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Abstract

In this paper we present a landmark based naviga-
tion mechanism for a mobile robot. The system uses
a self-organising mechanism to map the environment
as the robot is led around that environment by an
operator. Detected landmarks, and their relative po-
sition towards each other, are recorded in a map that
can subsequently be used to plan and execute paths
from the robot’s current location to a ‘goal’ location
specified by the user.

The main motivation for the research described in this
paper is to develop a mobile robot navigation system
that is robust (through the use of perceptual land-
marks), and allows the robot to plan arbitrary paths
within its known environment. The system presented
here achieves these objectives.

1. Introduction

Research in mobile robotics has produced two main ap-
proaches to modeling environments: metric and topolog-
ical. In the first scheme, an accurate metric map of the
robot’s environment is either constructed by the robot or
supplied by a human designer (Kampman and Schmidst,
1991; Knieriemen and von Puttkamer, 1991). In the lat-
ter approach the environment is modeled as a graph con-
taining nodes representing distinct locations, pathways
between locations are denoted by arcs connecting the ap-
propriate nodes (Kurz, 1996; Yamauchi and Beer, 1996;
Zimmer, 1996; Mataric, 1992).

A metric map has the advantage of being a simple and
natural representation for human users. However, due
to the amount of detail contained in such a representa-
tion, these maps are time consuming to construct, require
large amounts of memory, and are often over specified for
the task of general navigation.

Conversely, the topological approach gives a compact
representation since only distinctive places within the en-
vironment are encoded. In addition, this type of map is
well suited for use with the various path planning algo-
rithms that have been developed within the field of arti-
ficial intelligence (e.g. A*, Best First Search). One of the
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main problems with this method is perceptual aliasing
i.e. distinct locations within the environment appearing
identical to the robot’s sensors.

Various approaches to the problem of perceptual
aliasing have been utilized within the topological map-
ping paradigm. One method is to effectively increase the
robot’s perceptual resolution by adding and combining
additional information from differing sensor modalities
(sensor fusion). In (Kortencamp and Weymouth, 1994),
for example, vision is used to augment the sonar data
of the robot. However, this type of approach cannot be
guaranteed to disambiguate all situations, and is more
useful as a tool for reducing, rather than eliminating,
perceptual ambiguity.

Other systems use positional information to disam-
biguate perceptually similar but physically distinct loca-
tions (Kurz, 1996; Zimmer, 1996; Mataric, 1992). How-
ever, since positional information based on the robot’s
internal odometry is subject to drift effects, some means
of correction is required if the robot is to map anything
other than small scale environments. In (Kurz, 1996), for
example, an extended Kalman-filter is used for drift com-
pensation.

The system described in this paper constructs a topo-
logical map of the environment based on a process of
self-organisation of the robot’s sensory data. The ap-
proach of self-organisation to landmark detection was
chosen for two reasons. Firstly, interpreting the world
using the robot’s relatively impoverished sensors is dif-
ficult for the human designer. Thus, user defined land-
marks tend to be rather simplistic. The type of envi-
ronment that can be categorised using this method is
therefore restricted. Secondly, since the clustering tech-
niques used in self-organisation enable a generalisation
over perceptions, this approach gives a robust, noise tol-
erant, method of landmark detection.

Global positioning information does not form part of
the representation of the system described here, thus ob-
viating the need for drift compensation. An exploration
strategy is used to resolve perceptual ambiguity.

The paper is structured as follows: Section 2. deals



with the navigation mechanism. In this section the im-
plementation details of the system are discussed. Sec-
tion 3. sets out the results of several experiments con-
ducted within the robotics laboratory of Manchester Uni-
versity. This section also details a performance metric
that was used to measure the robot’s navigational abil-
ity. Section 4. draws conclusions and discusses further
work.

2. The navigation system

The navigation mechanism consists of two main pro-
cesses:

1. Mapbuilding - construction of a topological vector
map.
2. Map interpretation - path planning and execution.

These two processes are performed consecutively,
i.e. the mapbuilding process is fully completed before
map interpretation begins.

The robot used for our experiments was a Nomad
200 mobile robot (see figure 1). This robot is equipped
with sixteen ultrasonic range finding sensors (range up to
6.5 m), sixteen infrared (IR) sensors (range up to 60 cm),
twenty tactile sensors, a compass and a monochrome
CCD camera. In the experiments described here, only
the sonar sensors and compass were used.
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Figure 1 The Nomad 200 mobile robot.

2.1 Mapbuilding

The concept of the vector map is depicted in figure 2.
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Figure 2 The vector map. Three points ‘A’, ‘B’ and ‘C’ rep-
resent particular perceptual landmarks within the environ-
ment, the arcs connecting the nodes record the compass di-
rection, «, and distance, d, between these landmarks.

By employing a vector mapping of this type we re-
strict the use of odometry to the measurement required
between locations, thus limiting the accumulation of
odometry error.

In previous work, a Self-Organising Feature Map
(SOFM) (Kohonen, 1988) has been used to map the
robot’s environment. Using this method, mapbuilding
is achieved by performing an unsupervised clustering of
the sensory data of the robot as it moves through the
environment (Nehmzow and Smithers, 1991; Owen and
Nehmzow, 1996). When the network has settled, regions
on its surface represent ‘perceptual landmarks’ within
the robot’s environment.

However, the requirement for a settlement period is
relevant to the issue of ‘lifelong learning’. If the environ-
ment were to change after training then a further period
of settlement would be required before vector links could
be added. In addition, the size of the network needs to
be pre-defined before use. Determination of optimal net-
work size is difficult since no indication of the number
of landmarks that the robot will perceive can be gained
by simply observing the environment in which the robot
will operate. Choosing too small a network would result
in saturation, and a highly unstable network. On the
other hand, the larger the network the more expensive
the algorithm becomes at lookup time.

Other network methods that have been used in the
context of landmark detection include the Restricted
Coulomb Energy (RCE) classifier (Reilly et al., 1982),
used, for example, by Kurz (Kurz, 1996), and the Adap-
tive Resonance Theory (ART) classifier (Carpenter and
Grossberg, 1987), used, for instance, by Duckett and
Nehmzow (Duckett and Nehmzow, 1997). Neither of the
latter methods require a settlement period to achieve a
stable clustering of the input space (thus allowing im-
mediate placement of vector links), and both are able to
grow to accommodate new classifications.

Since, as discussed, pre-determination of network size
is difficult, and lifelong learning is seen as a future de-
velopment for this system, it was decided that one of the
growing networks would be used as the basis of the map-
ping mechanism. The RCE model was chosen in prefer-
ence to the ART classifier since the latter requires a large
number of parameters to be set before use, the values of
which can only be determined experimentally.

Although the SOFM is better able to generalise on
noisy inputs, smoothing of the input vector can reduce
noise (see below), and in practice the RCE network was
found to produce a stable clustering of the robot’s per-
ceptual space.

The clustering mechanism The RCE-Classifier uses a
method of classification based on self-organisation. Each
class is represented by a representation vector (R-vector).
Training the RCE-Classifier involves determining the R-
vectors.



When a pattern is presented to the classifier, the
input is compared to each of the existing R-vectors,
using some form of similarity measure (e.g. dot prod-
uct) in order to determine a winner (i.e. the R-vector
of highest similarity). If the similarity between the in-
put pattern and the winning R-vector is within a pre-
determined threshold then the input pattern belongs to
the class of this winning R-vector. If the similarity is out-
side the threshold then the input pattern becomes a new
R-vector. Thus the boundaries of classes are determined
by the nearest neighbour law. Figure 3 shows an example
for a two-dimensional input vector.
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Figure 3 RCE-Classifier, two-dimensional example. Each
‘dot’ in the diagram represents an R-vector. The circles sur-
rounding each R-vector denote the ‘threshold area’ within
which an input pattern must fall in order to belong to the
corresponding R-vector’s class. In the case of patterns falling
within more than one threshold area, the nearest neighbour
law applies.

The input vector The input vector in this application
consists of the sixteen readings of the robot’s sonar sen-
sors. This input vector is normalised and the dot product
of the input and R-vector is used as the measure of sim-
ilarity for the RCE-classifier. The threshold for adding
new R-vectors was fixed at 0.9.

In using the RCE-classifier to process the input vec-
tor, perceptual features within the environment are de-
termined autonomously by the robot; each class gener-
ated by this method can be viewed as a ‘perceptual land-
mark’ within the environment.

Since landmarks in this scheme are determined by
the sensory patterns obtained by the robot, perception
will be affected by the direction in which the sensors
are facing. This means that a location within the envi-
ronment could be perceived differently when approached
from different directions. In order to overcome this prob-
lem the robot’s on board compass is used to align the
turret (which contains the sensors) to compass north at
all times. Thus, the input vector generated by the sys-
tem will depend on position alone, regardless of steering
orientation.

Since sonar sensor signals are prone to noise, some
form of preprocessing is desirable. In these experiments
a smoothing procedure is applied by delaying any large
change in the input data by a pre-defined number of time

steps, with the reading in question simply taking on its
old value for the duration of this period. If the new data
value still holds on completion of the allotted interval,
it is then allowed to pass through to the classifier as
part of the input vector. The purpose of this mechanism
was to remove “spikes” from the input data. Both the
amount of change defined as large, §, and the number of
time steps to skip, 7y, were determined experimentally by
observing data time series from several locations within
the computer science building.

Building the vector map The vector map is built by the
robot as it is led around the environment by the user.
Movement of the robot is restricted to forward or turn
(these commands cannot be carried out simultaneously),
and the robot travels at a constant speed of 4 inches/sec.

As the robot moves forward it continuously takes in
all 16 sonar readings and processes them using the RCE-
classifier, with preprocessing as detailed above, to gener-
ate the ‘perceptual landmarks’. Each time the perception
changes the robot takes note of the distance travelled
since the start of the last perception. As some of these
landmarks can occupy very small areas, and as such can
be easily missed on subsequent visits to the same lo-
cation, only landmarks that persist for a pre-determined
minimum distance are considered for the purpose of nav-
igation. In the results detailed here, only landmarks that
are visible over a travelling distance of over 4 inches are
added to the vector map.

Each place node of the vector map consists of a per-
ception number and a list of the places connected to that
node. For each connected place, details of compass direc-
tion, distance between the centres of the nodes, and size
of the place node’s influence are stored.

Each time a place node is allocated it is added to the
list of connections for the previous node. In addition, this
previous node’s details are added to the current node’s
list (i.e. each link is recorded bi-directionally). Figure 4
shows an example of three connected place nodes and
the corresponding vector map.

Storing the size of the place node’s influence area al-
lows the robot to travel to the centre of this node once
found. Note that this size can be multiply defined for
one particular place node, this is necessary since the size
of a node’s influence will depend on the direction from
which it is approached (see figure 5). The distance mea-
surement gives an upper bound on distance to travel in
searching for the connected place.

Perceptual aliasing The system, as proposed so far, takes
no account of perceptual aliasing (identical sensory per-
ceptions at different locations). As such, distinct loca-
tions within the environment that have similar percep-
tual signatures may excite the same place node. One so-
lution to this problem would be to allow the robot to
explore the environment on finding a location whose per-
ception has previously been encountered. Exploration in
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Figure 4 Three connected place nodes and the corresponding
vector map. Start and end points for each perception (as given
by the RCE-classifier) are denoted by vertical lines along the
path. Here only three ‘landmarks’ (labelled 5, 11 and 14) are
persistent enough to warrant place node generation, these
landmarks have been given the corresponding place labels, 1,
2 and & in the vector map. Distance and size in the vector
map are measured in tenths of inches.

Direction A Influence area of perception ‘p’

Direction B

Figure 5 An example of multiply defined place size. The dot-
ted ellipse indicates the influence area of perception ‘p’. The
arrows indicate two different directions from which this per-
ception was encountered, the ‘size’ of ‘p’ measured for direc-
tion A will be smaller than that for B.

this instance would involve following the links given for
each place node that shares the current perception. If,
for a given place node, the correct perception is encoun-
tered along each of the links, then the system assumes
that this place has been re-encountered and adds new
links accordingly. Otherwise, a new place node is cre-
ated. An exception to this behaviour is made when the
robot moves from a previously encountered place node
along a link already contained in that node’s link list;
if the place found along this link is as expected then no
exploration is performed (i.e. the robot uses prediction
when traversing previously followed paths). We call this
strategy incremental mapbuilding, and this is the mech-
anism used in the experiments described here.

2.2 Map interpretation

The object of the map interpretation phase is to plan a
route from the current location to an arbitrary, exter-
nally specified goal location using the vector map. The
basis of the planning mechanism is the ‘best-first search’
algorithm, which is used in this instance to determine
the shortest known path between the current location
and the goal location.

Path following Once a path to the goal has been gener-
ated the robot’s path following task can begin. For this

task the robot takes each node in turn and attempts to
find the next node along the path by taking the trajec-
tory indicated on that path (the goal and starting loca-
tion being provided by the user).

If the robot fails to find a given node then it reverses
to the centre of the node on the path that was last iden-
tified. From here a new path is calculated with this node
as the start position.

The goal location is only assumed to have been found
when it appears in the right context according to the
planned path (i.e. if the robot happens to encounter a
place with the same perception as the goal before it ap-
pears on the planned path, then it is assumed not to be
the goal location).

3. Experimental results

In this section we present the results of testing car-
ried out with the system in a simple environment set
up within the robotics laboratory at Manchester. Fig-
ure 6 shows the environment used in the experiments,
the route along which the robot was guided through the
environment (chosen arbitrarily), and the corresponding
map generated by the system.

156"

Figure 6 The left diagram shows the environment used in the
experiments, the dotted line depicts the path along which the
robot was guided. The corresponding map generated by the
system is shown on the right (each circled number indicates
a place node on the map).

For this experiment four different goal and start po-
sitions were chosen from the environment so as to cover
the area traversed by the robot during mapbuilding. The
results for each of these trials are given below. In each
diagram the shortest route from start to goal is shown,
along with any alternative routes taken by the robot.
Each of the four trials was completed ten times by the
robot.
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Figure 7 Trial 1. The figure on the left shows the shortest
path from start location to goal location. In 8 out of 10 at-
tempts the robot traversed this path successfully. The other
two figures show two alternative routes taken by the robot
due to failure to locate place nodes along the shortest path.
The point at which failure occurred is indicated by a circle,
the dotted line denotes the new path.

Trial 1 (figure 7): In 8 out of the 10 attempts made
by the robot, the shortest route was traversed success-
fully. For the remaining two attempts, the robot failed
to locate one of the place nodes on each occasion, thus
initiating a new path planning phase. In both cases the
robot was able to follow the new path successfully to the
goal location (see figure 7).
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Figure 8 Trial 2. The figure on the left shows the shortest
path from start location to goal location. In 6 out of 10 at-
tempts the robot traversed this path successfully. In two of
the remaining cases only one new path needed to be gener-
ated (see path A). Path A looks identical to the shortest route
due to the fact that re-planning was possible via alternative
nodes along this route. Of the remaining two attempts, one
required two new paths to be generated (path B), whilst the
other required three (path C). Each new path is indicated by
a dotted line with a circle at the start point.

Trial 2 (figure 8): In 6 out of the 10 attempts for this
trial, the shortest route was traversed successfully. Of the
remaining four attempts, two required one new path gen-
erating phase in order for the robot to locate the goal,
one required two and the other required three (see fig-
ure 8).

Trial 8 (figure 9): In this trial, for all 10 attempts the
robot successfully traversed the shortest path.
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Figure 9 Trial 3. This figure indicates the shortest path from
start to goal for this trial. In all 10 attempts this path was
traversed successfully.
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Figure 10 Trial 4. This figure indicates the shortest path
from start to goal for this trial. In all 10 attempts this path
was traversed successfully.

Trial 4 (figure 10): As in trial 3, for all 10 attempts the
robot successfully traversed the shortest path.

As can be seen from trials 1 and 2, the robot is not
always able to find a place at the location given by the
map. This phenomenon can be particularly prominent
at locations near to junctions or cluttered areas where
even small deviations in the robot’s position and/or ori-
entation can substantially alter the robot’s perception.
However, the effects can be alleviated somewhat by ex-
tending the training period, thus giving opportunity for
acquiring alternative perceptions for locations where per-
ception is problematic. By taking the robot repeatedly to
the same physical location, path planning is facilitated
using alternative perceptions associated with that loca-
tion.

3.1 A performance metric
In order to gain some quantitative measure of the robot’s
performance in its navigation task, we defined a metric,
distance efficiency. To obtain this metric, the length of
a particular run made by the robot is measured as a
percentage of the shortest possible distance between the
start and goal locations. The results for the distance ef-
ficiency metric are shown in figure 11.

From this graph we can see that trials 1 and 2 were
problematic for the robot. As discussed in section 3., this
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Figure 11 Distance efficiency. For each trial the total shown
is an average over 10 traversals from start to goal location.

was due to the robot’s inability to locate certain nodes
along the generated path, thus resulting in new path
planning and route traversal phases.

A particularly poor performance in trial 1 is due to
the fact that, on one occasion, an alternative route along
the shortest path was not available, thus requiring a
lengthy detour in order to reach the goal (see path B,
figure 7). In trial 2, replanning was required in four out
of the ten attempts, with certain nodes proving consis-
tently difficult to detect (see figure 8).

4. Conclusions and further work

In this paper we have presented a navigation system for
a mobile robot, and tested it experimentally on a No-
mad 200 mobile robot. The system uses a self-organising
mechanism to build a representation of the environment
based on landmark recognition. The representation takes
the form of a vector map whereby recognised locations
within the environment are linked together by arcs de-
noting direction and distance between them. Exploration
is used both to disambiguate perceptually similar loca-
tions, and to recognise places that have been previously
visited. Global positional information is not required. A
metric was introduced (Distance Efficiency) and used to
measure the robot’s navigational behaviour.

In order for a robot navigation system to be use-
ful it must operate in real world situations (Owen and
Nehmzow, 1997). Much of the work to date in the field
of mobile robot navigation has been conducted in small
scale laboratory environments - the question arises of
how these systems will scale up when faced with more
complex environments covering much larger distances.
Large scale experiments with the navigation mechanism
described here are currently underway at Manchester
University.

Our results show that the robot is not always able
to find a place at the location indicated by the map.
Rather than re-plan an alternative route immediately on
failure to find a place node, a better approach would be
to make a more concentrated effort to locate the lost
node. To do this, one could simply re-attempt to locate

the node along the trajectory on which failure occurred,
or perform a more systematic search strategy. In doing
this, lengthy detours such as the one depicted in figure 7
(path B) might be avoided. In addition, this behaviour
gives the robot the opportunity to reach the goal where
no alternative routes are available.

Although not tested in these experiments, one can
assume that the system has some ability to cope with
dynamic environments. If, for example, a path becomes
blocked then the perception near the blocked position
will change, thus forcing the robot to plan an alternative
route (the perception will not be as expected). This prop-
erty needs to be tested experimentally. In addition, some
way to store information regarding such environmental
change would be useful.

With the present system, mapbuilding and naviga-
tion are carried out as two separate phases. For dynamic
environments this approach is unsuitable since changes
to the robot’s surroundings will introduce errors into
the map. A more appropriate strategy would be to in-
tersperse mapbuilding with map interpretation (lifelong
learning). With this approach the robot would continue
to map new information as it attempts to follow a path.
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