tor of the target location to world coordinates, stores

it, transforms the stored vector to robot coordinates

and subtracts the result from the AL vector of the

current location. The electronic compass used for this

alignment procedure comprises two 
uxgate magnetic

�eld sensors. Since the strength of the magnetic �eld

is not constant indoors, the compass vector is nor-

malized to constant length. Multiplication of the AL

vector with a rotation matrix derived from the com-

pass vector is implemented with four four-quadrant

multipliers (�gure 7). The same circuit can be used

for both the transformation from robot to world coor-

dinates and from world to robot coordinates by trans-

posing the matrix; transposition can be achieved by

exchanging the components in the input and output

vector (double `X' crossover in �gure 6, A). The trans-

formed AL vector of the target location is stored in

the circuit depicted in �gure 6 (B). Analog switches

with low leakage currents (< 100 pA) and ampli�ers

with low input bias currents (< 150 pA) have been

used to achieve suÆciently long storage times in the

range of 15 min (voltage change approx. 50 �V/sec,

vector components go up to 3 V at Vcc = � 5 V).

3.6 Motor Unit

The components of the home vector can directly con-

trol the speed of the two motors that are indepen-

dently driving the two wheels of the robot. If the

vector (1,1) of the robot coordinate system is point-

ing towards the front of the robot and the value on the

coordinate axis pointing towards the left side is deter-

mining the speed of the right wheel and vice versa, the

robot will turn around if facing away from the home

vector direction and afterwards follow the vector. The

motor unit uses open-loop control with pulse-width

modulation and dead-band compensation.

4 Robot Experiments

Experiments were performed in an 1 m � 1 m arena

with white walls (30 cm high) and 
oor. Black pieces

of paper (21 cm�29 cm) attached upright to the walls

served as landmarks. Light came from the ceiling

lamps of the room. Figure 8 shows the AL vector

voltages for one and for three landmarks. The two

voltages have been measured (using multimeters with

computer interface) while the robot was placed at 64

locations on a grid and aligned with the world coor-

dinate system.

For a visualization of the home vectors (�gure 9),

the robot was rotated by 60Æ with respect to the world

coordinates and placed at the target location. An AL

vector was computed and stored while a switch on the

robot was pressed. Then the robot was aligned with

the world coordinates (rotation 0Æ) and positioned at

64 grid points. The orientation was changed in order

to demonstrate the operation of the rotation circuit.

Note that the home vectors become shorter in the

vicinity of the target location which will automati-

cally slow down the robot.

In the experiment shown in �gure 10 (A), the robot

was �rst placed at the target location facing the up-

per wall, where the AL vector was computed and

stored. Then it was moved in the same orientation to

11 di�erent starting points. After the time of a motor

blocking elapsed (Vb in �gure 6, A), the robot started
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to move. A pen in the center of the robot drew the

trajectories on paper covering the 
oor; the trajecto-

ries were digitized from a photo of the paper. Note

the change of direction in the upper four trajectories,

which are resulting from the type of motor control

used (see section 3.6). In the �rst part of the curved

trace in the bottom left the robot probably did not

detect the landmark on the left or on the bottom wall,

since they appear under a small angle. All trajecto-

ries end in the vicinity of the target location. The

mean �nal distance from the target location in this

case is 6.4 cm. This deviation can be fully explained

by the fact that the small visual resolution will result

in relatively large regions around the target location

where the view (and thus the AL vector) does not

change. This region can be constructed as shown in

�gure 10 (B): The sectors of the active edge pixels

are attached to the detectable edges of the landmark;

their cross section gives the iso-view region. The size

of the iso-view region for this setup is in the same

range as the deviation observed in the experiment.

In order to systematically investigate the preci-

sion of homing, 99 trajectories have been registered

with di�erent target locations for the setup with three

landmarks, and 28 trajectories in a setup with an

additional fourth landmark on the right wall. The

average deviation of the �nal points of the trajecto-

ries from the target point was 68 mm for three land-

marks. As in the experiment in �gure 10, this de-

viation can be fully explained by the limited visual

acuity. For four landmarks, the robot deviates on av-

erage by 48 mm. This signi�cant improvement is due
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Figure 8. AL vectors for a setup with three landmarks. Black

landmarks are depicted by bars. Detectable edges are marked

with arrows. The vector scaling is shown in the upper right

corner.
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Figure 9. Home vectors for the target location marked by a

cross-circle in a setup with three landmarks. See �gure 8 for a

description.

to the fact that an additional landmark will usually

reduce the size of the iso-view region.

5 Discussion

As was stated above, the precision of homing observed

in the robot experiments could be shown to be close

to the optimum achievable with the given visual acu-

ity, thus the third constraint imposed on the model

| real-world suitability | is at least partly satis�ed.

Limiting for the validity of the real-world experiments

is the simpli�ed laboratory setup with its strong vi-

sual contrasts and the simple mechanism of feature

detection which relies on these properties of the en-

vironment. The analog circuit may de�ne the \lower
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Figure 10. A: Trajectories of the robot while approaching

the target location (cross-circle). Small circles are the posi-

tions where the robot movement stopped. B: Iso-view region

(hatched) around the target location (dot) for the given sensor

resolution. Dots on the margin depict detectable edges.

limit of complexity" that can be assumed to underly

the visual homing abilities of insects. With only 91

operational ampli�ers, 12 multipliers (eight of them

implementing the normalization of the compass vec-

tor), and four analog switches, the circuit is surpris-

ingly simple for the apparently complex navigation

task it ful�lls. An interesting observation is that the

majority, namely 64 of the 91 operational ampli�ers

are part of the retinotopically organized feature de-

tection circuit, although the latter is extremely sim-

ple. Retinotopical organization and small-�eld neu-

rons like the local feature detectors in the model are

typical for the peripheral parts of the optical nervous

system of insects (lamina and medulla, respectively)

[12, 13], where, according to this model, most of the

functionality of visual homing seems to be concen-

trated.
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Figure 11 shows that the retinotopically organized

part (compare �gure 4) and the convergent path-

way (compare �gure 5, A) can be translated into an

equivalent neural model by a 1:1 projection of op-

erational ampli�ers onto graded-response model neu-

rons. Feature-detecting neurons with steep output

functions receive antagonistic input from two neigh-

boring sensory neurons, and strong inhibitory input

from neighboring detectors (lateral inhibition). The

outputs of all feature-detecting neurons converge on

(in the simplest case) two neurons with linear out-

put function. In the spatial integration, the output

of each feature detector is weighted according to its

�eld of view relative to the robot-bound coordinate

system. For this speci�c encoding it may be suÆ-

cient to assume a certain spatial arrangement of the

cells and transmission losses depending on the length

of the neural processes [14]. \Large-�eld" neurons

like the ones mediating the spatial integration can be

found in higher stages of the visual system of insects

(medulla, lobula plate) [12].

For the analog rotation circuit with its precision

multipliers it is not very likely to �nd direct corre-

spondences in a biological system. In general, the

question if and how insects relate landmark informa-

tion to some external reference is still largely unre-

solved [15, 3]. Biologically plausible candidate mech-

anisms for an internal rotation of image or vector

information are self-stabilizing neural circuits, which

have been suggested for the path-integration system

of insects [16].



6 Conclusion

The model of insect visual homing presented here is

constrained by behavioral data, the medium of the

model, and real-world suitability. The ALV model

| a mathematical simpli�cation of the snapshot

model that reproduces the homing behavior of bees |

was implemented in analog hardware and successfully

tested on a mobile robot. Parts of the analog circuit

can be translated into an equivalent neural network

model with less than 100 neurons. This model may

de�ne the lower limit of complexity of the neural ap-

paratus underlying the visual homing abilities of in-

sects. The structure of the network indicates that

the largest part of the functionality of visual hom-

ing might be implemented in the peripheral parts of

the visual system of insects. Future work will focus

on eliminating the limitations of the feature detection

circuit and the small visual resolution.
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