Transforming Occupancy Grids Under Robot Motion
Joris W.M. van Dam and Ben J.A. Krose and F.C.A. Groen

Faculty of Mathematics and Computer Science, University of Amsterdam
Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands
dam@fwi.uva.nl

Abstract: This paper addresses the problem of how occupancy values from one occupancy
grid can be used to calculate occupancy values in another grid, where the latter is rotated and/or
translated with respect to the former. The mapping is described in terms of a neural network,
of which the parameters are learned from examples. An activation function is derived taking into
account that the input and output values represent probabilities. It is also determined how many
points should be taken in a learning sample to optimise learning speed.

1 Introduction

To represent the working environment of an autonomous mobile robot, occupancy grids can be
used [2]. An occupancy grid partitions the robot’s environment in a number of subspaces, each of
which is represented by a pixel. The pixel-value gives the probability of the subspace being occupied
by some obstacle. These grids can be used in mobile robot navigation [3, 5, 1] and in sensor data
fusion [6, 4].

Usually, occupancy grids are defined to be ‘world fixed’, i.e., they give a global representation
of the working environment and the partitioning of the environment remains unchanged. We have,
however, chosen to work with a local representation of the environment. Grids are now defined to
be ‘robot fixed’ and the partitioning changes every time the robot moves. This paper addresses the
problem of how, after a robot move, the information in the occupancy grid before the move can be
used to calculate pixel-values in the grid after the move. This is called the transform of occupancy
grids.

If the transform of grids is to be computed with conventional methods, not only the exact robot
move (e.g., the translation and rotation of the robot) needs to be known, but also the exact shapes
and sizes of the pixels in the grid are to be known and to be chosen appropriately. Here, neural
networks are used to learn the transform of grids of unknown sizes, shapes and dimension as a
function of a known robot move. The remainder of the text shows how such a transform can be
learned for a single, a-priori fixed, arbitrary robot move.

2 The network model

This section defines a neural network architecture, derives an appropriate activation function, and
suggests a learning procedure to learn the transform of occupancy grids for a single robot move.

Define a set of input neurons X4 with activations 3334 giving the pixel-value (the probability of being
occupied) of pixel j in the grid before the move. Let X2 be a set of output neurons with activations

zP representing the pixel-value of pixel i in the grid after the move. We have j = 1,2,... N4 and

(]
i=1,2,... NP with N4 and NP the sizes of the grids. Each output neuron i is connected to all
input neurons j with weights w;;.
Next, activation functions F() are to be determined such that =2 = F(w;j, :v;‘) give the occupancy

values of the grid after the move. If a pixel j was to be split up further in a number of sub-pixels

Jx, 1t follows from the interpretation of pixel-values that

— A(xjk)l__
i = A(:Ej) J (2-1)

where A() calculates the area of a subspace represented by a pixel. For this, we assume that the size
of the obstacle occupying the pixel’s subspace is minimal. Conversely, if a pixel ¢+ would be composed
from the union of disjoint subspaces 2, it follows that

z; =1 — P(all i}, are empty) =1 — H(l —z;) (2.2)
h

For this, we assume that all occupancy probabilities z; are independent and that (1- a:Zh) gives
the probability of subspace %;, being empty. Examining figure 2.1, which envisages the grid after a

~
~ |/ /
~le / - /
~
SO S / \\/ /
~ ~ ~ A
~ ~ 7~ X
o/ / ~
/ ~ / ~
~ o, A~
NS / / /
< <
N / N
N B|* . ~ .
N
X I B
/ AW ~_
/ A ~ X
/ / ;N7
N
/ / ; 7~
/ / ~
/ / ~

Figure 2.1: Pixel =P overlaying several pixels 3334 XB is the transform of X4.

robot move overlaying the grid before the move, and using (2.1) and (2.2) gives:

]:(wij, 3334) =1- H(1 - w”.’L';l) (23)
J
with
A(zBn 1334)
wi; = I (2.4)
J A(a:;l)

This expression for the optimal weight values explains the statement made earlier, that conventional
calculation of weight values can only be performed if the sizes and shapes of the pixels are known
and chosen appropriately. A learning procedure is to be applied to estimate these optimal weight
values.

If examples of grids and their transform (X A XB) can be given, with XB the correct grid after
the move, the error in the learned transform F(w;j;, 1634) is given by

Yo > @7 —af)? (2.5)
examples 1

We can now define a learning rule that follows the gradient of this error function with respect to the
weight values, known as the é-rule. With the activation function in (2.3) this gives

. 0 .
Aw;; = —’Y(sz - w,B) . s .T(wij,wj‘) = 'y(sz — a:f) . ar;;-‘1 . H(l — wikxf) (2.6)
i =

This gives rise to the following learning algorithm:

1. create a sample environment: choose a set of m randomly distributed points in the input space;
2. create a learning sample: for each point, determine the unique subspaces j and 7 of the original
and the transformed grid, respectively, that are occupied by these points. Set 133-4 = 1 and

~B
;=1
3. calculate occupancy values: use (2.3) to calculate the current estimates of occupancy values
B
z

i)
4. update parameters: use (2.6) to update the weight values w;;.

3 Speeding up the algorithm

In this section it is determined how many randomly distributed points should be chosen in each

sample environment (m in the algorithm of section 2). Taking one point per sample means that only

a small number of weights is updated each time a sample is presented. However, if more points per

sample are taken, the product term in (2.6), which reduces the update if it is likely that mj‘ =1 and
B

z; =1 are not caused by a single point in the learning sample, will slow down learning considerably.

These two considerations are combined quantitatively to calculate an optimal value for m.

Equation (2.6) shows that the number of weights for which Aw;; # 0 is proportional to the number
of pixels j with w;l =1, say s. If m points are chosen in the sample environment, it follows that the

expected value of :1334 is given by:

Blaf] =1-Plajt = 1|m) +0- Plaf = 0[m) =1 - (A(X“‘> —A(x;“>>m - (%)m (3.1)

with A() once again the ‘area’-function. Here, we take Vj A(mf) = 1 which gives A(X4) = N4, the
number of pixels in the original grid. The expected value of s is now given by:

NA—1\"
E[s]=N*.P(z}! =1|m) = N4 [1 - (W)] (3.2)

Another look at equation (2.6) shows that each Aw;; contains a multiplication factor g;; = Hk;éj(l —
wikmf). With one point per sample environment (m = 1 and s = 1) we have mf = 1 implies
gij = 1. However, taking m > 1 and thus s > 1 gives g;; < 1, a reduction of the update. The
exact value of g;; is also a function of 7;: the number of input neurons k& for which w;;, # 0. The
learning procedure starts with r; = N4, a fully connected, randomly initialised network. However,
in practical situations it can be expected that r; converges to a small value. This gives that, as
learning proceeds, r; decreases and consequently g;; increases towards 1.

We have for the expected value of g;;:

A
Elgi;] = B[] @ — wizi)]
k#j
We now assume independence of xf and :Ef‘, which is justified in our algorithm. We also take 133-4 =1,
since ac;‘ = 0 implies Aw;; = 0, we use an average weight value w;; = e and use (3.1) and 7; as

defined earlier. This gives:

Elgij] = [[1 - E[wi)E[z1]) = (1 —e {1 - (%) : D (3.3)

ki

We now have that taking m > 1 points per sample environment, the number of updates is propor-
tional to (3.2), while each update is reduced with a factor given by (3.3). We take m*, the optimal
number of points per sample to be the maximum of the resulting net speed-up:

ol G TR)]

4 Implementation and results

The algorithm given in section 2 was implemented for a fixed robot move. Also, (3.4) was used to
compute m* every 1000 learning samples, using e = 0.5. The samples were processed in batches of
100. Every 100 samples we took

2100 samples Awij
Elm;]

Wij = W5+

with E[m;| the expected number of updates for weights w;;, calculated using (3.2). Learning pa-
rameter v was taken to decrease exponentially from 0.4 to 0.01.

Using knowledge on the robot move and the sizes and shapes of pixels, optimal weight values were
calculated directly from (2.4). These values were compared with the learned values. Results show
the weights are estimated too high with an error of approximately 20%. This is due to the fact that
as learning proceeds, we take m fixed at m* > 1 to speed up the algorithm. This gives an unfair bias
in learning the weight values. The algorithm introduced in section 2 is derived for varying values of
m. Current research aims to adapt the algorithm for m fixed at larger values.

squared error

5 .10 15 20
nr of |earning sanmples * 1000

Figure 4.1: The total squared error in the learned transform calculated every 500 samples for m = 1
and m = m*.

In figure 4.1 some results are given. The squared errors are calculated over 10,000 test sample
grids every 500 learning samples. The numbers of points in test samples were drawn at random
from {1,2,...N A} for each sample, explaining fluctuations in the squared error. The graphs show
that indeed taking m = m* results in a significant speed-up of the algorithm. However, as learning
proceeds, m* converges to a value m* > 1 (as r; converges to a small value) and weights are
estimated too high. This explains that the algorithm converges to an error value which is higher
than can be obtained with m = 1.

References

[1] A. Elfes, Sonar-Based Real-World Mapping and Navigation. IEEE Journal of Robotics

and Automation, June 1987.

[2] Alberto Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation.
Proceedings of the 1989 IEEE Int. Conference on Robotics and Automation.

[3] G. Fahner, R. Eckmiller, Learning Spatio Temporal Planning from a Dynamic Pro-
gramming Teacher: A Feed Forward Net for the Moving Obstacle Avoidance Problem.
Proc. of ICANN92, Brighton.

[4] L. Matthies, A. Elfes, Integration of Sonar and Stereo Range Data Using a Grid-Based
Representation. IEEE Conf on Robotics and Automation, 1988.

[5] J. del R. Millan, Building Reactive Path-Finders through Reinforcement Connectionist
Learning: Three Issues and An Architecture. Proc. 10th European Conf on AI, Vienna
Austria, 1992.

[6] H.P. Moravec, A. Elfes, High Resolution Maps from Wide Angle Sonar. IEEE Conf on
Robotics and Automation, 1985.

[Rabinowitz] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration. Chap 5.9, Multiple
Integration by sampling.

