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Abstract

This project investigates the evolution in simulation of robot controllers

capable of performing a hard task, playing football, in the real world.

It is argued that for any reasonably interesting task, robot controllers are

too di�cult to design, and that an evolutionary methodology must be

employed. It is further argued that evolution in the real world is too slow

for such a task, and that evolution in simulation must be used to produce

good robot control structures. The techniques of minimal simulation, where

the robot controller is forced to ignore certain features through making

those features unreliable, are used to construct a simulated environment

for a robot with vision system. A �xed architecture neural network

provides a sensorimotor control system for the simulated robot, and evolu-

tion is used on an encoded version of the network to produce good solutions.

Two experiments are presented; �nding a white stripe in a dark arena, and

�nding a tennis ball and pushing it into a goal. In both scenarios, good

controllers capable of performing the same behaviours in simulation and in

the real world, are evolved only once su�cient unreliability is incorporated

into the simulation. The success in evolving in simulation a robot controller

incorporating distal visual environment input data and displaying the same

behaviours in both simulation and the real world, goes some way to ad-

dressing the arguments that evolution in simulation is only suitable for toy

problems.
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Chapter 1

Introduction

\The question of whether a computer can think is no more

interesting than the question of whether a submarine can swim."

E.W. Dijkstra

\Some people believe football is a matter of life and death.

I'm very disappointed in that attitude. I can assure you it is

much, much more important than that."

Bill Shankly

\When the seagulls follow the trawler, it is because they think

that sardines will be thrown into the sea."

Eric Cantona

Robot controllers are di�cult to design. The problems are considerable

in the production of a control system robust enough to cope with the

complexity and uncertainty of the real world. Research into the application

of biologically inspired techniques has provided a possible solution, enabling

the evolution of extremely complex robot controllers. However, opinion is

divided on the issue of whether evolution in the real world, or evolution in

simulation, is more suitable to the production of robust controllers. This

project investigates one method of evolving robot controllers in a minimal

simulation. The controllers are then transferred on to a real robot, where

they must perform a complex task - playing football.

This project is aimed at addressing the major argument levelled against

evolution of robot controllers in simulation, namely that such simulations

su�er from scaling up failure and are only practical for small `toy' problems.

Recent work in the area of evolution in simulation [31, 32] has provided a

potential answer to the arguments that simulation of a complex scenario

will be unrealistic, or prohibitively time-expensive to construct. The theory

5



CHAPTER 1. INTRODUCTION 6

of minimal simulation argues that the controller can be forced to ignore

simulation features not present in the real world, through making those

features unreliable. Real world controllers that successfully demonstrate

the same behaviours in simulation and in the real world have been evolved

in such simulations; this project is the �rst to attempt to evolve controllers

capable of on-board processing of real visual data for a complex task

requiring more than a single behaviour. The use of long distance, or distal

visual information, as opposed to local proximity detector information

such as infra-red sensor data, enables much more sophisticated navigation

strategies to be utilised - this project evolves robot controllers displaying

such strategies.

The task used in the project is football. It has been argued [39] that

football should be a standard problem in robotics research, covering a wide

range of domains from low-level mechanical and visual processing problems

right through to group coordination and classical AI representation and

planning issues. This project uses a simpli�ed version of the game; the

single robot must �nd the ball and push it into the goal. No other players

are involved, but it should be emphasised that the task is hard by robotics

standards. The robot must identify the ball, distinguishing it from the two

goals, and keep tracking it while moving forwards, even when the ball �lls

its entire �eld of view (which will occur with the robot still some distance

from the ball). In addition, the controller must be able to operate over a

range of lighting conditions - controllers basing strategies on a single set

of simulation conditions will fail completely in the real world, unless the

simulation is extremely well matched to the real conditions. The controller

must also cope with the motion of the ball - the tennis ball used in the

project is far from perfectly round, and the collisions far from elastic.

The task is made more di�cult by the robot and vision system used. The

Khepera [36] is well suited as a standard research robot platform, but

su�ers from serious problems when used to perform complex behaviours.

The robot's extremely small size renders it susceptible to problems caused

by uneven surfaces, and picking up dust and other debris. When pushing a

ball, the robot would frequently get stuck on a ridge on the oor. The vision

system also su�ers from problems with size - only a one-dimensional view

of the environment is possible, and the range and sensitivity with which

input intensity can be distinguished is low. Unless the ball was extremely

well lit, the vision system would not pick it up at all, even against a black

background.

One yardstick by which this project must be measured is whether the robot

controllers perform the same behaviours in the real world and in simulation.

It is this transfer of behaviour, or crossing the reality gap, that distinguishes
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minimal simulation techniques from Arti�cial Life work. Ideally, one would

like the controllers to consistently score goals from any point on the pitch,

but in practice a robot capable of �nding the ball, heading towards it and

pushing the ball forwards is fairly impressive. Chapter 9 shows the same

controllers operating in both simulation and the real world, consistently

�nding the ball from any point in the arena, and pushing it forwards.

Judged on the criterion of crossing the reality gap, and playing a simple

game of football, the project is a success.

Chapter 2 outlines arguments for why evolution should be used in the design

of robot control structures, while chapter 3 describes a new methodology

aimed at ensuring control structures evolved in simulation operate reliably

in the real world. Chapter 4 introduces the actual robot and vision system

used, and investigates the vision system performance. Chapter 5 outlines

how the methodology from chapter 3 is applied to the development of a

robot vision system simulation. Chapter 6 describes two areas of investiga-

tion - navigation and robot football - in which a sighted robot with evolved

control structure could be used, and details a variety of algorithms useful

for visual processing. Chapter 7 goes through the evolutionary scenario and

neural network controllers used in the project, while chapter 8 describes

the simulated evolution of controllers able to perform a simple task,

�nding a stripe, in the real world. Finally, chapter 9 describes the setup

and results for the evolution of a robot controller capable of playing football.

Appendix ?? contains the high level description of the source code, while

appendices ?? and ?? contain the code itself, and user guide. Appendix

?? has experimental results from the characterisation of the robot vision

system. Appendices ?? and ?? show full results for the stripe tracking and

football playing experiments. Appendix ?? covers the actual parameter

settings used in the experiments (for the overall code implementation of

the experiments see appendix ?? ). Appendix ?? details investigation of

one successful neural network controller, while appendix ?? gives details

on the fourth European Conference on Arti�cial Life Autonomous Robot

football tournament, and �nally appendix ?? gives an introduction to

genetic algorithms and neural networks.

This dissertation assumes a basic knowledge in the �elds of evolutionary

computing and neural networks. Appendix ?? gives a brief introduction to,

and overview of the terminology used in, these two areas.



Chapter 2

Robot Controllers

This chapter outlines the arguments for use of evolution over more tradi-

tional methods in the `design' of autonomous robot controllers. The use of

evolving neural network controllers is also examined (see appendix ?? for

an introduction to the evolution of neural networks).

2.1 Problems with Hand Design

The arguments are well rehearsed for the use of arti�cial evolution over

hand design, in particular the traditional arti�cial intelligence represen-

tation/planning paradigm, in the development of robot controllers. The

traditional arti�cial intelligence approach is argued to separate the robot

control system arti�cially from the environment, through the intermediate

representation stage; witness `Shakey's' [48] extremely slow sensor-motor

cycle. In advocating the hand design subsumption1 approach [3, 4],

Brooks attacked the traditional `perceive-model-plan-act' paradigm on

the grounds that symbolic representation2 is not needed for, and indeed

may slow down, most of intelligent activity [6]. Planning is also seen as

superuous; agents react to external stimuli (the agent has `internal states'

which may modify/govern reactions), and the speed of the tightly coupled

sensor-motor process enables the agent to operate in a dynamic environment.

However, [8] identi�ed the critical problem facing subsumption and other

approaches to the design of robotics controllers as coherence, or how a

complex organism can mediate between the many possible competing be-

haviours. The traditional approach to design of a such complex system relies

1A control system approach based on behaviours being partitioned into a set of task-

orientated activities operating in parallel.
2[38] and more explicitly [10] make the point that subsumption uses representations

of some sort, e.g. signals are passed representing that an edge has been detected in the

visual �eld. However, these are not symbolic representations in the generally accepted

de�nition of the term, and cannot be manipulated or reasoned with.

8



CHAPTER 2. ROBOT CONTROLLERS 9

on decomposition into separate modules, typically responsible for separate

functions3:

Modular programming methods in classical Arti�cial Intelli-

gence . . . lent themselves quite nicely to a homuncular form of

explanation.

[9]

It is by no means clear that the designers of an autonomous system can

assume such decomposition is valid, making hand-design of a complex robot

controller extremely di�cult indeed. Evolution is argued to be the only

approach capable of coherently organising all interactions with the environ-

ment and between separate parts of the robot [25]. Evolutionary techniques

must be implemented at some level, at the least to modify pre-designed

modules to operate together, and possibly to evolve the entire system.

2.2 Evolutionary Robotics

The rise of biologically-inspired approaches to robotics is based on the

premise that hand-design cannot provide coherent systems complex enough

for autonomous operation; \Interesting robots are too di�cult to design"

[25].

[56] outlines the basic approach:

the evolutionary methodology is to set up a way of encoding

robot control systems as genotypes, and then, starting with a

randomly generated population of controllers, and some evalu-

ation task, to implement a selection cycle such that more suc-

cessful controllers have a proportionally higher opportunity to

contribute genetic material to subsequent generations, that is,

to be `parents'.

Chapter 7 describes the evolutionary scenario, e.g. how parents to breed

are selected and the application of genetic operators such as crossover and

mutation, and also outlines the control system and method of encoding.

The design of the �tness evaluation and the architecture of the evolution

process are crucial for success, and much work has been done in this area

[45, 22]; chapter 9 describes the evaluation algorithms used for the football

experiment in detail.

3Although subsumption takes a behavioural decompositional approach.
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2.2.1 Neural Networks as Controllers

Within the evolutionary robotics �eld, several approaches can be distin-

guished. Higher level methodologies tend to operate on �xed architecture

systems governing the output response for a given input. Koza's genetic

programming language [40] is set up in such a way as to allow evolution of

the control algorithm, while classi�er systems [28] enable a set of rules to

be evaluated and evolved over time.

Other approaches allow investigation of more basic aspects; the recent

focus on neural network controllers [27, 49, 1] reects the argument that

evolution must be allowed to operate on a more primitive level than merely

altering the control program or rules [25].

This project uses neural network controllers for a robot football player;

evolution is used to produce networks that are evaluated in simulation.

Qualitative evaluation of the �nal network controller evolved is then carried

out in the real world.

Examples of evolved neural network robot controllers include walking

behaviours for many-legged robots [33, 22], room-centring given visual

input [11], simple shape discrimination [32, 26], grasping behaviour [50],

and `predators' chasing `prey' [19].

Chapter 3 goes on to outline the problems with evolution in the real world

and evolution in simulation, and describes new work aimed at solving the

simulated evolution problems.



Chapter 3

Real and Simulated

Evolution

In the following chapter, the di�ering problems with evolution in both sim-

ulation and the real world are outlined. The minimal simulation approach

[31, 32] is then introduced as a potential solution to the problems facing

evolution in simulation.

3.1 To Be or Not To Be: Real World versus Sim-

ulation

The issue of evolution in the real world versus evolution in simulation has

traditionally been the trade-o� between realism and time.

3.1.1 Problems with Simulation

It is argued that simulation cannot realistically model the features required

for robust operation in the real world; robots evolved in simulation may

completely or partially fail in the real world - the so-called \reality gap" [34].

Attempts to increase the simulation complexity merely result in expenditure

of vast amounts of modelling and computing time, e.g. Webb's discussion

on implementation details of modelling cricket phonotaxis:

[it] would require a great deal of e�ort to build a computer

model that reected the real situation well enough to make

strong claims that the mechanism actually works. And it was

certainly the case here that a simple simulation was quite mis-

leading about how the mechanism would perform.

[55]

11



CHAPTER 3. REAL AND SIMULATED EVOLUTION 12

The issue is complicated further when the time-dependent dynamics of real

systems are considered. [54] utilise an evolutionary approach to produce

hardware robotics controllers, evolving uniquely e�cient designs. The �nal

solution is typically analytically intractable, based on the speci�c dynam-

ics of the particular hardware employed. Simulation of the dynamics was

impractical, and only evolving the actual hardware was found to be of use.

[24] makes the point that:

a computation of an output from an input is the same compu-

tation whether it takes a second or a minute, [but] the dynamics

of a creature or robot has to be matched in timescale to that of

its environment.

In other words, the temporal dynamics of an agent in simulation must be

matched to its temporal dynamics in the real world for the agent controller

to cross the reality gap.

A second problem with simulation is that of noise. In the real world, sensors

and motors are not ideal; simulations must model the imperfect and non-

deterministic elements of the environment.

3.1.2 Problems with the Real World

Evolution in the real world su�ers from a di�erent problem; that of the

inordinate time required. With a large population evaluated over number

of generations, the real time evolution cost can be prohibitively large. [17]

required 65 hours to evolve e�cient collision-avoidance controllers, and ten

days to evolve learning controllers to perform the same task [18]. Bearing

in mind that more complex tasks will clearly require longer evaluation

times, and typically more than one evaluation per individual to eliminate

random e�ects [44], the real world evolutionary time problem is clearly of

critical importance. [5] argues, \the world is its own best simulation". But

is that simulation fast enough?

A further practical problem with evolution in the real world is that of

change/breakdown in the robots and the environment. Batteries will run

out, wires will become tangled up, lightbulbs will blow, wheels will get

snarled up with dust and other debris, etc. One doesn't want to return to

an evolution experiment after a week to �nd that on the second evaluation

the robot fell o� the table.

Approaches to the problems of real world realism versus simulation time

have involved initial simulation, followed by a period of on-line real world

development [42]. [7] has suggested a continuous cycle of simulated and real

world development, but section 3.2 looks at a radically di�erent approach.
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3.2 Minimal Simulation

[31, 32] outlines a new approach to the problems of evolution in simulation

(section 4.2). He contrasts the base set aspects of the situation, those that

may have some bearing on the robot behaviour, with the implementation

aspects, those which must not be allowed to a�ect behaviour.

Base set aspects are those simulation features present in the real world

upon which the robot behaviour might be based. For robustness, these

are modelled noisily. Implementation aspects are those simulation features

either not present in the real world (perhaps arbitrary regularities), not

thought relevant, or not easily modelled. Instead of arbitrarily setting

these aspects, or allowing some random distribution, these must be made

unreliable, e.g. randomly set for each trial to one of `on', `o�', `big', `little',

`randomly distributed', etc. The only practical evolutionary strategy is to

ignore them completely.

The key point is that the base set need not be comprehensive, or partic-

ularly accurately modelled; minimal simulation base sets will only evolve

controllers dependent on a small number of features, possibly not able

to exploit the full real world situation, but able to cross the reality gap.

However, the implementation aspects must be modelled unreliably.

[32] goes on to describe two successful experiments where minimal base set

aspects were used to evolve-in-simulation networks for discrimination of

shapes, and corner-turning following the direction of a previously seen light.

Both networks were very successfully seen to perform the same behaviours

in the real world situations. The comparison between simulation evolution

time and theoretical real world evolution time is astonishing, the simulation

being several orders of magnitude faster.

This powerful approach formalises the experimenter's previously thorny

problems of what to simulate, and how to simulate it, and as such goes some

way to solving the problems outlined in section 3.1. The addition of such

hand-constraints - `here is what the controller is allowed to use as input,

and here is what it must not use' - will lead to many more evolutionary

solutions crossing the reality gap. It is now possible to make simulations

more general than the real world; agents can be evolved to ignore certain

features, so can be used in di�ering environments. Imagine the real

world evolved robot equipped with fancy vision systems whose evolution

environment was a white laboratory; once sold to an interior decorator

with a taste for pink, our robot refuses to work at all. This would not be

true of the minimal simulation evolved alternative with colour speci�ed

as an unreliable implementation aspect; over each evolutionary trial, the
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simulated world would change colour, shade and intensity. Controllers based

on colour would not work reliably on every trial so would achieve low �tness.

However, two notes of caution should be sounded. First, the researcher must

identify the base set aspects. Second, as Jakobi points out, identi�cation

of the implementation aspects is by no means trivial; many will arise

indirectly as features of the simulation program code, others will creep by

unnoticed in the simulation set-up1. In essence, these are the representation

and frame problems of traditional AI rearing their ugly heads [15]; what

is relevant and irrelevant in this environment to this behaviour? However,

here we have the advantages that under-speci�cation is allowable - minimal

base set aspects still evolve robust controllers - and that the two aspects

can be speci�ed `o�-line', i.e. before the controller is active.

These two points aside, the radical envelope of noise hypothesis is a big step

towards solving the problem of simulation realism. Chapter 4 goes on to

describe the actual robot used in this project, and outline how a minimal

simulation of the robot and vision system can be set up.

1Reminiscent of the abilities of the US Military network trained in simulation to recog-

nise tanks. Poor performance in the real world was explained once the simulation designers

realised every scene containing a tank also contained a cloud, and that in fact the network
was recognising clouds in the real world extremely accurately. As a minimal simulation

implementation aspect, clouds might be present or not, in large or small quantities, with

varying shapes and colours. The network simply could not reliably base output behaviour

on clouds.



Chapter 4

Robots and Vision

This chapter introduces the hardware used in the project - the Khepera robot

and the K213 vision system - before describing experiments investigating

the vision system in a number of di�erent scenarios (appendix ?? gives full

details of the experiments performed). This characterisation of the relevant

features of the vision system is used to identify key features necessary for

the simulation described in chapter 5.

4.1 The Khepera Robot

Throughout this project, the standard Khepera research robot [47] has

been used, see �gure 4.1. The basic Khepera is a small (55mm diam. x

30mm high) two-wheeled robot equipped with eight infra-red proximity and

ambient light sensors, with an on-board Motorola 68331 processor. Plug-in

modules can be added; this project uses the K213 vision turret described

in detail in section 4.2. Power is provided either externally through a

serial cable1, or through on-board batteries allowing around 30 minutes of

autonomous operation.

The Khepera is particularly well suited as a standard research platform:

� Standard research robot, with existing research on simulation of per-

formance characteristics.

� Plug-in modules, including the K213 vision module.

� Simple BIOS, and memory space for downloadable sensor-to-motor

control programs.

� Small size, allowing experiments in small arena.

1provides both power (from the mains) and downloading of compiled �les (attached to

the computer serial port).

15
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Figure 4.1: The Khepera Robot (photo Alain Herzog)

However, the Khepera su�ers from performance limitations due to its small

size. Dust from the environment seriously a�ects the wheel speeds, e.g.

constant forward motor output can result in spinning on the spot if one

wheel picks up a hair. If the robot is not on an extremely smooth surface,

it can easily get stuck - especially when pushing something such as a tennis

ball (the robot and ball would often get stuck on ridges in the oor). The

vision system performance is also limited by size - for serious vision work,

a one-dimensional input is not su�cient. The input sensitivity is extremely

crudely controlled by the `iris' (section 4.2.1) - either a more sophisticated

algorithm, or a wider range of input intensity, would be an advantage.

4.1.1 Controlling the Khepera

The on-board Khepera processor supports a low-level BIOS [37] which

in turn calls the basic microcontroller functions to control the robot.

Multi-tasking2 is supported, allowing several tasks to be carried out

simultaneously. For instance, one task might be to explore an arena. This

would be interrupted the moment another task, looking for interesting

visual input such as edges, alerted the controller to the fact that an object

might be nearby. A third task would then take over to go towards the

object3.

Software control is possible by downloading compiled programs onto the

robot. The Khepera compiler takes standard ANSI C code using the BIOS

functions, and produces a compiled �le suitable for straight transfer to the

2In practice, most multi-task operations can be carried out by a single task, but splitting

the di�erent tasks up allows for more accurate timing (possibly where one task is waiting
for the results from one or more other tasks).

3Similar to the subsumption approach [3].
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robot. A typical �le control loop would call for various sensor readings,

setting the motor speeds on the basis of those readings.

4.1.2 Sensors and Motors

Figure 4.2 shows the distribution of the sensors and wheels on the robot.

Each of Khepera's eight sensors has two detection modes, both active at

any one time. Active infra-red emission and reception is used for object

proximity detection, while the same receiver also measures incident ambient

light.

0

1

2 3

4

5

67

Infra-Red/

Ambient Light Sensors

Wheels

Figure 4.2: Khepera's eight infra-red/ambient light sensors and two wheels

Simulating the sensor characteristics and readings is only possible given

experimental performance data; previous work [36, 30] has investigated

the response of the sensors in active infra-red mode as a function of the

distance from an object, the angle of the object to the sensor's line-of-sight,

and the angle with which the infra-red hits the object's surface. [30] also

investigates the ambient light sensor response to di�erent lighting levels

over varying distances, although this project makes no use of ambient

lighting detection.

The two wheel speeds are set by the control program; feedback is used to

ensure that the actual wheel speed is not signi�cantly di�erent from the

set speed (see [30] for details on the feedback algorithm, a classical PID

regulator).

4.2 K213 Vision Turret

The K213 vision turret is a module which simply plugs in to the basic

Khepera package, see �gure 4.3. The turret scans a one-dimensional line,

returning grey-scale values (ranging from zero, or dark, to 255, or bright)

for each of the 64 pixels on the line, i.e. the incident ambient light falling
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on each of the pixels over a set integration time. An `iris' measures the

total ambient light level, setting the integration time to avoid both under-

and over-exposure of the pixel grey-scales. Figure 4.4 shows a schematic of

the vision turret.

Figure 4.3: Khepera with the K213 vision turret

The vision turret is continually updating the visual pixel array (the time

between scans is adjustable). Calling the turret for visual data will return

the current array, although some basic pre-processing is possible, e.g. the

position of the brightest and darkest pixels can be returned.

Figure 4.4: K213 Vision Turret. The top `eye', or iris, measures overall incident

ambient light, while the bottom `eye' scans a one-dimensional line of 64 pixels,

returning the incident light for each (the time over which the incident light is

integrated is set by the iris).

4.2.1 The Iris

The K213 iris performs a similar role to that in human vision, scaling the

incoming light intensity. In humans, the iris opens or closes, allowing more
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or less light in over some time period. By contrast, the robot iris changes

the time period over which light is allowed into the `eye'.

While reducing the possibilities of absolute saturation or of not receiving

any light input, the iris has the e�ect of removing any absolute interpreta-

tion from the size of the visual input - scanning a uniform white background

may produce exactly the same input (or higher, or lower) than when

scanning a uniform black background. The overall ambient light falling on

the iris controls the integration time, making the visual input data di�cult

to predict for a given background. Section 4.3 explores the e�ect on the

input of varying light levels and distance from various background scenes,

including uniform and striped backgrounds, and objects such as tennis balls.

The vision turret can return the current value for the ambient light sensor,

enabling data to be scaled to absolute values. However, the iris cannot be

turned o�, and the integration time cannot be set from the controlling soft-

ware - the iris e�ect on the integration time is hardwired [46]. Exploration

of the e�ect of dividing input by the integration time produced somewhat

unpredictable results; for stability in the input range, data was used with

iris scaling e�ects included.

4.3 Visual Data

Appendix ?? gives results from experiments on the visual input data given

a variety of backgrounds, with di�ering light intensities (a desktop lamp

either illuminating the background, or turned o�), and distance from the

backgrounds. Each background was viewed for 100 scans of the vision

turret, and the average value with errors (the average value plus and minus

one standard deviation) plotted for the pixel inputs. Note the vision turret

was called to return only one in four data values, thus only 16 values are

shown on the graphs.

The results show four main points, crucial to modelling the visual system:

1. The pixel input is noisy, with di�erences over time. In most cases,

the standard deviation is small, but non-zero. Only where the input

is saturated does the deviation reach zero, see �gure 4.5.

2. The input is noisy in a spatial dimension as well as over time - viewing

a uniform background does not produce a straight line, see �gure 4.6.

These di�erences will be due to uneven lighting conditions, unevenness

in the background itself (uniform black will never be exactly uniform

black all over) and other e�ects extremely di�cult to model.
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Figure 4.5: White stripe viewed from 20cm, light on
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Figure 4.6: Black background viewed from 20cm, light on

3. The vision system inputs are not perfect - �gure 4.6 shows a uniform

black background, where three pixels on the left are returning lower

values than the other pixels. This is not an artefact of the back-

ground not being perfectly uniform, either through uneven lighting

conditions or uneven background colour. Pointing the robot in di�er-

ent directions at di�erent backgrounds with di�erent lighting produces

the same under-valuing of the light intensity by those same three pix-

els.

4. Given a uniform background, in general it will not be possible to de-

cide whether the background is light or dark from the visual data

alone. Figures 4.6 and 4.7 show uniform white and black backgrounds

viewed from 20cm with the light turned on. The black background

saturates the pixels (clearly the iris has overcompensated), while the

white background has reduced the integration time su�ciently to fall

below saturation. Only a large white stripe on a black background
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Figure 4.7: White background viewed from 20cm, light on

(�gure 4.5) shows clearly that white is brighter than black.

It is clear that to model the visual input data for the Khepera adequately,

the e�ect of both the environment and the vision system itself must be

taken into account. Chapter 5 outlines how Jakobi's minimal simulation

techniques [31, 32] can be applied to a simulated Khepera vision system.



Chapter 5

Modelling a Sighted Khepera

This chapter describes the simulation of a Khepera robot with vision capa-

bility. The basic hypothesis behind Jakobi's minimal simulation [31, 32] is

that the controller must not be allowed to rely on features not present in

the real world. The simulation need not be particularly accurate (indeed

noise will play a major part) in the details of the real world, or base set,

aspects, but must be positively unreliable in the details of non-real world, or

implementation, aspects. By specifying an unreliable model, we avoid the

extremely expensive computational overhead in producing an accurate sim-

ulation (with full ray-tracing, exact mapping of objects, and other di�cult

problems) which may only apply to one speci�c situation. See appendix ??

for the actual simulation details, e.g. the type and distribution of noise used

in the various routines.

5.1 Robot Simulation

The simulation of the Khepera robot motors and on-board sensors is adapted

from [31] and [52].

5.1.1 Motors

The new orientation and position are calculated on the basis of the left and

right motor speeds (see chapter 7 for details of the neural network output),

and the number of updates per second in simulation1. The simulation is

crude in that a lookup table is used to avoid computationally expensive

angle calculations when relating the robot orientation to direction of motion.

Finally, noise is added to the motor speeds, position, and orientation.

1This was discussed in section 3.1.1 - to cross the gap between simulation and reality,
the update speed must be similar to that in real life, i.e. how long the neural network

will take to produce motor output given sensor input. Strategies evolved on the basis of

moving a certain distance between updates may fail completely if they do not move the
expected distance in reality.

22
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5.1.2 Sensors

The ambient light sensor mode was not utilised at all; only the infra-red

proximity detection capability was modelled. Simulation of the sensors is

adapted from Jakobi's work on corridor-following minimal simulation [32],

where the readings are roughly based upon the robot being within range of

an in�nite wall.

The arena is modelled as four in�nite walls [52]. Given the orientation of the

robot to the nearest wall, a lookup table gives the distances at which each

sensor will detect the wall (which is scaled by the robot's distance from the

wall). If the robot is near a corner, i.e. within range of two walls, the table

will update each sensor distance with the nearest value. For objects in the

arena, the simulation uses the distance and angle subtended by the object

(already found for the vision input) to return a rough distance from each

sensor to the object. Finally, the sensor distances are converted to input

readings via a linear transformation, see equation 5.1.

input =

8
><
>:

irhigh distance � minrange

irlow distance � maxrange

irhigh(1�
distance�minrange

range
) otherwise

(5.1)

5.1.3 Interaction with the Walls

The robot interaction with a wall is extremely hard to model accurately -

a large number of factors will govern whether the robot bounces o�, stops

still, skews round to face the wall head on, or some other action. The

simulation needs to be set up in such a way as to discourage the robot to

come close to the walls (robots doing this in the real world are unlikely to

do well). However, this discouragement should not be in the form of some

�tness evaluation term; early controllers are unlikely to be able to avoid

walls, but they should not be penalised for the fact that they are able to

move while other less `good' controllers simply stand still. The solution is to

make the robot-wall interaction unreliable - controllers are allowed to hit the

wall without being penalised, but they will not be able to rely on the e�ects

of such interaction. The unreliability implemented provided four possible

consequences of hitting the wall:

� The robot does nothing, stopping still.

� The robot is bounced back a random distance (0-2cm), and spun in a

uniform random orientation (-0.15 to 0.15 radians).

� The robot is moved in a uniform random direction (-3 to 3cm), and

spun in a uniform random orientation (-0.6 to 0.6 radians).



CHAPTER 5. MODELLING A SIGHTED KHEPERA 24

� The robot is moved in a Gaussian distributed random direction (with

deviation 1.5cm), and spun in a Gaussian distributed random orienta-

tion (with deviation 0.3 radians).

Later controllers will evolve to avoid the wall - good controllers cannot hit

the wall and manage to track the ball or push it towards the goal consistently.

5.2 Aspects of Vision

The simulation of the vision system relies heavily on the four points identi-

�ed in section 4.3 during the characterisation of the system (experimental

details in appendix ??). The key to the vision simulation is the addition

of noise at a variety of scales. Identi�cation of the implementation aspects

enables the simulation to force them to be unreliable bases for robust

behaviour.

Four features in the vision input data (incorporating features in both the

real world visual data and Khepera vision system) were identi�ed as imple-

mentation aspects, which must be varied from trial-to-trial:

� In the real world visual data, two implementation aspects were iden-

ti�ed:

{ The background lighting must be varied across trials.

{ The absolute values for object colours must also be varied, so

controllers must evolve to cope with a variety of slightly di�erent

coloured objects in the environment.

� Two features were also identi�ed in the Khepera vision system:

{ The performance of individual pixels given identical inputs is not

reliably the same - this should be varied across trials.

{ The input angle of each pixel is not easily modelled; it might be

assumed that light incident over the whole angle is used. How-

ever, it may be that the pixel inputs `bleed' into neighbouring

inputs (i.e. the input angles overlap), or alternatively that the

input angles are fairly small. To minimise simulation time, in-

puts are not integrated over some area, but taken from a single

ray along the centre of the pixel input angle. However, this angle

is varied randomly over each evaluation to forbid controllers us-

ing strategies based on �ne di�erences in angle of view between

the pixels.
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5.3 Adding Noise to Vision

For the full vision simulation, noise was added at two separate levels (ap-

pendix ?? gives details). Evaluation noise was set for the four implementa-

tion aspects, while noise was also added over each iteration of the simulation:

� Evaluation noise was constant over each trial, and was used for the

four implementation aspects identi�ed above:

{ Background lighting was set to one of low, medium, high, or

randomly selected from Gaussian or uniform distributions.

{ Object colours were varied in a Gaussian distribution around a

mean identi�ed from experimental data (shown in appendix ??).

{ Pixel characteristics were set to one of all zero, or Gaussian or

uniform distributed random numbers (di�erent for each pixel).

{ The pixel input angle was varied as the pixel characteristics,

choosing randomly between no change, or small uniform or Gaus-

sian distributed variation.

� Iteration noise was varied between each simulation update:

{ If all inputs are the same, all are set to zero before adding noise

and background levels (thus uniform backgrounds of any colour

are indistinguishable).

{ Gaussian distributed noise is added to model the iris at each

iteration (same for all pixels).

{ Finally, each pixel receives Gaussian distributed noise on each

iteration.

We now have the framework for the robot and vision system simulation.

The robot is modelled simply, and the interaction with the walls is made

unreliable. A hierarchy of noise is added to the visual input data, ranging

from the actual colours present in the simulation, the lighting levels on each

evaluation, through to the individual pixel characteristics. Chapter 6 goes

on to explore research on visual systems in nature, and how visual processing

can be used to help the evolution of e�cient solutions.



Chapter 6

Visual Systems

The following chapter describes two possible projects for a visually guided

evolved robot. The possibility of exploring arti�cially evolved navigation

strategies in comparison with real animal navigation is certainly one fruitful

avenue of exploration. The evolution of controllers to perform a complex

task - football - is a second more engineering-style project. The chapter

goes on to explore a variety of visual processing algorithms, two of which

was used in the project. The second half of the chapter is tied back to the

�rst by research showing that animals do use visual processing of the sort

described, when navigating through the world.

6.1 Visual Tasks

6.1.1 Navigation

One original aim of this project was to use the robot and vision system

in the investigation of possible navigation strategies for an embodied

agent in a simple environment, without the use of any representational

models such as those used in previous work [43]. [35] describe a series of

experiments exploring the use of stored pictures in honeybee navigation;

so-called retinotopic coordinate visual patterns. The honeybees navigate by

associating particular views of an area with particular motor strategies -

perhaps triggered by some combination of features in the landscape. In a

similar vein [2] has argued against the need for animals to have cognitive

maps of any description, while [13] identi�es at least four methods by which

familiar landmarks can aid navigation without the use of some mental map.

[35] go on to identify a need for research on evolved creature navigation

strategies to pin down the key mechanisms at work in visual navigation. [14]

is currently exploring the behaviour of neural network controller animats

�nding a hidden food source with reference to a nearby landmark; one

extension of this would be to see whether similar strategies were evolved

26
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in simulations of real robots, and whether those strategies were successful

when evaluated in the real world.

However, the focus of the project changed to the more practical evolution-

ary robotic footballing controller design, once I realised the 4th European

Conference on Arti�cial Life (ECAL) was to have the �rst ever Autonomous

Robotics Football Tournament based on Khepera robots using the K213

vision system.

6.1.2 Football

There is no doubt that robot football incorporates many of the hard

problems facing both embodied and simulated agent research. A footballing

robot control structure must be able to respond quickly to input, including

extremely noisy visual data, selecting from a variety of di�erent behaviours

- �nding the ball and goal; trying to score or save goals; tackling/blocking

opponents - in real time. The robot footballing domain also covers such

issues as multi-agent collaboration, machine learning, and the traditional

AI favourite of planning. Indeed, [39] argue that robotic football should be

considered as a standard problem for robotics and AI.

The simpli�ed game played at ECAL, with only one robot per team, still

presents considerable challenges. The evolution of a controller to identify

and move towards the ball, �nally pushing it in a certain direction, is

certainly non-trivial. The controller must cope with the range of lighting

conditions likely to be encountered in the arena, somehow distinguishing

the ball even when the ball �lls its entire �eld of view. The controller must

also allow for irregularity in the ball's motion - tennis balls certainly do not

roll in straight lines.

The football environment as de�ned for the 4th ECAL conference consists

of an arena painted black, two indistinguishable goals painted grey, a yellow

tennis ball, and two autonomous (i.e. not connected to a computer via a

cable) robots viewed as black and white striped cylinders. The limits on the

size of the robots meant that, in practice, only Khepera robots using the

K213 vision turret were eligible. Each robot starts facing the opposing back

wall, at a randomly chosen point (although, in practice these were agreed

before the games). Seven halves of �ve minutes were played, each half ending

early if a goal was scored or if neither robot touched the ball in two minutes.

The tactics were clearly to �nd the ball and try to push it towards the

opposing goal1; not an easy task given noisy visual input and the very basic

Khepera vision system and on-board processing. Chapter 9 and appendix

1Although on the day, one suspects simply sitting in the robot's own goal would have
been a fairly successful strategy!
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?? describe the evolution in simulation and real world evaluation of the

footballing robot, and appendix ?? gives results for the ECAL tournament.

6.2 Visual Processing

The real world is both complex and noisy, and visual input data invariably

reects this; the data returned from the Khepera vision turret is no

exception (see �gures 4.5 to 4.7). A variety of image processing techniques

exist both to emphasise the main image features present and reduce noise.

Several factors must be taken into account when considering image process-

ing:

Background noise Visual input will inevitably contain random noise in

both a spatial and temporal dimension.

Background variation The visual scene will contain large scale variation

- processing should take into account such problems as those raised by

some areas falling in shade and others in sunlight.

Input range The range of input should utilise the full potential of the

processing units - there is no point having a unit which saturates with

only a tiny fraction of the possible input. Either the input should be

preprocessed, or the unit operating range altered. Ideally, one wants

all visual input to fall within the active range of the processing units,

and to utilise the whole range, not just a small part.

DC bias The overall level of the visual input. In bright sunshine, every

object will have high intensity, but the same objects viewed in the

dark will have low intensity.

6.2.1 Digital Image Processing

The need for processing of the image data is balanced by the requirement

that such processing should be fast for real-time on-board operation. This

constraint e�ectively removes the possibility of using such techniques as

Laplacian transformation of Gaussian convoluted data [51] and other com-

putationally expensive methods. Several `quick and dirty' methods are de-

tailed below, to both remove noise and emphasise contrast.

Removing DC bias

The simplest type of �lter removes the base level of input, setting all inputs

on the basis of the smallest input, see equation 6.1:

g(x) = f(x)� f(xmin) (6.1)
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f(xmin) smallest input value

Thus the active range over which the processing units must operate is re-

duced. This was one form of processing used in the project.

Smoothing Filters

Linear smoothing �lters are based on the premise that the value at each

pixel is approximated as an unweighted mean of the pixel values in the

surrounding neighbourhood. Note this may apply to both spatial smoothing,

where noise is reduced across the visual �eld, or temporal smoothing, where

uctuations over time for a single pixel are reduced to a mean level, see

equation 6.2:

g(x) =
1

M

X
S

f(m) (6.2)

x current pixel

g(x) current pixel, processed input

f(m) mth pixel, unprocessed level

S neigbourhood of current pixel

M no. of points in S

Sharpening Operators

Smoothing �lters simply average over the pixel's neighbourhood. Sharpen-

ing operators relate this expected pixel value to the actual pixel value, see

equation 6.3:

g(x) = f(x)�
1

M

X
S

f(m) (6.3)

Now we have some kind of simple edge detection emphasising the high fre-

quency features of the input - if the value at x is radically di�erent from

what would be expected given the neighbourhood values, the operator will

return high values. By contrast, if the value at x is the same as expected

from the surrounding pixels, the operator will return zero. The added bonus

is that some basic style DC bias removal has taken place (which is a side-

e�ect of all operators which work on the di�erences between neighbouring

pixels).

Contrast Operators

The next enhancement is to weight the sharpening operator by the inverse

mean intensity to produce a contrast operator, where di�erences between ob-

ject intensities are similar, whatever the background lighting levels (equation

6.4):
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g(x) =
f(x)� 1

M

P
S f(m)

1

M

P
S f(m)

(6.4)

Weighted Contrast Operators and Predictive Coding

Predictive coding [21, 53] uses a similar scheme to the contrast operator,

but weights the neighbouring pixel levels on how far from the current pixel

they are. The key is over how large an area the mean intensity is calculated

- too large and real di�erences in the background (part of the picture in

shadow, part in the light) will be included, but too small and the mean will

give big weighting to the actual intensity di�erences of the pixel level one is

trying to ascertain. Full predictive coding uses statistical estimation theory

based on the signal to noise ratio and lateral spatial correlation to alter the

size of the sample over which the mean is calculated.

Here I use a simpli�ed weighting system, where the mean is calculated over

the neighbouring three pixels, each of which is given some weighting. The

mean is not used to weight the contrast, thus low lighting levels are likely to

have very low contrast levels; analogous to the robot not seeing in the dark.

Processing is only performed in the spatial dimension; some form of motion

detection processing would be of value. However, objects are likely to move

fairly slowly in the football arena! Equation 6.5 gives the visual processing

used in this project:

g(x) = f(x)�
i=1X
i=�1

A(i)f(x+ i) (6.5)

x current pixel

f(x) current pixel, unprocessed level

g(x) current pixel, processed level

A(i) weighting on ith neighbour

Further work could explore the possibility of using full predictive coding for

the visual input, and the e�ects of using time-based predictive coding (in

essence a basic motion detector).

6.2.2 Insect Visual Processing

[41] investigates the visual processing in the y retina, �nding evidence

that both predictive coding and matched ampli�cation (scaling the input

up to match the range over which the neurons can process) are used. Thus

there is evidence that the sort of algorithms discussed in section 6.2.1 are

actually implemented in real animal retinal networks.
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Chapter 7 looks at genetic algorithm techniques, the evolutionary scenario,

and the neural network controllers used in the project.



Chapter 7

Genetic Algorithms and

Neural Nets

This chapter describes the genetic algorithm and neural network utilised in

the project. In particular, the parent selection and breeding schemes are

described. Appendix ?? gives an introduction to genetic algorithms and

neural networks.

7.1 The Genetic Algorithm Scheme

The ideas of Genetic Algorithm search techniques [28]1 come from evolu-

tionary biology, in particular Darwinian natural selection. Appendix ??

gives an introduction to the area, and explains the terminology used.

See �gure 7.1 for the high-level details of the genetic algorithm employed.

This project uses a distributed genetic algorithm, where each solution is

considered to occupy a unique position on a two-dimensional toroidal grid.

Initially, the grid is seeded with random genomes (each bit randomly chosen

from a uniform distribution ranging from -0.5 to 0.5), each of which maps

onto a neural network controller for a simulated Khepera robot (see section

7.5 for details of the network, and how the genotype is mapped on to the

phenotype). Each solution is then evaluated (see chapter 9) and the main

program loop entered.

On each generation, the algorithm iterates PopulationSize times, choosing

a random location on the solution grid. A mating pool, consisting of the

current location plus the neighbouring eight, is set up centred on the

randomly chosen grid location, and the mating pool solutions ranked in

order of �tness. Roulette selection (section 7.2) is used to �nd the parents,

1See [29, 20] for good overviews of GAs and their uses.

32
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Figure 7.1: Flow chart of Genetic Algorithm setup

and breeding produces an o�spring solution which is evaluated and placed

in the solution grid (section 7.3). The parent solution(s) are reevaluated

(if the reevaluation probability is accepted) to avoid poor solutions being

randomly evaluated as highly �t, so having a high chance of being chosen as

parents each generation, and also not being replaced. Note that updating

is asynchronous, in that the population grid is not all updated at one time

(a synchronous version of this algorithm might seed the children into a new
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pool, replacing the old pool with the new one once full), and also that no

location is guaranteed to be in any mating pool on a particular generation

(although this would be fairly unlikely).

Average and best population �tnesses are output each generation, and the

best individual genotype printed to �le (this can be used to seed a new

run with mutated copies). No test is used to see if genetic convergence has

occurred, i.e. has one or more best genotypes spread throughout the popu-

lation reducing the population's ability to avoid local minima; the algorithm

is simply iterated a set number of generations before �nishing.

7.2 Rank Based Roulette Selection

The project employs a rank based roulette selection (see [29] for further

details). Each solution has a possibility of being picked dependent on the

ranking of that solution when compared with others in its mating pool.

Thus one solution scoring much higher than other solutions in its mating

pool will receive no higher probability of being picked than a solution

in a di�erent pool scoring marginally higher than its potential partners.

With selection based on the actual genotype scores, such a solution scoring

very highly compared to its neighbours would be likely to overrun the

population, being picked every time for mating. However, rank based

selection avoids this problem; the best solution in the neighbourhood

always has the highest probability of being picked, but never at the expense

of other solutions being chosen.

A second advantage of rank based selection is that for any reasonably

complicated �tness evaluation, there is unlikely to be a linear relationship

between the �tness di�erence of two solutions, and how much better one is

than the other in completing the desired task. It is legitimate to argue that

one solution is better than the other, but to go further and argue that it is

a given amount better is not justi�able. The solutions should be ranked for

the selection procedure.

Equation 7.1 gives the roulette selection algorithm; the probability of the ith

ranked member being selected from a mating pool of size N (where ranking

is 0 to N � 1, with 0 being the �ttest):

P (i) =
N � 1� i
Pj=N�1

j=0 j
=

2(N � 1� i)

N(N � 1)
(7.1)

Note, the lowest ranked, i.e. N � 1th, solution has zero probability of being

selected for breeding. This has the e�ect of ensuring the highest ranked

solution is not replaced with the child when roulette selection on inverse
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ranking is used to �nd where the child solution will be placed, a form of

elite GA where the best solutions in each generation are always preserved.

7.3 Solution Breeding

The �rst parent is chosen through roulette selection. If the crossover

probability is accepted, the second parent is also chosen (it is possible for

the same solution to be chosen for both parents) through roulette selection,

and the child solution created through one-point crossover, see �gure 7.2.

A B C d e f g h Offspring

a b c d e f g h

A B C D E F G H

Cut Point

Parent 2

Parent 1

Figure 7.2: O�spring solution created from one point crossover of two parents

Finally, mutation is applied by seeing if the mutation probability is accepted,

and randomly changing selected bits on the genotype by a uniformly dis-

tributed random number in the range -0.5 to 0.5 (if crossover is not accepted,

the single parent is randomly mutated to produce the child solution). The

child is evaluated, and placed in the grid at a position chosen by roulette

selection on an inverse ranking of the mating pool.

7.4 Fitness Evaluation

The actual evaluation of a particular phenotype is the most important

part of the evolutionary process. It is the evaluation that provides the

pressure for `good' solutions to emerge, indeed the evaluation de�nes the

meaning of `good'. A full theoretical discussion of �tness evaluation design

is beyond the scope of this project, but [45] gives a good overview of the

sort of problems faced when trying to sca�old a complex behaviour up by

rewarding a priori identi�ed simpler behaviours which may be needed for

the full task at hand.

In an environment with any element of chance, i.e. random starting

conditions or noisy sensors, a series of �tness evaluations will be distributed

around the `true' �tness value. Simply taking one evaluation is likely to

result in wrongly identifying good and bad solutions. One method is to

take a series of evaluation trials, returning perhaps the average score (as

an approximation to the true �tness), or the lowest score (ensuring the

controller is robust to all possible scenarios). See chapter 9 for details
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of the �tness evaluation functions used in the football experiment, and

investigation into the e�ect of using average, median and lowest �tness

evaluation scores.

7.5 The Project Neural Network

Appendix ?? gives an overview of arti�cial neural network research, and a

description of the basic types of network. Genetic algorithms and neural

networks used together are an extremely powerful combination. In principle

a large enough multi-layer network can map any input on to any output;

GAs are well-placed to �nd good networks for a particular behaviour, where

the desired input-output mapping may not be known for any particular

time step (making supervised learning algorithms such as back-propagation

impractical). For instance, in a neural network controller for a robot, only

the desired robot behaviour is known, not the input-output behaviour of

the neural network itself.

For the football controller experiment (chapter 9), this project utilised

a direct encoded �xed architecture feed-forward neural network with

synaptic weights �xed over lifetime, shown in �gure 7.3. The 19 inputs,

consisting of 8 visual inputs, 8 infra-red proximity detector inputs, one

compass (set to one if facing the opposing goal, zero otherwise) and two

recurrent motor connections, are fully connected to a layer of 16 hidden

units. The 16 hidden inputs receive an additional input from a bias unit,

considered to always have an activity of 1.0 (so even if all sensory inputs

are zero, the hidden layer will receive this bias input). Finally, each of

the 16 hidden units is connected to the three outputs; two correspond to

the left and right motors, while the third corresponds to a `ball-present' unit.

The motor output neurons are used to set the left and right motor speeds

(which are recurrently connected as inputs, so the network has some `mem-

ory' of what happened on the previous time step), while the `ball-present'

node is used in the �tness function to encourage the controller to identify

the ball and actively go towards it, rather than just being in the vicinity by

chance.

Each of the links between units in �gure 7.3 is associated with a genetically

speci�ed weighting; a pre-synaptic2 output value is associated with some

post-synaptic input. Equation 7.2 shows the full input for the ith hidden

layer unit, from N input units (note the inclusion of the bias unit activity

2from biology, referring to the unit at the initiating end of the synapse. Post-synaptic

refers to the unit at the receiving end of the synapse.
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to each of the 16 hidden nodes. 
Each of the 19 inputs is connected

For clarity, not all connections are shown.

left motor right motor

Infra Red Inputs Visual Inputs

Bias Unit

Input Layer

Hidden Layer

Output Layer

Compass

‘ball present’

Figure 7.3: Feed-forward neural network used in project, with IR input

1.0):

inputi = ai;bias +

j=NX
j=0

(ai;jAj) (7.2)

i hidden layer unit

j input layer unit

N no. of input units

ai;j synapse i to j weighting

Aj activity of jth unit

Each unit in the neural network contains an input, output, and synapse

weightings. At each time step the input is initialised to zero, before adding

in all input values (the pre-synaptic output weighted by the corresponding

synaptic weight), some of which may be recurrent connections using the

previous time-point outputs. Finally, the output is calculated on the basis

of the transfer function, see section 7.7.

7.6 Genotype to Phenotype Mapping

Each solution genotype consists of an array of numbers, initially randomly

distributed over the range -0.5 to 0.5, but not constrained within any range

thereafter; in principle random mutation can produce much larger/smaller

values, although in practice values were rarely seen outside the -1.0 to 1.0

range. Each type of unit was built up from the genotype:

Input Units The weightings from each input unit to each hidden unit were

genetically speci�ed; the �rst NumInputs �NumHidden bits on the
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genome refer to these weightings.

Hidden Units Each hidden unit part of the genome holds a bias weighting

value, by which the bias unit activity 1.0 is multiplied before adding as

an input. The next three bits contain weightings to the three output

units.

Output Units The two motor outputs hold a bias weighting value, and

weighting values corresponding to the recurrent connections to each of

the hidden layer units. The `ball-present' unit holds only a threshold

value (if the input is greater than this value, the unit output is set to

one, otherwise to zero).

7.7 Unit Transfer Function

The input units are scaled to range from 0.0 to 1.0 (although processing may

reduce this further for the visual inputs), and the mapping between input

and output activity of these units is direct, i.e. an input of x will produce an

output of x. Both the hidden layer units and the motor units have a choice

of transfer functions; initially a sigmoid function (equation 7.3) was used.

However, this was replaced with a much less computationally expensive

linear function (equation 7.4) which produced a very similar input-output

mapping, see �gure 7.4.
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Figure 7.4: Sigmoid and linear transfer functions

output =
2

1+ e�input
� 1 (7.3)

output =

8
><
>:

1:0 input � threshold

�1:0 input � �threshold

input=threshold otherwise

(7.4)
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The addition of transfer function noise (in practice, a small random element

is added to the input, before the output is calculated) is a subtle factor

inuencing the evolutionary process. At one level it forces controllers to be

robust with respect to small changes in input; in some sense equivalent to

using a di�erent controller at each time step, with slightly di�erent synaptic

weights. Over an evaluation, a sample of controllers is used, centred

on the actual controller being evaluated (similar to the idea of lifetime

learning exploring the phenotype space around the evaluated phenotype).

At another level, the noise can actually push the network into di�erent

behaviours; random change might be used in some sort of random behaviour

selection where there is no unequivocal best behaviour.

An extension to the network used here might allow the value of the

parameters in these equations, currently �xed, to also evolve for each unit.

Thus the linear threshold for each unit could evolve to a suitable value to

cope with the range and no. of inputs (especially useful when a variety of

processing techniques might be applied to the visual inputs, but not to the

infra-red input).

Chapter 8 goes on to explore e�orts to evolve controllers able to �nd a

white stripe on a dark background - testing the theory of minimal simulation

evolution in practice.



Chapter 8

Experiment 1: Spot the

Stripe

This chapter explores applying the minimal simulation ideas outlined in

chapter 3 to a simple stripe �nding task. This scenario is used to illustrate

the e�ect of adding unreliability to certain aspects of the simulation. The

experiment also highlights certain features of the controller and simulation

required to ensure robust operation in the real world. Appendix ?? gives

full details of the experiment, while appendix ?? contains the parameters

used.

8.1 Predators and Prey

[19] explore a simulated coevolutionary scenario in which two Khepera

robots compete. The predator robot is equipped with the K213 vision mod-

ule (chapter 4), while the prey is able to move at twice the speed (both robots

are equipped with the standard Khepera sensors). Both robots use �xed ar-

chitecture feed-forward network controllers with evolved synapse weights,

connecting sensor and vision inputs through a single hidden layer to the

motor outputs. Lifetime learning is used to adjust synapse weights over

the robot's evaluation. [19] go on to analyse the results using coevolution-

ary analysis techniques introduced by [12], and �nd a number of interesting

tactics developed by both the predator and prey. However, here we are

concerned primarily with the techniques used to model the vision turret

performance, and how the visual input is used in the neural network.

8.1.1 The Predator's Visual Environment

[19] model the environment as a uniform white arena, with the prey

modelled with a black `turret' which enables the predator to see it from

any point in the arena. The K213 vision turret's preprocessing feature is

40
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utilised to return the position of the darkest spot in the predator's visual

�eld - i.e. the position of the black prey on the white background. The

predator's visual �eld is split into �ve sectors, each corresponding to an

input to the neural network. If the prey is in one of the visual sectors, that

neuron input is one, otherwise the input is zero.

Three crucial points a�ect the model, and its application to the real world

[16]:

� The predator sees the exact position of the prey; the simulation has

no noise in the visual input.

� The prey has no dimension. However close the prey is to the predator,

the visual input is the exact centre of the prey.

� If the prey is outside the predator's visual �eld, no visual input is

received by the predator whatsoever; all neuron visual inputs receive

zero.

[16] outlines work on transferring the controllers evolved in simulation un-

der the above conditions into reality. However, he describes the displayed

behaviours in reality as \far from optimal". The next section outlines ex-

periments aimed at enhancing the simulation to a point where the visual

controllers evolved are able to cross the reality gap. The scenario used is an

extremely simpli�ed version of the [19] setup - the robot must simply �nd a

well de�ned white stripe on a black background.

8.2 Closing the Reality Gap: Minimal Simulation

Experiments

The simulation set up is extremely simple, based on minimal simulation as

described in chapter 3. The environment is de�ned as a black arena with a

single white stripe on the wall.

The robot is modelled with only four visual inputs (no Khepera on-board

sensor inputs are used), each of which is one if the corresponding visual

sector contains the brightest visible pixel, zero otherwise. The network is

more complex than that used by [19]; the visual inputs are fully connected

to the �ve hidden layer neurons, in turn fully connected to both the two

motor units and recurrently to each other (the recurrent connections are

activated on the next time step). Finally, the motor units are recurrently

connected back to the hidden layer as two inputs. The motors are unreal-

istically modelled as changing only the robot orientation, not the x and y

coordinates, and the �tness evaluation is simply the length of time that the

robot is `looking' at the stripe (bonus is given for having the stripe at the
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centre of the visual �eld).

All controllers evolved were downloaded and tested on a real robot. It

was soon found that the conditions used in [19] were simply not producing

controllers working in the real world. Several variations were explored before

controllers able to cross the reality gap were evolved.

8.2.1 Increasing the Unreliability

Four di�erent scenarios were investigated before robust (in the sense of cross-

ing the reality gap) controllers were evolved to �nd the stripe:

Experiment A The conditions were as in [19]. The stripe was given no

dimension (the visual input was always the pixel corresponding to the

centre of the stripe), and the visual input was zero if the stripe was

outside the visual �eld. In simulation, controllers evolved quickly to

accurately �nd the stripe. However, the downloaded version performed

poorly; the robot did not move at all. This can be explained by the

visual input never equalling zero; the controller's condition for rotating

to �nd the stripe, i.e. when all input is zero, is never satis�ed so the

robot does not move.

Experiment B The same setup as in experiment A, but with the added

condition that if the stripe is not within the visual �eld, the brightest

input is randomly chosen. This introduces the reason for recurrency;

in some sense the robot must `recognise' the regular movement of the

stripe across its visual �eld, possibly with reference to the motor out-

puts. In simulation, the controllers evolved are extremely �t, �nding

the stripe very fast, but in reality they are far from optimal. Although

the robot circled `looking' for the stripe, none found it and stopped.

Experiment C As experiment B, but now the stripe has a given width.

When the stripe is in the visual �eld, the input is randomly chosen

from those pixels covering the stripe, while if the stripe is outside the

�eld of view, the input is randomly chosen from all pixels. Again, the

simulated controllers have high �tness, but fail in reality; the robot

sometimes found the stripe, but would then `lose track' after moving

towards or away the stripe (thus changing the perceived size of the

stripe).

Experiment D As experiment C, but with the �nal condition that the

stripe width changes on each �tness evaluation. In simulation, the

controller performs as the two controllers above. However, the evolved

controllers work in the real world, consistently �nding the stripe of

whatever width.
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Figure 8.1 shows data for one run resulting in controllers working in the real

world.
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Figure 8.1: Stripe �nding with 4 brightest pixel inputs

To evolve a stripe-�nding controller, it is seen that unreliability (in this

case randomly varying the stripe width) has to be applied over di�erent

evaluation trials. Only controllers capable of �nding di�erent width

stripes in simulation are seen to �nd stripes in the real world. This can

be explained by the strategies used by the evolved controllers - given a

simulation with only one stripe width, the strategy is likely to be based

on some very speci�c detail, perhaps the robot stops spinning only when

one certain visual input is high, and others are low. The real world stripe

is unlikely to match this simulation stripe, especially when factors such as

distance from, and angle of view to, the stripe are taken into account. A

controller able to operate reliably in a simulation with varying stripe widths

will operate in the real world - and as a bonus the simulation need not

include such details as the varying distance and angle of view to the stripe.

Four interesting points can be made:

� To match the temporal controller dynamics in simulation to the real

world, it was found useful to run the simulation to produce a trial

controller, and timing the controller on the real robot before setting

the simulation update speed and running the full evolutionary routine.

� In simulation, the x and y coordinates are not changed by the motor

output, obviously not true of the real world version. The successful

evolved controllers tended to move in small spirals (the fastest way

if �nding the stripe is to spin on the spot; x and y motion is not

useful) before stopping when looking at the stripe. However, several

controllers then moved the robot towards or away from the stripe, i.e.

motor output is not necessarily zero once the stripe has been found,
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but the left and right motor speeds are constant. The simulation

unreliability in the stripe width enabled these controllers to cope with

the stripe changing in size as the robot moved closer/further from the

stripe (an e�ect not included in the simulation).

� Once good stripe-�nding controllers had been evolved in simulation,

the environment was varied. The same controllers, with no further

evolution, were used in a scenario where the stripe was not stationary

but moving round the arena. The controllers were able to track the

moving stripe, even with occasional changes in the direction of motion

(although this was not found for high stripe speed, or when a large

random element of motion was included). This behaviour was also

seen in the real world; moving the stripe slowly produced a rotation

of the robot. Evolution has produced something for nothing; con-

trollers evolved on the capability of �nding an object are also capable

of tracking that same object.

� The controllers found are still not ideal, often stopping at light patches

on the arena walls (either due to uneven shading or lighting). As these

are real areas of higher intensity, they are given the same status as the

stripe to be found. No way of distinguishing between these and the

stripe is possible unless more information is used from the scene; the

full grey-scale capabilities of the vision systemmust be used to progress

to more complex environments.

Figure 8.2: Stripe �nding, controller in simulated evaluation

Figure 8.2 shows the simulated evaluation of the controller - once the

clockwise turn has brought the stripe into view, the controller moves

forwards slowly keeping the stripe dead centre. This behaviour was shown

in the real world. Once the downloadable controller had been established,

two more experiments were carried out. The visual inputs were increased
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from four to eight and then sixteen, so increasing the accuracy of the stripe

positioning. Once the conditions described in the fourth experiment above

were implemented, controllers able to work in the real world were evolved

with di�erent numbers of visual inputs.

8.3 Adding Noise and Implementing Grey-Scale

Vision

Appendix ?? describes further experiments where the noise was increased

in the simulation described above. Random data was added to the wheel

speeds, robot orientation, and the neural network transfer function. It was

found that the controllers coped with the extra noise, evolving to similar

�tnesses as with lower noise. The input data was also changed to return

grey-scale intensity data - again, controllers evolved successfully to �nd

the stripe. Evaluation in the real world found them to also be successful

at �nding a real stripe once the simulated stripe width was varied over trials.

This chapter has outlined how real world controllers can be evolved in sim-

ulation for a simple problem, given enough unreliability in the simulation.

The setup makes no pretense of evolving the most e�cient network for the

problem - it is unlikely that such a large network with so much recurrency

is needed for such a simple task, and no investigation was done on the most

e�cient number of visual inputs. However, the principle of unreliable sim-

ulation has been established. Chapter 9 goes on to implement a minimal

simulation of the full grey-scale vision system for a much harder scenario;

namely robot football.



Chapter 9

Experiment 2: Robot

Football

The following chapter describes the evolution of controllers capable of play-

ing football. Three �tness evaluations were investigated, and improvements

to the basic simulation made before controllers operating in the real world

were evolved. Screen-shots from real world operation video data are shown,

and the chapter concludes with some preliminary analysis of the network

controller strategy. Appendix ?? gives full details and results of the exper-

iments carried out, while appendix ?? contains the parameters used in the

experiments. Appendix ?? shows analysis of the neural network controller.

For a full explanation, a complex systems analysis is required; presented

here are qualitative arguments.

9.1 Fitness Evaluation

The �tness evaluation function was investigated, and three di�erent

versions used; a version rewarding simply how near the ball was moved to

the goal; an incremental evolution scenario initially evaluating controllers

on `looking at' the ball, seeding these into a scheme rewarding controllers

for hitting the ball, and �nally seeding these into the �tness function

scenario of how close the ball was moved towards the goal; and also

a full sca�olding evaluation rewarding all the behaviours above - seeing

the ball, hitting the ball, moving the ball towards the goal, and scoring goals.

In practice (see appendix ?? for details), the simple \how near is the ball

to the goal" function failed to produce controllers scoring above zero - the

task is too hard for such an open-ended evaluation. The incremental eval-

uation was no better than the full sca�olding function (although faster in

the �nal evaluation, it required the previous evolution scenarios as well),

and more complicated to implement. The remainder of this section uses

46
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Figure 9.1: Sca�olded evaluation function, �tness over generations

the full sca�olding function described in equation 9.1 - the use of a �tness

evaluation rewarding behaviours identi�ed as necessary to scoring goals may

restrict the possible strategies evolved, but guides the evolutionary process

into good area of the search space. Figure 9.1 shows the population best

and average �tnesses over the evolution. Fitness scores around 300 are con-

trollers repeatedly hitting the ball, above that are controllers pushing the

ball towards the opposing goal, while �tnesses around 10000 are controllers

scoring goals (see appendix ?? for details of the actual �tness parameters).

fitness =
TimeLookingAtBall

TotalT ime
+ f(ClosestDistToBall) +

X
N

S(HitBall) + g(BallToGoalDistance) (9.1)

f(dist) / dist linear with distance with upper/lower thresholds

g(dist) / (C � dist)2 rises as the square of distance ball moved

N � 20 no. of ball-robot collisions

S score for activity

9.1.1 Evaluating a Fitness Distribution

Given such a scenario with a large element of noise, it is vital to perform

several evaluations of �tness for a single controller. There are several ways

to use this distribution of �tnesses; appendix ?? investigates the e�ects of

returning the lowest �tness (producing very robust controllers); the average

�tness (highly skewed by such a �tness evaluation as that used here, where

scoring goals produces a �tness of 10000, but dribbling the ball the wrong
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way only scores a �tness of 300); and the median �tness score. The median

score is a better measure of such a skewed distribution - less weighting is

given to extreme scores - and is used in the remainder of this section.

9.2 Enhancing the Simulation

The controllers evolved under the median �tness evaluation scheme

and the full sca�olding function were downloaded onto the real Khep-

era robot and tested in an arena built to the ECAL football tournament

speci�cations (see appendix ??). However, the behaviours were not optimal.

Two problems emerged. First, the infra-red sensors were clearly not picking

up the black walls (veri�ed by testing the infra-red readings near the wall)

- the black absorbs infra-red rather than reecting. Second, the controller

was circling to �nd the ball, then darting forwards once it was in view.

However, the forwards motion always occurred slightly after the robot had

circled past the ball, and careful matching of the simulation and real world

network update speeds made no di�erence to the behaviour. Two changes

were made to the simulation to coutneract these problems:

9.2.1 Removing the Infra-Red Inputs

to each of the 16 hidden nodes. 
Each of the 19 inputs is connected

For clarity, not all connections are shown.

left motor right motor

Infra Red Inputs Visual Inputs

Bias Unit

Input Layer

Hidden Layer

Output Layer

Compass

‘ball present’

Figure 9.2: The old feed-forward neural network

The �rst enhancement to the simulation was to remove the infra-red inputs;

�gures 9.2 and 9.3 show the old and new versions of the neural network. The

number of inputs has been kept constant by using eight extra visual inputs,

doubling the vision sensitivity. To counter the problem of the controller
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to each of the 16 hidden nodes. 
Each of the 19 inputs is connected

Recurrent connections on
the hidden units are shown

For clarity, not all connections are shown.

left motor right motor

Bias Unit

Input Layer

Hidden Layer

Output Layer

Compass

‘ball present’

Visual Inputs

Figure 9.3: The new feed-forward neural network

possibly not being able to see the ball when pushed right up against it,

an extra recurrent connection is included on the hidden layer units back

to themselves (active on the next time step). Equation 9.2 shows the new

activity for a hidden layer unit:

inputi = ai;i0Ai0 + ai;bias +

j=NX
j=0

(ai;jAj) (9.2)

i hidden layer unit

j input layer unit

i0 hidden layer unit, previous time step

N no. of input units

ai;j synapse i to j weighting

Aj activity of jth unit

9.2.2 Random Momentum

The problem with the robot circling past the ball is a combination of the

momentum of the robot, and the non-instantaneous mechanical action of

the wheels. The simulation updated the robot position on the basis of the

motor outputs set on that time step - in e�ect the new motor speeds were

set instantly and no factor included for previous activity. In reality, the

robot would have both angular and linear momentum, thus would not be

moving solely on the basis of the new wheel speeds. The time taken to

set the new wheel speeds is also a factor - neural network update times of

the order 0.1 seconds are comparable to the time taken for the mechanical
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setting of the wheel speeds.

The �rst enhancement of the simulation was to average the wheel speeds over

the last two time steps, an extreme simpli�cation of the physics involved.

Evaluation of the controllers in the real world showed this to be evolving

some very odd strategies: robots were jerkily moving back and forth, which

in simulation averaged out to be a smooth motion. Including noise into

this enhancement introduced the crucial unreliability to the simulation. The

simulated controller was updated on a wheel speed chosen randomly between

the wheel speeds on the last two time steps, thus the robot cannot simply

set wheel speeds and assume that a certain output will be produced:

� The robot is not able to rely on the e�ects of its motor output if this

output has changed.

� The robot can reduce the noise on its position update by changing

motor speeds infrequently, and by small amounts. Thus the robot

moves smoothly.

The controllers evolved under this scheme were extremely e�cient in both

simulation and the real world, �nding the ball quickly and heading towards

it. Initial behaviours were fast circling, followed by moving straight towards

the ball when in the �eld of view. A further behaviour was that the robot

was able to move both ways towards the ball - overshoot in the circling was

quickly corrected by turning back slightly (although this was only seen if the

ball hadn't passed out of the �eld of view). Only controllers evolved with

this random momentum scheme showed this behaviour.

9.3 A Footballing Robot

Controllers from the 500th generation were tested in the real word, and the

behaviours seen to be extremely similar to those displayed in simulation.

Extending the simulation to 3000 generations, the best evolved controller

produced extremely good footballing skills in both simulation and reality.

Figure 9.4 shows the population �tness over generations, while 9.5 shows

the best controller evaluated over 100 trials. Note that the controller scores

in roughly 25% of the trials (a score of near 10000), but only scores near

zero on 5% (a score of just over 300 corresponds to dribbling the ball, but

away from the goal).

Figure 9.6 shows a simulated evaluation of the best controller - the con-

troller centres quickly on the ball, and pushes forward until the goal is

reached. Compare this behaviour with the real video screen-shots in section

9.4, showing the robot dribbling the ball across half the length of the pitch.
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Figure 9.4: Football expt - �tness over generations, median of trial �tnesses
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Figure 9.5: Football expt - �tness over trials, median of trial �tnesses

9.4 The Real Robot: Video Footage

This section shows captured video footage of the real robot in action. A

Windows-95 .avi �le was created from videoed footage - the screen-shots

shown are postscript versions of .gif �les extracted from this footage.

Consecutive frames are 0.5 seconds apart (the video capture of the robot

was updated twice every second).
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Figure 9.6: Football expt - simulation evaluation. Note, the �gure shows the

evaluation every 2 updates (roughly 0.5 seconds)

The 30cm ruler on the right of the pictures gives some indication of the

scale, and the line on top of the Khepera robot indicates the direction of

view of the vision system, i.e. `facing forward'. For the controller to work

consistently, bright light was needed on the pitch1. This high lighting level

accounts for the glare on the oor. The serial cable shown in the screen-

shots provides the robot with power only; the connection with the computer

is broken once the control program is downloaded.

1Although the controller was fairly reliable even in fairly dark conditions.
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9.4.1 Finding the Ball

Frames 1-15 show the Khepera (with serial cable still attached) turning

sharply to �nd the ball, and moving towards it, despite the goal also being

placed nearby. Once the robot reaches the ball, it carries on pushing forward,

`dribbling' the ball.

frames 1-3

frames 4-6

frames 7-9

frames

10-12

frames

13-15
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9.4.2 `Dribbling' the Ball

The robot approaches the ball from the bottom of the screen, and dribbles it

more than half the length of the pitch (roughly 60cm) towards the opposing

goal, �nally scoring. The robot keeps the ball centred, despite it rolling

away to the right (frames 4 through 8).

frames 1-3

frames 4-6

frames 7-9

frames

10-12

frames

13-14
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9.4.3 The Penalty Shoot-Out

This scenario shows the Khepera (with serial cable still attached) start from

the bottom of the picture, and head straight towards the ball, pushing it in

to the striped goal. Note the slight turns made in frames 4 and 5 to line the

ball up dead-centre.

frames 1-3

frames 4-6

frames 7-9

frames
10-12

frames

13-14
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9.4.4 The Trick Shot

This scenario shows the Khepera approaching the ball from across the goal,

yet still turning it into the net.

frames 1-3

frames 4-6

frames 7-9

frames
10-12

frames

13-15
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9.5 Neural Network Analysis

Appendix ?? contains full details of the qualitative analysis of the network

controller used on the real robot. Figure 9.7 shows the neural network

activity of the controller during a simulated evaluation covering 40 seconds

(note the visual inputs I0 to I15 start from the left hand side of the visual

�eld, and are fully connected to the hidden layer units H0 to H15, which

in turn are recurrently connected to themselves and to the left and right

motor neurons, ML and MR).

Analysis of the actual genotype (shown in appendix ??) gives evidence for

the H12 and H14 neurons acting as multi-purpose bright object detectors.

Either will saturate positively with a bright object in the right �eld of view,

and saturate negatively with a bright object in the left �eld (see �gure 9.7

- both are high positive on time point 10 when a bright object lies in the

right �eld (inputs I8 to I15), and both are high negative just before time

point 90, when a bright object is covering inputs I0 to I7). The behaviour

of the right motor is extremely dependent on these two neurons with their

high negative synapse weightings. A bright object in the right �eld causes

the right motor to shut down, while an object in left �eld causes the right

motor to speed up, thus the robot turns towards the object.

The H12 neuron also drives the left motor, but the high positive synapse

weighting means the motor behaviour is reversed with respect to the

right motor. Thus given a bright object in the visual �eld, the robot will

extremely e�ciently centre it; the only position where the two motor speeds

are equal, at which point the robot will move towards the object. In the

absence of any bright object input, the left motor is more fully on than the

right (see appendix ??, �gure ??), thus the robot's base behaviour is to

circle clockwise until a bright object enters the visual �eld, at which point

this will be centred and moved towards.

The analysis presented here clearly does not tell the full story. The role

of the recurrent connections, how the robot recognises when it is hard up

against the ball yet can't see it, and how bright objects of di�erent sizes

are discriminated (so the robot does not home in on the striped goal) have

not been touched on. However, for further explanation, qualitative analy-

sis of this type is not su�cient and a full complex systems analysis is needed.

In this chapter we have seen how evolution in a noisy minimal simulation

can produce robust controllers capable of operating in the real world. The

non-trivial task at hand, �nding a tennis ball and pushing it towards a goal,

is performed in both simulation and the real world - the controllers have

successfully crossed the reality gap. For proper analysis of the e�ectiveness
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of the controllers, more runs and example controllers are needed. Also,

I suspect that the simulation noise level is now slightly too high for the

controllers to get much better - seeding the best controllers into a less noisy

environment2 might produce better strategies for getting onto the right side

of the ball to push it into the opposing goal every time. However, what we

have is a clear indication that good controllers can evolve in simulation in

a relatively small number of generations to perform a complex task in the

real world.

2Similar to the idea that early in development of an animal, accurate vision may be too

`expensive' to process, so vision actually gets more accurate as the animal control system

develops.
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Figure 9.7: Football expt - network activity for best controller in simulated eval-

uation. I0 to I7 refer to visual inputs on the left side of the visual �eld, I8 to I15

to inputs on the right side (all inputs are DC o�set processed, so there is always at

least one zero input).



Chapter 10

Conclusions

10.1 Project Conclusions

We have seen how controllers evolved in a noisy minimal simulation can

successfully complete a non-trivial task in the real world. A simulation of

the Khepera robot and vision system was constructed, incorporating unre-

liability in six key areas:

� Robot-wall interactions.

� Robot momentum.

� Background lighting.

� Object colours.

� Individual vision system pixel performance.

� Vision system pixel input angle.

In addition to these aspects, noise was added on to almost every simulation

feature before successful controllers were evolved.

A genetic algorithm evolutionary approach was used to produce neural

network controllers mapping input sensor data to output motor behaviour.

The evaluation of the robot controllers was carried out in the simulation

described above, and selective pressure forced the evolution of better

and better controllers. Several visual processing schemes were explored;

the project controllers used a simpli�ed version of the predictive coding

algorithm on visual input data.

Two scenarios were investigated. The �rst experiment, �nding a single

white stripe on a dark background, was used as a test-bed to ensure

controllers evolved in simulation were capable of operating in the real

60
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world. The second experiment, �nding a tennis ball in a black arena and

pushing it into a goal, was then used to show the techniques of minimal

simulation are capable of scaling up to a real world problem requiring visual

environment input data.

Finally, the best controllers were downloaded onto the real robot and tested

in reality. Qualitative analysis of their behaviours was used to modify the

simulation (in particular, a random momentum element was added) until

controllers evolved displaying the same behaviours in simulation and reality

- crossing the reality gap. Analysis of the successful controller network

showed key neurons acting as bright object detectors in both the left and

right �elds of view. The same neurons can drive both motors to centre

bright objects before moving towards them.

10.2 Further Work

The range of domains covered by the problem of evolving a controller for

a sighted robot footballer is huge, and this project can only hope to have

investigated a small fraction of them.

The actual robot and vision system used was �xed by the size requirement

for the football tournament. However, both pieces of hardware su�ered

from serious defects, primarily due to their extremely small size. On the

robot, unmodellable noise was a major problem; dust picked up from the

environment can stop one wheel entirely, producing very biased motion,

e.g. spinning on the spot when both wheels are set to constant speed. Of

the four Khepera robots used in the project, only one was remotely reliable,

and only for fairly short periods of time. The vision system also su�ered

from problems; the iris e�ect removed the possibility of telling white from

black from the visual data alone. Also, occasionally the system provided

very odd data - given a display of a bright stripe on a black background,

the returned data sometimes showed a dark stripe on a bright background.

More limiting was the problem of the data returned; for serious vision

work a one-dimensional grey-scale array does not provide enough visual

environment data. As a basic research robot platform, the Khepera is

extremely well suited. However, for reliable operation over longer periods

of time, performing complex behaviours in a `real'1 environment, it is

unsuitable.

Evolving in simulation introduces problems with the modelling of a visual

environment - it is my belief that only a model based on some type of noisy

minimal simulation scheme can cope with the complexity of the real world

1Real in the sense of an environment not arti�cially created for the robot.
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visual environment. More realistic simulations are just too hard to design,

e.g. [45]. However, this is not to say that the minimal simulation approach

is a simple recipe for success. Considerable insight into the problem was

needed before a successful simulation was produced.

The use of vision introduced the �elds of digital image processing and

information theory. To produce controllers operating in more complex

visual environments, further investigation into the e�ects of using more

complex processing than used in this project is de�nitely needed. Predictive

coding would seem to be an obvious target of research.

The issue of what type of controller to use, e.g. high-level control programs

or low-level primitive controllers such as neural networks, was also skipped

over in the project. This project used the latter, but the �xed architecture

direct encoding scheme employed allowed no scope for evolution to change

the connections and nodes in the network. It would be of interest to

investigate more sophisticated encoding schemes employing biological

morphogenesis techniques allowing controllers to evolve which are complex

enough, but no more than necessary, to produce the behaviour required.

Phenotypes of di�ering complexity will also a�ect the time dynamics of the

system - to match the update speed in simulation to that in reality is now

no longer the trivial task outlined in chapter 8. The robot controller must

be slowed to some preset update speed - perhaps waiting until 100ms has

passed before carrying out the next update -which can be matched to the

simulation.

Also of key importance was the genetic algorithm scheme; a spatially

distributed population was used, but no exploration into the e�ects of

varying the selection and breeding schemes was undertaken. The interplay

between the evolutionary and network encoding/morphogenesis schemes is

also crucial; more complex encoding may require a di�erent evolutionary

setup, e.g. Species Adaptive Genetic Algorithms [23].

Despite the cursory examination of many vital areas, the project has to be

judged a success on three di�erent levels. First, as an evolved controller able

to play a limited game of football in the real world. Second, as a basis from

which to investigate some of the areas outlined above, to produce a controller

capable of playing a `good' game of football. Third and most important, as

a demonstration that the theory of minimal simulation evolution can scale

up to produce controllers incorporating visual environment data, performing

complex tasks in the real world.

Tom Smith

Sussex, 1997
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