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Abstract

In this paper we present a new approach to the problem
of simultaneously localizing a group of mobile robots
capable of sensing each other. Each of the robots col-
lects sensor data regarding its own motion and shares
this information with the rest of the team during the
update cycles. A single estimator, in the form of a
Kalman �lter, processes the available positioning infor-
mation from all the members of the team and produces
a pose estimate for each of them. The equations for
this centralized estimator can be written in a decentral-
ized form therefore allowing this single Kalman �lter
to be decomposed into a number of smaller communi-
cating �lters each of them processing local (regarding
the particular host robot) data for most of the time.
The resulting decentralized estimation scheme consti-
tutes a unique mean for fusing measurements collected
from a variety of sensors with minimal communication
and processing requirements. The distributed localiza-
tion algorithm is applied to a group of 3 robots and
the improvement in localization accuracy is presented.
Finally, a comparison to the equivalent distributed in-
formation �lter is provided.

1 Introduction

Precise localization is one of the main requirements
for mobile robot autonomy [6]. Indoors and outdoors
robots need to know their exact position and orienta-
tion (pose) in order to perform their required tasks.
There have been numerous approaches to the localiza-
tion problem utilizing di�erent types of sensors [7] and
a variety of techniques (e.g. [5], [4], [15], [20]). The key
idea behind most of the current localization schemes is
to optimally combine measurements from propriocep-
tive sensors that monitor the motion of the vehicle with
information collected by exteroceptive sensors that pro-
vide a representation of the environment and its signals.
Many robotic applications require that robots work in
collaboration in order to perform a certain task [8],
[16]. Most existing localization approaches refer to the
case of a single robot. Even when a group of, say M ,
robots is considered, the group localization problem is

usually resolved by independently solving M pose es-
timation problems. Each robot estimates its position
based on its individual experience (proprioceptive and
exteroceptive sensor measurements). Knowledge from
the di�erent entities of the team is not combined and
each member must rely on its own resources (sensing
and processing capabilities). This is a relatively simple
approach since it avoids dealing with the complicated
problem of fusing information from a large number of
independent and interdependent sources. On the other
hand, a more coordinated scheme for localization has
a number of advantages that can compensate for the
added complexity.
First let us consider the case of a homogeneous group of
robots. As we mentioned earlier, robotic sensing modal-
ities su�er from uncertainty and noise. When a number
of robots equipped with the same sensors detect a par-
ticular feature of the environment, such as a door, or
measure a characteristic property of the area, such as
the local vector of the earth's magnetic �eld, a num-
ber of independent measurements originating from the
di�erent members of the group is collected. Properly
combining all this information will result in a single es-
timate of increased accuracy and reduced uncertainty.
A better estimate of the position and orientation of a
landmark can drastically improve the outcome of the
localization process and thus this group of robots can
bene�t from this collaboration schema.
The advantages stemming from the exchange of in-
formation among the members of a group are more
crucial in the case of heterogeneous robotic colonies.
When a team of robots is composed of di�erent plat-
forms carrying di�erent proprioceptive and exterocep-
tive sensors and thus having di�erent capabilities for
self-localization, the quality of the localization esti-
mates will vary signi�cantly across the individual mem-
bers. For example, a robot equipped with a laser scan-
ner and expensive INS/GPS modules will outperform
another member that must rely on wheel encoders and
cheap sonars for its localization needs. Communica-
tion and ow of information among the members of the
group constitutes a form of sensor sharing and can im-
prove the overall positioning accuracy.



2 Previous Approaches

An example of a system that is designed for cooperative
localization is presented in [12]. The authors acknowl-
edge that dead-reckoning is not reliable for long tra-
verses due to the error accumulation and introduce the
concept of \portable landmarks". A group of robots is
divided into two teams in order to perform cooperative
positioning. At each time instant, one team is in mo-
tion while the other remains stationary and acts as a
landmark. In the next phase the roles of the teams are
reversed and this process continues until both teams
reach the target. This method can work in unknown
environments and the conducted experiments suggest
accuracy of 0.4% for the position estimate and 1 degree
for the orientation [11]. Improvements over this system
and optimummotion strategies are discussed in [10]. A
similar realization is presented in [17], [18]. The authors
deal with the problem of exploration of an unknown en-
vironment using two mobile robots. In order to reduce
the odometric error, one robot is equipped with a cam-
era tracking system that allows it to determine its rel-
ative position and orientation with respect to a second
robot carrying a helix target pattern and acting as a
portable landmark. Both previous approaches have the
following limitations: (a) Only one robot (or team) is
allowed to move at a certain time instant, and (b) The
two robots (or teams) must maintain visual contact at
all times.
A di�erent implementation of a collaborative multi-
robot localization scheme is presented in [9]. The au-
thors have extended the Monte Carlo localization al-
gorithm to the case of two robots when a map of the
area is available to both robots. When these robots
detect each other, the combination of their belief func-
tions facilitates their global localization task. The main
limitation of this approach is that it can be applied
only within known indoor environments. In addition,
since information interdependencies are being ignored
every time the two robots meet, this method can lead
to overoptimistic position estimates.
Although practices like those previously mentioned can
be supported within the proposed distributed multi-
robot localization framework (Section 5), the key di�er-
ence is that it provides a solution to the most general
case where all the robots in the group can move simul-
taneously while continuous visual contact or a map of
the area are not required. In order to treat the group
localization problem, we begin from the reasonable as-
sumptions that the robots within the group can com-
municate with each other (at least 1-to-1 communica-
tion) and carry two types of sensors: 1. Proprioceptive
sensors that record the self motion of each robot and
allow for position tracking, 2. Exteroceptive sensors
that monitor the environment for (a) (static) features
and identities of the surroundings of the robot to be
used in the localization process, and (b) other robots

(treated as dynamic features). The goal is to integrate
measurements collected by di�erent robots and achieve
localization across all the robotic platforms constitut-
ing the group.
The key idea for performing distributed multi-robot lo-
calization is that the group of robots must be viewed as
one entity, the \group organism", with multiple \limbs"
(the individual robots in the group) and multiple vir-
tual \joints" visualized as connecting each robot with
every other member of the team. The virtual \joints"
provide 3 degrees of freedom (�x;�y;��) and thus al-
low the \limbs" to move in every direction within a
plane without any limitations. Considering this per-
spective, the \group organism" has access to a large
number of sensors such as encoders, gyroscopes, cam-
eras etc. In addition, it \spreads" itself across a large
area and thus it can collect far more rich and diverse
exteroceptive information. When one robot detects
another member of the team and measures its rela-
tive pose, it is equivalent to the \group organism's"
joints measuring the relative displacement of these two
\limbs". When two robots communicate for informa-
tion exchange, this can be seen as the \group organism"
allowing information to travel back and forth from its
\limbs". This information can be fused by a central-
ized processing unit and provide improved localization
results for all the robots in the group. At this point it
can be said that a realization of a two-member \group
organism" would resemble the multiple degree of free-
dom robot with compliant linkage shown to improve
localization implemented by J. Borenstein [1], [2], [3].
The main drawback of addressing the cooperative local-
ization problem as an information combination problem
within a single entity (\group organism") is that it re-
quires centralized processing and communication. The
solution would be to attempt to decentralize the sensor
fusion within the group. The distributed multi-robot
localization approach uses the previous analogy as its
starting point and treats the processing and communi-
cation needs of the group in a distributed fashion. This
is intuitively desired; since the sensing modalities of the
group are distributed, so should be the processing mod-
ules. As it will be obvious in the following sections, our
formulation di�ers from the aforementioned ones on its
starting point. It is based on the unique characteristic
of the multi-robot localization problem that the state
propagation equations of the centralized system are de-
coupled while state coupling occurs only when relative
pose measurements become available. Our focus is dis-
tributed state estimation rather than sequential sensor
processing. Nevertheless, the latter can be easily incor-
porated in the resulting distributed localization schema.
In order to deal with the cross-correlation terms (lo-
calization interdependencies) that can alter the local-
ization result [21], the data processed during each dis-
tributed multi-robot localization session must be propa-
gated among all the robots in the group. While this can
happen instantly in groups of 2 robots, in the following



sections we will show how this problem can be treated
by reformulating the distributed multi-robot localization
approach so it can be applied in groups of 3 or more
robots.

3 Problem Statement

We state the following assumptions:

1. A group ofM independent robots move in an N�
dimensional space. The motion of each robot is
described by its own linear or non-linear equations
of motion,

2. Each robot carries proprioceptive and exterocep-
tive sensing devices in order to propagate and up-
date its own position estimate. The measurement
equations can di�er from robot to robot depend-
ing on the sensors used,

3. Each robot carries exteroceptive sensors that al-
low it to detect and identify other robots moving
in its vicinity and measure their respective dis-
placement (relative position and orientation),

4. All the robots are equipped with communication
devices that allow exchange of information within
the group.

As we mentioned before, our starting point is to con-
sider this group of robots as a single centralized sys-
tem composed of each and every individual robot mov-
ing in the area and capable of sensing and communi-
cating with the rest of the group. In this centralized
approach, the motion of the group is described in an
N �M-dimensional space and it can be estimated by
applying Kalman �ltering techniques. The goal now is
to treat the Kalman �lter equations of the centralized
system so as to distribute the estimation process among
M Kalman �lters, each of them operating on a di�erent
robot. Here we will derive the equations for a group of
M = 3 robots. The same steps describe the derivation
for larger groups. The trajectory of each of the 3 robots
is described by the following equations:

~xi(t
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k+1) = �i(tk+1; tk)~xi(t
+

k
) +Bi(tk)~ui(tk) +Gi(tk)~ni(tk)

(3.1)

for i = 1::3, where �i(tk+1; tk) is the system propaga-
tion matrix describing the motion of vehicle i, Bi(tk) is
the control input matrix, ~ui(tk) is the measured control
input, Gi(tk) is the system noise matrix, ~ni(tk) is the
system noise associated with each robot and Qdi(tk) is
the corresponding system noise covariance matrix.

4 Distributed Localization after the 1st Update

In this section we present the propagation and update
cycles of the Kalman �lter estimator for the centralized

system after the �rst update.1 Since there have been
introduced cross-correlation elements in the covariance
matrix of the state estimate, this matrix would now
have to be written as:
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4.1 Propagation
Since each of the 3 robots moves independent of the oth-
ers, the state (pose) propagation is provided by Equa-
tions (3.1). The same is not true for the covariance of
the state estimate. In [21], we derived the equations
for the propagation of the initial, fully decoupled sys-
tem. Here we will examine how the Kalman �lter prop-
agation equations are modi�ed in order to include the
cross-correlation terms introduced after a few updates
of the system. Starting from:
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and substituting from Equation (4.2) we have:
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Equation (4.4) is repeated at each step of the propa-
gation and it can be distributed among the robots after
appropriately splitting the cross-correlation terms. For
example, the cross-correlation equations for robot 2 are:q
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After a few steps, if we want to calculate the (full)
cross-correlation terms of the centralized system, we
will have to multiply their respective components. For
example:
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This result is very important since the propagation
Equations (3.1) and (4.5) to (4.6) allow for a fully dis-
tributed estimation algorithm during the propa-

gation cycle. The computation gain is very large if we
consider that most of the time the robots propagated
their pose and covariance estimates based on their own
perception while updates are usually rare and they take
place only when two robots meet.

4.2 Update
If now we assume that robots 2 and 3 are exchanging
relative position and orientation information, the resid-
ual covariance matrix:

S(tk+1) = H23(tk+1)P (t
�

k+1)H
T

23(tk+1) +R23(tk+1) (4.7)

1Due to space limitations the propagation and update equa-
tions of the Kalman �lter before and up to the �rst update are
omitted from this presentation. The interested reader is referred
to [21] for a detailed derivation.



is updated based on Equation (4.2), for H23(tk+1) =�
0 I �I

�
, as:
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where R23(tk+1) is the measurement noise covariance
matrix associated with the relative position and orien-
tation measurement between robots 2 and 3. In order
to calculate matrix S(tk+1), only the covariances of the
two meeting robots are needed along with their cross-
correlation terms. All these terms can be exchanged
when the two robots detect each other, and then used
to calculate the residual covariance matrix S. The di-
mension of S is N � N , the same as if we were up-
dating the pose estimate of one robot instead of three.
(In the latter case the dimension of matrix S would be
(N � 3) � (N � 3)). As we will see in Equation (4.9),
this reduces the computations required for calculating
the Kalman gain and later for updating the covariance
of the pose estimate. The Kalman gain for this update
is given by:
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The correction coe�cients (the matrix elements
Ki(tk+1); i = 2; 3, of the Kalman gain matrix) in the
previous equation are smaller compared to the corre-
sponding correction coe�cients calculated during the
�rst update [21]. Here the correction coe�cients are
reduced by the cross-correlation terms P23(t

�

k+1
) and

P32(t
�

k+1
) respectively. This can be explained by ex-

amining what is the information contained in these
cross-correlation matrices. As it is described in [21],
the cross-correlation terms represent the information
common to the two meeting robots acquired during a
previous direct (robot 2 met robot 3) or indirect (robot
1 met robot 2 and then robot 2 met robot 3) exchange
of information. The more knowledge these two robots
(2 and 3) already share, the less gain can have from
this update session as this is expressed by the values of
the matrix elements of the Kalman �lter (coe�cients
Ki(tk+1), i = 2; 3) that will be used for update of the
pose estimate bx(t+

k+1
). In addition to this, by observ-

ing that K1(tk+1) = (P12(t
�

k+1
)�P13(t

�

k+1
)) S�1(tk+1) we

should infer that robot 1 will be a�ected by this up-
date to the extent that the information shared between
robots 1 and 2 di�ers from the information shared be-
tween robots 1 and 3.
Finally, as it is shown in [21], the centralized sys-
tem covariance matrix calculation can be divided into
3(3 + 1)=2 = 6, N � N matrix calculations and dis-
tributed among the robots of the group.2

2In generalM(M + 1)=2 matrix equations distributed among
M robots, thus (M + 1)=2 matrix calculations per robot.

5 Observability Study

5.1 Case 1: At least one of the robots has abso-

lute positioning capabilities
In this case the main di�erence is in matrix H. If we as-
sume that robot 1 for example has absolute positioning
capabilities then the measurement matrix H and the
observability matrix MDTI would be:

H =

24 I 0 0
I �I 0
0 I �I
�I 0 I

35
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0 �I I 0 j 0 �I I 0 j 0 �I I 0
0 0 �I I j 0 0 �I I j 0 0 �I I

i
The rank of the MDTI matrix is 9 and thus the system
is observable when at least one of the robots has access
to absolute positioning information (e.g. by using GPS
or a map of the environment).

5.2 Case 2: At least one of the robots remain

stationary

If at any time instant at least one of the robots in the
group remains stationary, the uncertainty about its po-
sition will be constant and thus it has a direct measure-
ment of its position which is the same as before. This
case therefore falls into the previous category and the
system is considered observable. Examples of this case
are the applications found in [12], [11], [10], [17], [18].

6 Experimental Results

The proposed distributed multi-robot localization
method was implemented and tested for the case of 3
mobile robots. The most signi�cant result is the re-
duction of the uncertainty regarding the position and
orientation estimates of each individual member of the
group.
The 3 robots start from 3 di�erent locations and they
move within the same area. Every time a meeting oc-
curs, the two robots involved measure their relative po-
sition and orientation3. Information about the cross-
correlation terms is exchanged among the members of
the group and the distributed modi�ed Kalman �lters
update the pose estimates for each of the robots. In or-
der to focus on the e�ect of the distributed multi-robot
localization algorithm, no absolute localization informa-
tion was available to any of the robots. Therefore the
covariance of the position estimate for each of them is
bound to increase while the position estimates will drift
away from their real values.

3The experiments were conducted in a lab environment with
an overhead camera tracking the absolute poses of the 3 robots.
The relative pose measurements were provided by the camera
while white noise was added to each of them. The accuracy of
the relative measurements was +/- 30cm for the relative position
and +/- 17 degrees for the relative orientation.
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Figure 1: Distributed multi-robot localization results: The covariances of the position x estimates for each of the three
robots in the group.

At time t=100 robot 1 meets robot 2 and they exchange
relative localization information. At time t=200sec
robot 2 meets robot 3, at t=300sec robot 3 meets robot
1, and �nally at t=400sec robot 1 meets robot 2 again.
As it can be seen in Figure 1, after each exchange of
information, the covariances, representing the uncer-
tainty of the position x estimates, of robots 1 and 2
(t=100sec), 2 and 3 (t=200sec), 3 and 1 (t=300sec),
and 1 and 2 (t=400sec) is signi�cantly reduced.

7 Discussion

At this point it is worth mentioning that a decentral-
ized form of the Kalman �lter was �rst presented in
[22] and later revisited in its inverse (Information �lter)
formulation in [13] for sequential processing of incom-
ing sensor measurements. These forms of the Kalman
�lter are particularly useful when dealing with asyn-
chronous measurements originating from a variety of
sensing modalities (an application of this can be found
in [19]). The Information �lter has certain advan-
tages compared to the Kalman �lter for speci�c esti-
mation applications ([14]). For the case of the dis-
tributed multi-robot localization the Kalman �lter is
signi�cantly better due to the reduced number of com-
putations. The single matrix inversion required is of the
residual covariance matrix S(tk+1) (3� 3) and this oc-

curs only when a relative pose measurement is available.
The Information �lter requires large matrix inversions
at each propagation step. More speci�cally the infor-
mation matrix propagation equation is:

P
�1(t�k+1) =M(tk+1)�M(tk+1)Gd(tk)

�
G
T
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For a group of M robots, the matrix
GT

d (tk)M(tk+1)Gd(tk) +Q�1
d
(tk) of dimensions (M � 3)�

(M�3) has to be inverted during each propagation step
and for a large group of robots this becomes compu-
tationally ine�cient. In addition, the information �l-
ter produces estimates of ŷ(t+

k+1
) = P�1(t+

k+1
)x̂(t+

k+1
) in-

stead of x̂(t+
k+1

) and therefore the information matrix
P�1(t+

k+1
) (of dimensions (M � 3) � (M � 3)) must also

be inverted in order to get the estimates of the poses of
all the robots in the group.
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