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This paper describes a IMHz CMOS implementation of an integrate and fire neu-
ron network. The system models the human ability to separate unknown sounds
under natural conditions. Sound sources are separated based on binaural time
delay of auditory nerve spiking pattern. The acoustical attention is guided by the
novelty of a sound, acquired knowledge and interaction with other sensoric sys-
tems. Signals are coded into current pulses modelling the response of the Inner
Hair Cell-Ganglion complex. Uniform paced analog models of pulse propagating
cells and synapses are used at different processing levels. A module based layout
generator for the realization of different network size and connectivity is under con-
struction. The system is designed to provide a silicon solution for the interaction
of acoustical with other sensoric information at the autonomous robot platform
MILVA.

1 Introduction

Acting in a natural environment any sensoric driven system is confronted with
a overwhelming amount of data. Therefore one of the main questions is the
separation of “interesting” information out of the data stream. Like biological
systems, the mobile robot MILVA is designed to combine visual, acoustical
and tactile sensoric input to determine the focus of attention in an unknown
environment. The concept of acoustical attention is mainly concerned with
the solution of the object-background problem (Cocktail-Party Effect). Our
network approaches this task by reassembling the functionality of the timing
pathway in vertebrates for sound source localization. Based on the azimuthal
location we extend the WTA model of Lazzaro® to a time and knowledge
guided selection principle. The implementation of these principles is based
on Integrate and Fire (IF) neurons acting as coincidence detectors at several
stages of the auditory pathway. The evaluation of timing information at these
cells uses binary spikes of fixed pulse width and height with no need for pre-
cise calculations. The combination of analog circuitry to model the chemical
potentials of neurons and synapses with global digital clocks governing the in-
formation exchange, enables the system to ensure timely accurate processing
while minimizing the calculational, spatial, and power consumption expense.



2 Functional Structure

The functional structure of our approach consists of four major stages. Each
stage roughly summarizes the functionality of a neural structure along the
auditory pathway (see Fig.1). But our major concern was not to reassemble
the firing behaviour at each of these complex structures. We rather attempt
to model the behaviour of some substructures, critical to the task of the robot.
The first stage is marked in Fig.1 as inner ear. It physically exists twice
assigned to the left and right perception channel. The main parts of our ear
are the model of cochlear mechanics and the sensoric coding performed by the
inner hair cells.
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Figure 1: Module structure of the acoustical attention network

The timing pathway accounts for the second stage and uses inter-aural time
delay exclusively for the localization of sound sources in space. In the thalamic
nuclei at stage three, the guided focusing to one of the detected sound sources
is performed. Finally at the cortical level we assume parallel evaluation and
associative identification of spike patterns sending efferent attentional signals
back to the thalamus.

2.1 Membrane Model

Cochlear mechanics and its simulation in analog hardware has been intensively
investigated by the CalTech group of Mead. Before adapting to their findings
we tested wavelet based methods, a special kind of ARMA modelling and some
combinations of lowpass and resonator filters. Crucial for the adaption to the



Lyon model 3 was its simplicity and the possibility to include outer hair cell
functionality for automatic gain control as proposed by Sarpeshkar ®. Based
on second order all pole gammatone filters we use an analog circuit similar
to the model of van Schaik °. Presenting a single tone stimulus of 1 kHz to
a membrane model of a 64 sequential filters, we achieved the response shown
in Fig.3. The filter response is duplicating the traveling wave behaviour of
the inner ear basilar membrane (top-down) with its maximum elongation at a
specific position along this membrane.
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Figure 3: Response of the basilar membrane

Figure 2: Filter cascade as model of model to a 1 kHz stimulus

the basilar membrane

2.2 Inner Hair Cell Model

The biological coding procedure of the basilar membrane movements into spe-
cific timing of spike chains at the acoustical nerve is the functional concern of
our inner hair cells. Like most models we omit the duplication principle of na-
ture and assign just one Inner Hair Cell (IHC) to each of the frequency channels
preserving tonotopical frequency information this way. Since the stereocilia of
an THC cause depolarizing currents only when moving toward one direction,
the resulting soma potential duplicates the movement of the basilar membrane.
Comparing this potential with a threshold just above the resting potential leads
to the emission of a first spike at a fixed point of the positive movement cycle
(phase locking). The number of spikes emitted, depends on the amplitude of
elongation and the refractory period. The functional result is the coding of
continuous signals into time discrete binary pulse trains. During simulation
a stochastic part, likely to occur in analog implementations, was introduced.
But stochastic firing of the IHC during absence of input (Fig.4) does not pre-
vent the fibers from strong phase locking at the site of characteristic frequency
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as well as weaker locking at neighbouring locations in response to a sound im-
posed to the ear. The graded locking and intensity response shown in Fig.5
models the well known tuning curves for acoustical nerve fibers 13

2.8 Timing Pathway

According to neurophysiological findings and the silicon model of Lazzaro 3

azimuthal localization of sound happens at the site of the Medial Superior
Olivar (MSO) nuclei and their projections to the central and external nuclei
of the Inferior Colliculus (IC). To model this so called timing pathway, coun-
terpropagating delay lines were used to realize the combination of the left and
right hemisphere at the MSO. The principle output of the MSO is the cross-
correlation function between left and right ear calculated separately for each
frequency channel. Since information is coded as binary spikes, crosscorrela-
tion can be performed as coincidence detection along delay lines (Fig.6).
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Figure 6: Delay line with coincidence detectors at the MSO



For each of the 16 frequency channels the spike trains of the corresponding
frequency channels in the left and the right ear are counterpropagated along
a line of 34 delay units. If the spikes enter this structure with a certain in-
teraural delay, they will coincide at a specific location of the delay line and
cause firing of the detached detector cell. This way interaural time delay is
coded into space. The number of spikes at different locations of the resulting
timedelay-frequency map is shown in Fig.7. In response to a complex sound
from 20 degree left, it can be observed, that activity (white) of several fre-
quency channels is concentrated around -5 us delay .
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Figure 7: timedelay - frequency map at the MSO where increased spike rates are visible in
the frequency channels 7-11 (800-3500 Hz) around —5us

The tonotopical organization of isofrequency zones is preserved until the
projection from the central to the external nucleus of IC. Here the delay -
frequency plane is converted to a time delay map by dendritic summation
across frequencies (see Fig.8). Taking advantage of the physically determined
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Figure 8: Frequency summation architecture as projection from central to the external
Inferior Colliculus



time-delay common to all frequency components of a specific sound source,
the azimuthal position of this source relative to the base of the ”ears” can
be determined. The resulting information is not only cue for the localization
of a sound but also separates different sound sources by increased activity at
different locations of the azimuthal vector (Fig.9). The spatial resolution of
this information depends on the base distance of the ears as well as the coding
resolution. A more detailed description of the timing pathway model is to be
found in 3.
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Figure 9: Firing of two nodes in the azimuthal plane at the external IC as result of two
sound sources localized 75 degree left and 15 degree right of the center

2.4 Thalamic Auditory Focus

In order to achieve an acoustical focus, one of the detected sound sources has
to win over the other activity locations in the auditory space map. The general
approach to this problem is the well known Winner Take All network? assumed
at the Medial Geniculate Body (MGN)of the thalamus. Its output results in
a winning unit being the most intense in its firing. Since the intensity of
firing in the azimuthal space does not mirror the significance of a sound to the
robot, an attentional signal is needed to offset the WTA layer and support the
sound source of interest. In order to be significant, a sound has to match two
requirements. First, it has to be actually new in the acoustical scene and second
it has to be evaluated as "important” by the attentional system. To realize
the actuality requirement we installed an activity dependent self inhibition at
the MGN. Here an inhibitory connected feed back neuron is assigned to each



focus cell. Receiving the same input, it is suppressing long term firing of the
subsequent unit by slowly increasing its synaptic efficiency during each firing.
One of the results is, that a moving sound source will achieve full attention
until it becomes locally stable and subject to self inhibition. Despite the time
dependent suppression method a supporting algorithm is applied to increase
the firing probability in case of a positive signal from the attentional system.
By coupling the attentional nodes to the focus layer, excitatory firing from the
attentional network will lift the soma potential of the focus neurons just below
threshold and therefore increase their firing probability. Inhibitory activity
from the attentional system will cause the opposite and prevent most focus
units from firing at all - the system is "not interested”.

2.5 Cortical Evaluation

The task of this module is to develop some knowledge by learning typical
sound patterns, which enables the system to exclude them from the atten-
tional procedure. A typical example is the sound of the robot motors. They
are detected under varying acoustical conditions but are never of interest to
the systems behaviour. The neural structure capable of learning and recalling
spatio-temporal spike patterns in an associative manner was first proposed by
Gerstner!. The fully connected one layer structure employs the implemented
Hebbian learning to store a limited number of spike pattern and reconstruct
them in case of disturbance by other sources. The dynamic memory receives its
input directly from the auditory nerve and is therefore confronted with all of
the information in the scene. Any stationary sound will result in a repetitive
spike pattern, while instationarities or noise will not cause periodic spiking.
The regularity of these pattern leads to a gradual increase of some weights.
This results after extensive repetitions at the input in the repetition of the
pattern at the output of the memory. For further details see Gerstner'. If the
learned pattern is part of a complex scene, the memory will only recall the
learned pattern and therefore select it from the scene.

To evaluate the significance of regular excitation patterns a hierarchical colum-
nar structure of coincidence detectors is employed to duplicate some features of
cortical processing. All channels are fed through a delay line, so the last time
steps become available to the mapping procedure at any point in time. Coin-
cidence detectors at the first layer sum over five steps in time and a frequency
range of 2 channels. The subsequent layers generalize the spatio-temporal
structure to a 3 unit vector at the output. If a repeating pattern contains a
regular structure, this will lead to a distinct activity location at the output
layer. The similarity to the time delay neurons of Waibel!! is obvious but the



classification task in our system depends on the judgement whether a sound is
significant to the system or not. In the multisensory approach of the MILVA
robot this information will be provided by the results of motor actions and vi-
sual information. During the current simulations it is provided by the designer
and determines if the efferent attentional signal is of excitatory (“interested”)
or inhibitory (“not interested”) nature.

3 Paced Analog-Digital Information Processing

As stated above, we decided to implement the whole network in 2.4 ym analog
CMOS technology. The major advantage to us is the fast processing, resulting
in the chance to increase time resolution above the natural kHz range to 1
MHz. The complete physically parallel implementation uses pulse propagat-
ing TF neurons and distributed hebbian synapses. By combination of these
basic cells with modified parameters and different connectivity the specific
functionality of the described stages can be achieved. The interconnections
within the network are realized by a principle array architecture as displayed
in Fig.10. This enables the realization of a wide variety of network topologies,
ranging from fully connected toward multi-layer or locally connected architec-
tures. Currently 10 fully connected neurons could be placed on a 50 mm?
test chip. In case of sparse connections this number increases significantly, but
some subnets need even more cells, therefore the chips can be combined to a
multi-chip system as shown in Fig.11.
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Figure 10: Chip structure Figure 11: Cascaded chips

Turning toward analog implementations one has to be aware of the inaccu-
racy and stability problems of such systems. Despite the general robust nature
of the processing mentioned above, we used two asynchronous clocks to prevent



the system to a certain extent from oscillations and to ensure time accuracy
critical to the function. The third problem of analog systems is the long term
storage as well as the accurate modification of synaptic weights. The presented
weight refresh and charge pump circuitry is our approach to overcome these
limitations.

3.1 Neuron

One of our goals was to find a neural cell model capable to perform at dif-
ferent stages of the system just by tuning of a few parameters. So we could
not step as far into biology as van Schaik ® did, but still attempted to include
the essential functionality of integrate and fire cells. The advantage of using a
basic cell type, is the preservation of hardware variability and the realization
of different neural structures and functions.
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Figure 13: Simulated internal signals
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input

Figure 12: Block structure of the neuron model

The block structure in Fig.12 contains five blocks representing functional
circuitry. Each neuron receives spatially added current pulses from affiliated
synapses placed in the column above. The analog amplitude of each synaptic
current depends on the stored weight and covers the range 15 uA. A spatio-
temporal summation of all incoming current pulses is realized by charging the
Soma Potential Capacitor Z. A discharging resistor in parallel with the 5pF
capacitor Z approximates the time course of postsynaptic potentials (PSP) as
B-function with a fading duration of 30 us and resting potential of 0V. The
neural activity A at the output is the result of the comparison between the soma
potential and the threshold. The subsampling of the incoming current pulses
by Clock2 (1 MHz, pulse width 500 ns) leads to a reduced charge period of the
capacitor, extending its functional dynamic range and reducing stabilization



errors at the beginning of the us interval. If the capacitor voltage Z exceeds
threshold, the rail-to-rail comparator generates only a trigger point for the
inner activity A;. To prevent the immediate return due to the refractory
process (AHP), A; is stored in an edge triggered dynamic memory realized as
gate-capacitance buffer. The binary activity A at the output of the neuron
arises synchronous to the next L-H edge of Clockl.(see Fig.13) Each activity
pulse is followed by a refractory period. When A turns to high the AHP
capacitor is charged and the threshold is lifted to V4. Therefore the output
of the comparator will return to low. This is functionally equivalent to the
decrease of soma, potential in biological neurons. The AHP potential returns
to resting potential in a 2 stage process combining a defined absolute refractory
period with an exponential decrease during the relative period. The History
(H) circuit is included to model the firing history of the neuron, propagated
as dendritic potential back to site of the synapses. During the activity pulse
the H capacitor is charged rapidly. Afterwards it is discharged with a time
constant of 30 us similar to the Z capacitor. History potential ranges from 2.5
to a maximum of 5V.
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Figure 14: Neuron circuitry

3.2 Synapses with on-chip Hebbian learning

It is widely accepted that the Hebbian learning rule is biological plausible.
Although the precise influence of dendritic potentials is not yet clear, Hebbian
learning behaviour duplicates best the local process at the synapses. The
weight modification will depend on the potential difference resulting from the
timing of spikes at the sending and receiving neuron. Enhanced in Fig.15
the weight will increase if the receiving neuron spikes shortly after the arrival
of an excitatory pulse. This principle was first proposed by Gerstner ! for
learning in the dynamic associative memory. = The synapse is modeled as
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the weighted transmission of voltage pulses into current levels at the dendritic
tree. A detailed description of the circuits is to be found in Izak et al. 2. The
synaptic weight is stored locally, as a voltage across a 5 pF' poly capacitance.
Observable in Fig.16, the weight capacitor is charged or discharged by a charge
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Figure 17: main synaptic circuit

pump depending on the multiplication of dendritic- and postsynaptic potential.
In the Gilbert multiplier both history potentials are joined with a linearity of
0.6% at 1V x 1V inputs. The disadvantage of its mV dynamic range can
be compensated by higher comparator sensitivity at the subsequent charge
pump, based on the idea of Morie?. The major problem in analog neural nets
is the accurate long term storage of weight values. We defined the necessary
accuracy level to 8 bit. By adapting to the idea of Vittoz et all® we use a
ramp reference voltage increasing from 0 to 5 V in 256 ps. The voltage across
the weight capacitor is continuously compared with this reference. When the
reference exceeds the capacitor voltage, the weight is carried along the reference
until the next reset pulse occurs. Using a 1IMHz reset clock and 256 us refresh
cycle the achieved accuracy fulfills the 8 bit level (20mV).



4 Layout Design

Neural hardware design can be divided into all purpose and full custom de-
sign chips. To achieve the advantages of full custom design (more detailed
modelling, optimal area utilization, etc.) by reducing the overwhelming de-
sign expense, we are working on the automation of layout generation. Based
on a library of neural elements (cell types, synapses, delay units and others),
our design generator is embedded in a CADENCE environment and produces
layouts for different net sizes and connectivity structures. The layout of the
presented learning synapse is shown in Fig.18.

Figure 18: 2,4 ym CMOS layout of a analog synapse with weight storage, refresh and hebbian
time resolved learning

Using the 2.4 ym CMOS technology at least 10 Neurons with 100 synapses
could be placed on a single chip of 50 mm? area. We expect about 20 fully
connected neurons to be placed at the same area taking advantage of the up-
coming 0.5 pum technology. For larger nets the generator produces partitioned
layouts for multi chip modules. Designed by the team of the Graduiertenkol-
leg in Ilmenau, the generator (Fig 19) will include optimization rules for wire
transfer and routing. This way a wide range of networks and functionality
becomes accessible to the inexperienced designer.
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5 Conclusion

The simulations and first implementations of neural elements support our pos-
tulate, that the combination of analog and digital circuit design is especially
well suited to unfold the full power of neural networks. The fully parallel
spatio-temporal nature of biological information processing and its simple but
often repeated calculations demand a large number of distributed simple pro-
cessors for high speed and accurate computing. At the same time customized
hardware design becomes crucial to the power of applications since neural func-
tionality is mainly based on specific connectivity. Therefore the automation
of the design process and the creation of multi purpose neural object libraries
is very important to access the power of neural information processing. So
far three critical elements, an Integrate and Fire neuron with refractory be-
haviour and dendritic potentials, a locally learning synapse and an optimized
connection have been developed. The synapse is in the second hardware run
and the neuron awaits its first realization. Further elements for axonal de-
lays, non learning synapses and specific hair cells are under construction. At
different stages of the system we show, that a pulse propagating biological
network with very basic elements is capable to perform complex tasks such as
separation and identification of sound sources under natural conditions. But
the developed hardware-design-system could create visual or cognitive chips
as well. To us, preservation of time has been a critical value at every point
of the design, since we strongly believe that not just amount but also tempo-
ral appearance of biological activity carries essential information how natural
systems manage to solve complex problems. Some new theoretical work by
Maass® and others gives rise to the assumption, that all of the currently used
”classical neural networks” can be realized as silicon IF units.
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