
Overview

Usage of a Vibrating Gyroscope
for Orientation Estimation

Dipl.-Inform. Gerhard Weiß
University of Kaiserslautern
Computer Science Department
Research Group Prof. Dr. E. v. Puttkamer

P.O.Box 3049 • D-67653 Kaiserslautern

Phone +49-631-205-2656 • Fax +49-631-205-2803
e-Mail: weiss@informatik.uni-kl.de

The muRata Gyrostar

We tested the GYROSTAR ENV-05S. This device is a sensor for angular velocity. There-
fore the orientation must be calculated by integration of the angular velocity over time. The
devices output is a voltage proportional to the angular velocity and relative to a reference.
The test where done to find out under which conditions it is possible to use this device for
estimation of orientation.

Principle of the Sensor

Inside the device is a triangle metal prism, which is fixed at two points. The triangle prism is
forced to vibrate by a piezoelectric ceramic at about 7 kHz. With no rotation around the high
axis, the two other piezoelectric ceramics detect a equal large signal. When the prism is
turned it gets twisted, so the detectors receive different signals. This signal difference is ex-
amined by the internal analogue circuits and brought out as a voltage proportional to the an-
gular velocity.

Specs. of the muRata Gyrostar

Supply voltage 8-13.5 V DC
Supply current 13 mA
Max. angular velocity +/- 90 °/sec
Scale factor 22 mV/°/sec.
Output 2.5 V DC @ 0 °/sec.

+/-2.0 V DC at max. angular velocity
Linearity Within 0.1% of max. angular velocity
Hysteresis None
Temperature offset Within 0.1% of max. angular velocity/°C
Drift Within 0.1% of max. angular velocity/h
Work. Temperature -20 - +60°C
Storage Temperature -55 - +85°C
Output noise Within 10 mV RMS
Dimensions 24 x 24 x 58 mm
Weight 41g

Direction of Vibration

mounting points

Piezoelectric
ceramic vibrator

Piezoceramic
detector

Direction of turn

Investigations

1. Noise

The observed noise comes obviously from the vibration itself. As it has a frequency of 7
kHz, it can easily by suppressed.

2. Drift

Here seems to be ment the error in offset drift over time. The main source of the drift error
seem to be self-heating.

3. Linearity

The device is highly linear. We observed only deviations of less than 0.05 °/s from the ideal
line (at 21° - room temperature).

4. Scale factor and offset

Some sample measurements:

°C scale factor

16 21.997 mV/°/s
18 22,007 mV/°/s
19,5 22,000 mV/°/s
22 22,069 mV/°/s
23 22.078 mV/°/s
45 21.991 mV/°/s

Note that the values are very close to 22 mV°/s (±0,15%).

Offset at 0°/s

°C Offset

16 2.428 V
18 2.452 V
19.5 2.477 V
22 2.501 V
23 2.525 V
45 2.549 V

=> approx. 0.5°/s /°C

This is the real problem: due to integration over time, a offset error leads to continuous drift.

Compensation of scale factor error

We observe the following:
A error in scale factor results in a proportional error in angle:

α = ∫ (p + ∆p)•(Measurement-Offset)dt = (p + ∆p)•∫(Measurement-Offset)dt

The above described error of 0.15% in scale factor leads to a error of 0.15% in angle, so af-
ter 1000° (about 3 turns) the error should be less than 2°. In order to keep the angle low, the-
re should be a many left as right turns to the vehicle.

Compensation of offset error

Errors in the offset come from drifts in temperature over time. Therefore the device should
be kept at the same temperature. On land vehicles, we can assume, that from time to time the
vehicle stands still. This is used to get the actual offset.

Sample code (in Pascal)
unit Gyroscope;
interface

uses GeneralTypesDecl;

procedure GyroInit (time: integer);
{initialising}
{in par. time, the time between two calls of GyroUpdate is given}

procedure GyroSetAngle (ExtOffset: radians);
{To set a predefined offset}

procedure GyroStartCalibration;
{To tell, that the vehicle is stopped}

procedure GyroStopCalibration;
{Must be called before a move again}

function GyroAngle: radians;
{Gives the angle in radians,(all the angle, not modulo 2π)}
{Positive: counterclockwise}

procedure GyroUpdate;
{Must be called exactly periodically}

implementation
uses ADCInterface; { This implements the procedure GetADC, gets the voltage}

 { in 2-complement, 16 Bit wide, 0 near to 2.5V}
const

Weight = 40;
SecToWait = 2;
FixPoint = longint($40);
Scalefactor = 61.4317E-9;

var
CurrentAngle, CurrentAngleVelocityAbs,
CurrentAngleVelocityRel, Offset, OffsetFix: longint; {32 Bit}
CycleTime, Count: integer; {16 Bit}
GivenOffset: real;
Calibrate: boolean;

procedure GyroInit (time: integer);
const n = 1000;
var i: integer;

begin
CurrentAngle := 0;
OffsetFix := 0;
GivenOffset := 0;
CycleTime := time;
Count := 0;

 { Do some smoothing}
for i := 1 to n do

OffsetFix := (OffsetFix * (Weight - 1) + GetADC * FixPoint) div Weight;
Offset := OffsetFix;
Calibrate := false;

end;

procedure GyroUpdate;
begin

CurrentAngleVelocityAbs := GetADC * FixPoint;
CurrentAngleVelocityRel := CurrentAngleVelocityAbs - Offset;
CurrentAngle := CurrentAngle + CurrentAngleVelocityRel
OffsetFix := (OffsetFix * (Weight - 1) + CurrentAngleVelocityAbs) div Weight;
if Calibrate then

if count < SecToWait * CycleTime then
Count := Count + 1

else
Offset := OffsetFix

else
count := 0;

end;

procedure GyroSetAngle (ExtOffset: radians);
begin

CurrentAngle := 0;
GivenOffset := ExtOffset;

end;

procedure GyroStartCalibration;
begin

Calibrate := true;

end;

procedure GyroStopCalibration;
begin

Calibrate := false;
end;

function GyroAngle: radians;
var InternAngle: radians;
begin

InternAngle := (CurrentAngle div FixPoint) * Scalefactor * CycleTime +
GivenOffset;

GyroAngle := InternAngle
end;

end.

Results

With this sample code, after a warm up of 10 minutes, it was possible to keep below of a an-
gle drift of 1°/min. . Periodic calibrations where necessary about every 2 minutes, but we
used no form of shelter for the device to kept it out of cooling air.

