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Visibility-Based Planning of Sensor Control Strategies1

A. J. Briggs2 and B. R. Donald3

Abstract. We consider the problem of planning sensor control strategies that enable a sensor to be auto-
matically configured for robot tasks. In this paper we present robust and efficient algorithms for computing
the regions from which a sensor has unobstructed or partially obstructed views of a target in a goal. We apply
these algorithms to the Error Detection and Recovery problem of recognizing whether a goal or failure region
has been achieved. Based on these methods and strategies for visually cued camera control, we have built a
robot surveillance system in which one mobile robot navigates to a viewing position from which it has an
unobstructed view of a goal region, and then uses visual recognition to detect when a specific target has entered
the region.

Key Words. Visibility-based planning, Error detection and recovery, Sensor configuration, Camera control,
Surveillance.

1. Introduction. This paper investigates several problems in the area of visibility-
based planning of sensor control strategies. We present combinatorially precise algo-
rithms for computing partial and complete visibility maps that can be used to automati-
cally configure sensors for robot tasks. Asensor control strategyconsists of motions to
move the sensor to an observation point, plus control parameters to the camera controller.
The strategies have both visually cued and task-based components.

A primary motivation for this work is in the domain of cooperating robots. Suppose
robot A is performing a task, and robotB is equipped with sensors and should “watch”
robot A. Then our algorithms can be used, for example, to compute the regions thatB
should not enter, ifA is to remain visible. Less generally,A andB could be part of the
same robot, for example, a physically distributed but globally controlled system.

Multimedia applications that involve controlling cameras to observe people could
also employ our camera control strategies.

The Error Detection and Recovery Framework [12] provides a natural problem domain
in which to apply our strategies. AnError Detection and Recovery(EDR) strategy is one
that is guaranteed to achieve a specified goal when the goal is recognizably achievable,
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and signals failure otherwise. Our algorithms can be used in conjunction with an EDR
planner to compute where a sensor should be placed in order to recognize success or
failure of a motion plan. We explore this problem in Section 5.

Many other applications of automatic sensor configuration arise in the area of auto-
matic surveillance. In particular, our algorithms apply to the problems of intruder detec-
tion, execution monitoring, and robot reconnaissance. A natural extension of our work
can be made to the problem of beacon placement for robot navigation. In Section 6 we
discuss a robot surveillance demonstration system that we built using an implementation
of some of the algorithms in this paper.

The specific problems addressed in this paper are:

PROBLEM 1. Compute the set of sensor placements from which a sensor has an unob-
structed view of a stationary polygonal target.

PROBLEM 2. Compute the set of sensor placements from which a sensor has an unob-
structed view of a polygonal target at any position and orientation within a polygonal
goal region.

In Section 3.1.1 we give anO(nα(n)+mn) algorithm for Problem 1, wheren is the
number of vertices in the environment,m is the number of vertices of the target, and
α(n) is the inverse Ackerman function, which grows extremely slowly. In Section 3.1.2
we give anO(nα(n)+n(m+k)) algorithm for a target translating through a goal of size
k, and anO(nα(n)+nk) algorithm for a target rotating and translating through the goal.

PROBLEM 3. Compute the set of sensor placements from which a sensor has a partial
view of a stationary polygonal target.

PROBLEM 4. Compute the set of sensor placements from which a sensor has a partial
view of a polygonal target at any position within a goal region.

In Section 3.2.1 we give anO(n2(n + m)2) algorithm for Problem 3, and in Sec-
tion 3.2.2 we give anO(kmn3(n + m)) algorithm for Problem 4. The incorporation
of sensor placement and aim uncertainty into these computations is discussed in Sec-
tion 4. We show that the consideration of sensor aim uncertainty in this visibility model
lowers the complexity of explicitly computing the boundary of the visibility region to
O(n(n+m)).

In this paper we restrict our attention to visibility and recognizability problems in the
plane. We show that even in the two-dimensional case, the geometric computations are
nontrivial and significant computational issues arise, making the two-dimensional case
a natural first consideration. Furthermore, planning motions for a mobile robot often
reduces to a computation in two dimensions: a mobile robot that maintains contact with
the floor usually navigates among obstacles that can be modeled as swept polygons.
When the three-dimensional obstacles are projected to the floor, their two-dimensional
footprints yield a map in two dimensions. For these reasons, this and much other work
in the field of visual agents is in two dimensions.
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Fig. 1.An example setup for the problem of sensor configuration in EDR.A represents the target; its reference
point r is indicated by the black dot.G is the goal region andH is the failure region. The darkly shaded
polygons are obstacles. The problem is to find a sensor placement from whichr ∈ G and r ∈ H can be
distinguished.

1.1. Error Detection and Recovery. Much of the early work in robotics focused on
developing guaranteed plans for accomplishing tasks specified at a high level. Such
task specifications might be of the form “mesh these two gears,” or “place part A inside
region B.” It is not always possible, however, especially in the realm of assembly planning,
to generate guaranteed plans. For example, errors in tolerancing of the parts might render
an assembly infeasible. The EDR framework of Donald was developed to deal with
these inadequacies of the guaranteed planning framework. EDR strategies will either
achieve a goal if it is recognizably reachable, or signal failure. Given a geometrically
specified goal regionG, an EDR strategy involves computing a failure regionH and
a motion plan that will terminate recognizably either inG or H . The EDR framework
guarantees that under generalized damper dynamics,4 the robot will eventually reachG
or H . Furthermore, having enteredG or H , it will never leave. Given this guarantee of
reachability, we wish to strengthen it to a guarantee of recognizability: we want to know
which of G and H has been attained. The visibility algorithms presented in Section 3
will be used in showing how a sensor can be configured to distinguish between a target
in G and a target inH . Figure 1 gives an example of the problem we would like to
solve.

1.2. Related Work. Ghosh has considered the problem of computing complete and
weak visibility regions from a convex set in the absence of obstacles [13].

LaValle et al. consider the problem of maintaining line-of-sight visibility with a
moving target [21]. In related work, LaValle et al. present solutions to a visibility-based
motion planning problem in which multiple agents coordinate to find an unpredictable
target moving among obstacles [22]. In these papers, visibility regions are the regions

4 Thegeneralized damperis a dynamical model specified by the relationshipF = B(v − v0) between forces
and velocities, whereF is the vector of forces and torques acting on a moving object,v0 is the commanded
velocity,v is the actual velocity, andB is a damping matrix. For more details, see Donald [12].
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visible from the observer, and therefore are combinatorially simpler since they do not
depend on the geometry of the target.

The sensor placement problem has previously been addressed by Nelson and Khosla
[25] and Kutulakos et al. [18] for visual tracking and vision-guided exploration. Sev-
eral researchers have explored the problem of optimal sensor placement. Cameron and
Durrant-Whyte [7] and Hager and Mintz [15] present a Bayesian approach to optimal sen-
sor placement. Tarabanis et al. [31] present an excellent survey of work in sensor planning
in computer vision. The emphasis is on vision sensor planning for the robust detection
of object features, with consideration of camera and illumination parameters. In contrast
to the work cited there, this paper focuses on visibility-based planning within complex
geometric environments and presents geometric algorithms for several visibility models.

Hutchinson [16] introduces the concept of avisual constraint surfaceto control
motion. The idea is to combine position, force, and visual sensing in order to produce
error-tolerant motion strategies. His work builds on that of preimage planners by adding
visual feedback to compensate for uncertainty. Details on the implementation of vision-
based control are described by Casta˜no and Hutchinson [9].

Sharma and Hutchinson [29] define a measure ofrobot motion observabilitybased
on the relationship between differential changes in the position of the robot to the
corresponding differential changes in the observed visual features. Lacroix et al. [19]
describe a method for selecting view points and sensing tasks to confirm an identification
hypothesis.

Cowan and Kovesi [10] study the problem of automatic camera placement for vi-
sion tasks. They consider the constraints on camera location imposed by resolution and
focus requirements, visibility and view angle, and forbidden regions depending on the
task. Given values bounding these constraints, they compute the set of camera loca-
tions affording complete visibility of a surface in three dimensions. Laugier et al. [20]
employ partial and complete visibility computations in selecting sensor locations to ac-
quire information about the environment and to guide grasping movements. Zhang [35]
considers the problem of optimally placing multiple sensors.

A different approach from the one taken in this paper to the incorporation of sensor
planning in the EDR framework was first presented by Donald [12]. In that approach,
an equivalence is established between sensing and motion in configuration space.Active
sensingfor a mobile robot is reduced to motion, by exploiting the similarity between
visibility and generalized damper motions. In contrast, we employ an approach here that
is closer to actual sensors.

Research in the area ofart gallery theoryhas introduced and addressed many problems
pertaining to polygon visibility. Theart gallery problemis to determine the minimum
number of guards sufficient to guard the interior of a simple polygon (see [26] for more
details). Sensor configuration planning addresses the related question of where sensors
should be placed in order to monitor a region of interest. In this case we are interested in
external visibility of a polygon rather than internal visibility. Furthermore, because we
employ real sensors, considerations of uncertainty must be taken into account.

The questions of detecting polygon visibility and constructing visibility regions under
a variety of assumptions is a rich area of past and ongoing research in computational
geometry. We mention here a few of the papers most closely related to our problem.
Suri and O’Rourke [30] give an2(n4) algorithm for the problem of computing the
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locus of points weakly visible from a distinguished edge in an environment of line
segments. Their lower bound ofÄ(n4) for explicitly constructing the boundary of the
weak visibility region holds as well for our computation of recognizability regions under
a weak visibility assumption. Bhattacharya et al. [2] introduce the concept ofsector
visibility of a polygon, and give2(n) andÄ(n logn) bounds, depending on the size
of the visibility wedge, for determining if a polygon is weakly externally visible. The
problem of planar motion planning for a robot with bounded directional uncertainty is
considered by de Berg et al. [11]. They give algorithms for constructing the regions from
which goals may be reached, and show how the complexity of the regions depends on
the magnitude of the uncertainty angle.

Teller [33] solves the weak polygon visibility problem for a special case in three
dimensions. Namely, he computes the antipenumbra (the volume from which some, but
not all, of a light source can be seen) of a convex area light source shining through a
sequence of convex areal holes in three dimensions. For an environment of total edge
complexityn, he gives anO(n2) time algorithm for computing the piecewise-quadratic
boundary of the antipenumbra, which will be nonconvex and disconnected in general.

Tarabanis and Tsai [32] examine the question of complete visibility for general poly-
hedral environments in three dimensions. For a feature polygon of sizemand a polyhedral
environment of sizen, they present anO(m3n3) algorithm for computing the locus of
all viewpoints from which the fixed feature polygon can be entirely seen.

1.3. Outline of Paper. The remainder of the paper is organized as follows. In Section 2
we introduce our approach and define the notions ofrecognizabilityandconfusability.
Using point-to-point visibility as a model of detectability, we present in Section 3 our
algorithms for computing recognizability regions for a target moving within a goal
polygon in the plane. The computed regions can be restricted to account for the error
characteristics of the sensor, as shown in Section 4. In Section 5 we apply these algorithms
to the EDR framework, and show how to compute the set of sensor configurations so that
readings that lead to confusion ofG andH are avoided. Our experimental results using
mobile robots in the Cornell Robotics and Vision Laboratory are presented in Section 6 as
an illustration of how these algorithms could be employed for visibility-based planning.

2. Preliminaries and Definitions. We start by introducing the notation used through-
out this paper, and by formalizing the problems to be solved.

An EDR plan is a motion plan that achieves eitherG or H , and must be able to report
which of G or H has been reached. We develop a method here of determining how a
sensor should be configured so that this goal recognizability can be achieved. The basic
idea is that the sensor should be positioned in such a way that attainment of the goalG
can be recognized, attainment of the failure regionH can be recognized, and attainment
of G and H cannot be confused.5 That is, given that we know the reference point of
targetA is in G ∪ H , we can determine which ofG or H contains it.

5 This is similar to the notion introduced by Buckley [6] of aconfusable setin the context of motion planning.
There, two contact pointsx andy are said to beconfusableif they are capable of generating the same position
and force measurements.
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Fig. 2. An example sensitive volume for a general sensor at configurationϕ = (p, ψ). The sensor is placed
at positionp and pointed in directionψ . The sensitive volume is the lightly shaded regionSV(ϕ). It is partly
bounded by obstacles (darkly shaded).

Our target configuration space is denotedCr , and in this paper we consider two types
of planar motion. We haveCr = R2 when the target has two translational degrees of
freedom and a fixed orientation. When the target is allowed to both translate and rotate
in the plane, the target configuration space isR2× S1. G andH are defined to be subsets
of the target configuration space.

The sensor we employ is an idealized but physically realizable model of a point-
and-shoot sensor, such as a laser range finder. A sensor configuration is specified by
a placementand a viewing direction, oraim. When in a particular configuration, the
sensor returns a distance and normal reading to the nearest object, which is accurate to
within some known bound. Such a ranging device has been developed in our robotics
laboratory at Cornell, and has been used for both map-making and robot localization
[4], [5].

The space of sensor placements isR2 and the space of sensor aims isS1. Our sensor
configuration space isCs = R2× S1. For a given sensor configuration(p, ψ), the sensor
returns distance and normal readings for a subset ofR2. We call this subset thesensitive
volumeof the sensor, and denote it bySV(p, ψ). Figure 2 illustrates an example of the
sensitive volume for a general sensor at positionp ∈ R2 and pointed in directionψ ∈ S1.
In what follows, we restrict our attention to questions of visibility within the sensitive
volume.

For a regionX in the target object’s configuration space, letR(X) denote itsrecogniz-
ability region, that is, the set of all sensor placements from which the sensor can detect
an objectA with reference pointr in region X. Let C(X,Y) denote theconfusability
region, that is, the set of all sensor placements from which the sensor cannot tellr ∈ X
andr ∈ Y apart. To guarantee goal recognizability for an EDR strategy, we wish to find
a sensor placementp such thatp ∈ R(G)∩ R(H)−C(G, H). Figure 3 illustrates a case
in which r ∈ G andr ∈ H may be confused.

Before we can solve the problem of sensor planning in the EDR framework, we must
develop the necessary strategies for computing visibility maps and make the notion of
detectability more concrete. In the next section we will present algorithms for computing
visibility maps under two models of visibility, and will use these algorithms in subsequent
sections.



370 A. J. Briggs and B. R. Donald

Fig. 3.An instance of confusability.A represents the target; its reference pointr is indicated by the black dot.
G is the goal region andH is the failure region. The darkly shaded polygons are obstacles.r ∈ G andr ∈ H
are confusable from sensor placementp.

3. Visibility Algorithms. In Sections 3.1 and 3.2 we give algorithms for computing
the recognizability region of a target in a goal under two different notions of visibility. We
justify our use of visibility as a model for detectability by noting that the recognizability
region of a target given most sensors is a subset of the region from which the target is
visible. For an idealized ranging device, the visibility region of the target is equivalent
to the recognizability region. The visibility regions can be restricted to account for the
error characteristics of the sensor, as shown in Section 4.

Our algorithms explicitly construct the locus of points from which a polygon is visible,
and we analyze how these visibility regions change as the distinguished polygon moves.

3.1. Complete Visibility. In this section we consider a simplified version of the target
detection problem, in which the computed sensor placements are those that allow an
unobstructed view of the target. We give algorithms for detecting a stationary target, and
for detecting a target at any position and orientation within a goal region.

Our result is the following:

THEOREM1. The recognizability region of a target translating and rotating through a
goal with k vertices can be computed in time O(nα(n)+ nk) in an environment with n
vertices in the complete visibility model.

Thetargetfor which regions are computed is a constant-sized polygonal object. Note
thatα(n) denotes the functional inverse of Ackerman’s function and grows extremely
slowly.

3.1.1. The Complete Visibility Algorithm for a Stationary Target. We say that target
A at configurationq = (x, y, θ) is completely visiblefrom sensor placementp if for no
point y on the boundary of the target does the segmentpy intersect an obstacle. Note that
py may intersectAq. If Aq is completely visible fromp in the presence of the obstacles,
then we say that the sensor atp has anunobstructed viewof the target at configuration
q. The obstacles castshadowswith respect to the target. Each shadow is a subset of the
sensor placement space from which the target is partially occluded. See Figure 4 for
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Fig. 4. Shadows cast by obstacleB with respect to targetG in the complete visibility model. The shadows
regions are shown darkly shaded.

an illustration. To compute the set of placements from which the target at configuration
(x, y, θ) is completely visible, we use the following algorithm:

Complete visibility algorithm for a stationary target.

1. Construct all local inner tangents between the obstacles and the target. Represent
each tangent as a ray anchored on a vertex of the target.

2. Extend each tangent ray starting at the point of tangency with an obstacle until it
hits an edge of the environment (an obstacle or the bounding polygon). We call these
segmentsvisibility rays. See Figure 5 for an illustration.

3. Consider the arrangement of all the polygons in the environment, along with these
visibility rays. Compute the single arrangement cell that contains the target polygon.
Figure 6 gives an illustration.

Complexity of the complete visibility algorithm. Let A be a polygon representing the
target, and letBi be a polygonal obstacle. IfA hasm vertices and obstacleBi hasni

vertices, we can compute theO(ni ) local inner tangents betweenA and Bi in time
O(mni ). For an environment of obstacles withn vertices overall, we can compute the
O(n) local inner tangents in timeO(mn). Computing a single cell in an arrangement is
equivalent to computing the lower envelope of a set of line segments in the plane, which
for a set of sizen takes timeO(nα(n)), whereα(n) is the inverse Ackerman function
[27]. Thus, the overall time for computing the recognizability region of a stationary target
in the complete visibility model isO(nα(n)+mn).

3.1.2. Complete Visibility over a Region. We now consider sensor placements with an
unobstructed view of the target at any position or orientation within a goal regionG.
We model the target as a connected polygon, with a reference point that lies inside the
polygon. Note that the target is said to “lie in the goal” if and only if its reference point
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Fig. 5.The segments of the tangent rays used in the arrangement computation are shown solid.

lies in the goal. The idea is that a sensor placement is valid if and only if, as its reference
point moves within the goal, the entire swept area covered by the target is visible. We
present two algorithms below.

Complete visibility algorithm for a translating target. First consider the case where
the target has a fixed, known orientation. We further restrict the target’s motion to pure
translation. Denote the target at orientationθ by Aθ . Consider the Minkowski sum
Aθ ⊕ G. Aθ ⊕ G is the set of pointsAθ can occupy when the reference point lies inG.

Fig. 6.The arrangement cell containingG is shown lightly shaded.
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The complete visibility region for the polygonAθ ⊕ G is the set of all sensor placements
from which Aθ can be completely seen when its reference point lies anywhere inG.

To compute the shadow boundaries, we introduce local inner tangents between each
obstacle and the convex hull ofAθ ⊕ G, denotedCH(Aθ ⊕ G). Note that this is not an
approximation; only the outermost tangents with the distinguished polygon (in this case
Aθ ⊕ G) generate shadows in the complete visibility model.

We can compute the convex hull ofAθ ⊕ G efficiently by exploiting the fact that for
polygonsA andB [23]

CH(A)⊕ CH(B) = CH(A⊕ B).

Note thatA and B do not need to be convex. So instead of computingCH(Aθ ⊕ G)
explicitly, we simply convolveCH(Aθ ) andCH(G).

If inner tangente is locally tangent at obstacle vertexv, then we again introduce a
visibility ray that extendse away from vertexv. The arrangement of the visibility rays
and the environment now partitions the sensor placement space into shadow regions
and visibility regions, i.e., regions from whichAθ ⊕ G is partially occluded or entirely
visible. However, instead of computing the entire arrangement, we again note that it
suffices to compute a single cell in the arrangement, namely the cell containing the goal.

Complete visibility algorithm for a translating and rotating target. Now consider the
case of a target rotating and translating through the goal. We want the set of placements
from which no portion of the target’s boundary is occluded by obstacles no matter what
position or orientation the target has within the goal. We take the longest Euclidean
distance from the target’s reference point to a vertex of the target. We call this distance
theradiusof the target. Suppose the target has a radius ofr and its reference point lies at
w. Then the disk of radiusr centered atw is equivalent to the area covered by the target
as it rotates around its reference point.

Hence, for targetA with radiusr , the Minkowski sum of the goalG with the disk
of radiusr represents the swept area covered by the target as it translates and rotates
through the goal. Call this Minkowski sum theswept goal region M(G, A). See Figure 7
for an illustration. We now compute the set of sensor positions that have an unobstructed
view of M(G, A).

To compute the shadow boundaries, we introduce local inner tangents between each
obstacle and the convex hull ofM(G, A). This can be accomplished by simply computing
all inner tangents between each obstacle and the disk of radiusr at each vertex ofG,
then taking the outermost tangents at each obstacle. Once we have these inner tangents,
the rest of the algorithm is the same as above.

Complexity of the complete visibility algorithm over a region. In the translation-only
case, we first compute the convex hull ofAθ ⊕ G. If A hasm vertices andG hask
vertices,CH(Aθ ) and CH(G) can be computed inO(m logm) and O(k logk) time,
respectively [14]. SoCH(Aθ ⊕ G) = CH(Aθ )⊕ CH(G) has complexityO(m+ k) and
can be computed in timeO(m logm+ k logk).

Computing theO(n) local inner tangents betweenCH(Aθ ⊕ G) and the environment
can be done in timeO(n(m+ k)). The complete visibility region is the arrangement cell
containingCH(Aθ ⊕ G). As mentioned above, computing a single cell in an arrangement
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Fig. 7.TargetA, goalG, and the swept goal regionM(G, A).

is equivalent to computing the lower envelope of a set of line segments in the plane. So
the overall time to compute the visibility regions for a target translating through the goal
is O(nα(n)+ n(m+ k)).

In the case of a target rotating and translating through the goal, the only difference
between the algorithm given here and the one given in Section 3.1.1 for a stationary target
is that instead of computing tangents between a stationary target and the obstacles, we
convolve a disc with the goal and compute tangents between the result of this convolution
and the obstacles. In terms of complexity, the algorithms differ only in that the goal
complexity rather than the target complexity is relevant. Assuming that we know the
target radiusr , we can computeM(G, A) for a goalG of sizek in time O(k). If obstacle
Bi hasni vertices, we can compute theO(ni ) local inner tangents betweenBi and the
convex hull ofM(G, A) in time O(kni ). For an environment of obstacles withn vertices
overall, we can compute theO(n) local inner tangents in timeO(kn). So the overall time
for computing the recognizability region for a target rotating and translating through the
goal in the complete visibility model isO(nα(n)+ nk).

3.2. Partial visibility. We turn now to the question of computing recognizability re-
gions in thepartial visibility model. First we consider the problem of detecting a sta-
tionary target within a polygonal obstacle environment. We then apply these tools to the
problem of detecting a translating target as it enters the goal.

We will show the following:

THEOREM2. In the partial visibility model, the recognizability region of a target trans-
lating through a goal of size k can be computed in time O(kmn3(n+m)) for an envi-
ronment of complexity n and a target of complexity m.

3.2.1. The Partial Visibility Algorithm for a Stationary Target. We say that targetA
is partially visible from sensor placementp if at least one point in the closure ofA is
visible fromp.
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Fig. 8. An angular sweep between two visibility rays at vertexv. The lightly shaded regions are visibility
triangles.

For targetA at configurationq ∈ Cr , we construct the partial visibility region using
an approach similar to that given by Suri and O’Rourke for computing the region weakly
visible from an edge [30]. Our algorithm is as follows:

Partial visibility algorithm for a stationary target.

1. Construct the visibility graph for the entire environment, consisting of distinguished
polygonA and obstaclesB.

2. Extend each edge of the visibility graph maximally until both ends touch an edge
of the environment. If neither of the endpoints of the extended visibility edge lie on
the polygonA, discard the visibility edge. Otherwise, clip the edge at its intersection
with A and call this piece avisibility ray.

3. For each vertexv in the environment, perform an angular sweep of the visibility
rays incident tov. If A remains visible tov throughout the swept angle between two
adjacent visibility rays anchored atv, then the triangular swept region is output as a
visibility triangle (Figure 8).

The union of these visibility triangles forms the region from whichA is partially
visible. The complement of the union of triangles and the environment is a collection of
holes in the visibility region, which we callshadows. Figure 9 shows the shadows for an
example environment. This example demonstrates the fact that in the partial visibility
model, shadows are not necessarily bounded by tangents between an obstacle and the
goal.

Complexity of the partial visibility algorithm. Suppose the obstacles and bounding
polygon together haven vertices, and the target hasm vertices. The visibility graph for
this environment, the basic data structure used in the algorithm, has sizeO(n(n+m)).
Note that we are not interested in visibility edges between the vertices of the target
itself. The extended visibility graph will, in practice, have fewer edges than the basic
visibility graph, since we only keep the edges whose extensions intersect the target. Its
worst-case complexity, however, remainsO(n(n+m)). Each vertex of the environment
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Fig. 9.The shadows cast by obstaclesB1, B2, andB3 are shown shaded. The complement of the shadows, the
obstacles, and the target forms the partial visibility region of targetA.

hasO(n+m) visibility rays incident to it. Therefore each vertex contributesO(n+m)
visibility triangles, so we haveO(n(n+m)) visibility triangles overall. In general, the
union of these triangles has complexityO(n2(n+m)2). As was mentioned in the paper
by Suri and O’Rourke [30], the triangles can be output in constant time per triangle:
Asano et al. have shown that the visibility edges at a vertexv can be obtained sorted
by slope in linear time with Welzl’s algorithm for computing the visibility graph [34],
[1]. Thus, the overall time for explicitly computing the boundary of the partial visibility
region for targetA at any fixed configurationq is O(n2(n + m)2). The region can be
given as a union of triangles, without computing the boundary, in timeO(n(n+m)).

3.2.2. Partial Visibility over a Region. The algorithm above solves the problem of
detecting a stationary target in the partial visibility model. We now address the problem
of maintaining line-of-sight contact with the target as it moves within the confines of a
particular polygon, for example, as the target moves within the goal. How do the visibility
triangles and shadows change as the target moves? To answer this question, we need
to introduce some additional terminology. Lete be a visibility edge whose associated
visibility ray intersects the target at pointx. The endpoint ofe lying closer tox (possibly
x itself) is defined as theanchorvertex ofe, while the further endpoint is called the
attachmentvertex ofe. If a vertex of the shadow (considering the shadow as a polygon)
lies in free space, i.e., if it lies inside the bounding polygon and is not on the boundary
of an obstacle, then we call it afreevertex of the shadow.

As the target translates, free shadow vertices trace out point conics if their generating
edges are anchored on the target [3].



Visibility-Based Planning of Sensor Control Strategies 377

3.2.3. Swept Shadows in the Partial Visibility Model. We have shown how to compute
shadows for any fixed target position, and have discussed how these shadows change as
the target translates. In order to detect the target as it enters the goal, we must compute
the shadows swept for all positions of the target in the goal. We define aswept shadow
of the goal in the partial visibility model to be a maximal connected region of the sensor
placement space such that for each pointp in the region, there exists a configuration of
the target in the goal from which the target is totally occluded.

We compute swept shadows for the target at a fixed orientation anywhere in the goal
by translating the target polygon along the edges of the goal polygon. The boundary of a
swept shadow is composed of obstacle segments and the curves (lines and conics) traced
by free vertices. Discontinuities in the boundary of a swept shadow occur atcritical
events. We characterize the critical events as follows:

1. A moving visibility ray becomes aligned with a fixed edge of the visibility graph.
2. A free vertex of a shadow intersects an obstacle edge or the bounding polygon.
3. Two moving visibility rays bounding a shadow become parallel.

Below we present our algorithm for computing the partial visibility region of a target
A as it translates through the goal at a known orientationθ . This gives us the set of all
sensor placements from which at least one point on the boundary of the targetA can be
seen, no matter where the target is in the goal.

Partial visibility algorithm for a translating target.

1. Let e be any edge of goalG. ConsiderAθ to be placed on one of the endpoints
of e. Call this configurationq. Construct the partial visibility region of targetA at
configurationq.

2. TranslateAθ along e. As the shadows cast by the obstacles change, call the area
swept out by a shadow aswept shadow. Between critical events, the vertices of each
shadow move along lines or conics. The equations of these curves can be computed
algebraically given the positions of the obstacles in the environment and the visibility
rays. Update the boundary of the swept shadows at critical events.

3. TranslateAθ along all other edgesei , 1≤ i ≤ k, of G, repeating step 2 for each edge.
4. Compute each swept shadow independently as described in the above steps. The

complement of the union of all the swept shadows, the target, and the obstacles is the
partial visibility region.

The output of the algorithm is the set of swept shadows. Note that the boundary of a
swept shadow is piecewise linear and conic.

Complexity of the partial visibility algorithm over a region. The extended visibility
edges bounding the shadows are all either external local tangents between an obsta-
cle and the target, or internal local tangents between obstacles. Since the obstacles are
fixed, the visibility edges between them remain fixed. As the target moves, the only
visibility edges that move are those that are anchored on a vertex of the target.

With n vertices in the environment andm target vertices, there areO(mn) moving
visibility edges. As the target translates along an edge of the goal, a visibility edge
anchored at target vertexai and attached at obstacle vertexbj could become aligned
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with each of theO(n) fixed visibility edges at obstacle vertexbj . This givesO(mn2)

critical events of the first type as the target translates along an edge of the goal. There are
O(m2n2) free vertices tracing out curves, which may intersect each of theO(n) obstacle
segments. This givesO(m2n3) critical events of the second type. When the third type of
critical event occurs, a free vertex disappears. There areO(m2n2) of these events.

At a critical event of the first type, a visibility ray appears or disappears, causing a
visibility triangle to appear or disappear. The total cost of handling all updates of this
type isO(mn3(n+m)). Only local change is caused by events of the second type and
third type.

Between critical events, we simply grow the shadows, either along lines or conics.
Note that the shadows never shrink: A pointp is in a shadow with respect to a polygonal
goal if there exists some target configuration such that the target is not at all visible from
p. The computation of swept shadows is done by translating the target polygon along
the edges of the goal, updating the boundary at critical events. The total running time of
the algorithm for a goal withk vertices isO(kmn3(n+m)).

4. Uncertainty in Sensor Placement and Aim. A real sensor cannot be configured
exactly. Rather, it will be subject to both errors in placement and errors in aim. These
errors depend on the sensor platform (e.g., a mobile robot). Therefore we would like to
compute sensor strategies that take uncertainty in sensor configuration into consideration.
In this section, we sketch how the computation of visibility regions can be extended to
handle this type of sensor error. Our approach does not address the problem of sensor
measurement error.

Positional uncertaintycharacterizes the sensor placement error. Letεpos denote the
worst-case positional uncertainty of the sensor. If the commanded sensor placement is
p, the actual sensor placement could be any position in the disk of radiusεposcentered at
p. We handle positional uncertainty by growing the shadows by the uncertainty ball of
radiusεpos. The complement of the union of these grown shadows and the environment
will be the visibility region that accounts for uncertainty in sensor position.

Directional uncertaintycharacterizes the sensor aim error. Letε denote the maximum
angular error of the sensor aim. That is, if the commanded sensing direction isψ , the
actual sensor heading could be any direction in the cone(ψ − ε, ψ + ε). The effect
of sensor directional uncertainty is that we must disallow angularly narrow wedges of
visibility. This type of uncertainty is most relevant in the case of partial visibility. See
Figure 10 for an illustration of a narrow visibility triangle. This triangle does not become
part of the visibility region when directional uncertainty is considered.

After we compute the visibility rays as described in Section 3.2.1, we visit each
vertex in the environment, and combine adjacent visibility triangles that end on the same
polygon. We make the following definitions:

1. The maximal union of adjacent visibility triangles anchored on a single vertexv and
ending on the same polygon is called avisibility polygon. By construction, visibility
polygons are simple.

2. Thecore triangleof a visibility polygon anchored atv is the maximal inscribed
triangle whose apex isv.
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Fig. 10.A narrow visibility triangle anchored at vertexv is shown lightly shaded.

If the angle at the apex of such a maximal visibility triangle is less than our angular
uncertainty boundε, we discard the polygon. Otherwise, we classify the maximal vis-
ibility triangle as anε-fat triangle. After this processing, we now haveO(n(n + m))
fat visibility triangles. We can now use a result of Matou˘sek et al. [24] on the union of
fat triangles. Their result bounds the number ofholesin a union of fat triangles. In our
case, the “holes” are shadows in a union of visibility triangles. Their theorem states that
for any fixedδ > 0, and any familyF of n δ-fat triangles, their union hasO(n/δO(1))

holes. When we restrict our visibility triangles to be at leastε-fat, we have at most
O((n(n+m))/εO(1)) shadows.

Whenε is a fixed constant, we have at mostO(n(n+m)) shadows. In effect, this means
that considering directional uncertainty actually lowers the complexity of computing the
recognizability region. Note that our construction yields a conservative approximation
to the recognizability region under uncertainty.

The next section extends the sensor placement algorithms presented here to the domain
of EDR by avoiding placements that could give ambiguous readings.

5. Avoiding Confusable Placements. The setC(G, H) is the set of all sensor place-
ments that could lead to confusion ofG andH . A placementp is in the confusable region
if the only visible portion of the target polygon could be due to an edge ofA in G or an
edge ofA in H .

Note that a sensor reading that confuses a targetAq in G with a targetAq′ in H is due
to an edge ofAq being collinear with an edge ofAq′ . See Figure 11 for an example. Near
collinearity in combination with sensor measurement error can also lead to ambiguous
readings.

For each pair of edges(ei ,ej ) having the same orientation (or the same within the tol-
erances of the sensor), we compute theoverlapregionO(ei ,ej ) = (ei ⊕ G)∩ (ej ⊕ H).
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Fig. 11.A sensor reading that confusesAq ∈ G andAq′ ∈ H is due to an edge ofAq being collinear with an
edge ofAq′ . The darkly shaded rectangles are obstacles.

We defineOα to be the union of allO(ei ,ej ) for all pairs of edges(ei ,ej ) having
orientationα. See Figure 12.

The confusable region is defined as

C(G, H) = {p | ∃q ∈ G ∪ H,∀ψ : (SV(p, ψ) ∩ Aq) ⊆ O(ei ,ej ) for some(ei ,ej )}

5.1. Discrete Goal and Failure Regions. Before turning to the problem of handling
polygonal goal and failure regions, we first consider the case in which the goal and
failure regions are discrete points. Our technique for computing the set of good sensor
placements is to first compute the set of overlap regions, and then compute the recog-
nizability regions for the nonoverlap portion ofA in G and the nonoverlap portion ofA
in H . The algorithm is as follows:

1. Compute all overlap regionsO(ei ,ej ) for all pairs of edges(ei ,ej ) having the same
orientation. Note that in the case of point-sized goal and failure regions, the overlap
regions consist of edge segments.

2. Perform the following steps forA in G andA in H :
(a) Construct a new targetA′ by deleting the overlap segments fromA. Figure 13

illustrates the overlap for a point-sized goal and failure region. The new target
consists of a set of edge segments, where each edge segment has an associated
outward-facing normal, so it is visible only from one side.

Fig. 12.Edgeeat orientationα of targetA is convolved withG andH . The darkly shaded region is the overlap
Oα . Sensor readings inOα can lead to confusion ofG andH .
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Fig. 13.The set of thick solid edges comprisesA′ for A ∈ G. The dashed line outlines the target polygon in
the failure regionH . The thick dashed line is the overlap region.

(b) Compute the set of visibility triangles for targetA′ using thepartial visibility
algorithm for a stationary targetas described in Section 3.2. Figure 14 gives an
illustration of some visibility triangles.

(c) Compute the union of the visibility triangles formed above. This is the partial
visibility region for the nonoverlap portion ofA at this configuration.

3. Compute the intersection of the two visibility regions computed forA in G and A
in H in steps 2(a)–(c) above. This gives the set of all sensor placements from which
both A in G andA in H can be recognized, but not confused.

5.2. Polygonal Goal and Failure Regions. In the case of polygonal goal and failure
regions, the computation ofR(G)∩ R(H)−C(G, H) is an incremental one. Recall that
each overlap region is due to an edge ofA in G being collinear with an edge ofA in
H . In this case, the overlap region(ei ⊕ G) ∩ (ej ⊕ H) for parallel edgesei andej is
formed by a line sweeping through a region determined byG andH .

To determine the set of placements from whichG andH can be distinguished but not
confused, we do the following:

1. Compute the set of overlap regionsOα for all orientationsα of the edges ofA.
2. PlaceA at a vertex ofG. Let A′(q) = Aq− (Aq∩ (

⋃
Oα) be the set of edge segments

of A at configurationq not intersecting anyOα.
3. Compute the partial visibility region ofA′(q) as it sweeps throughG, as described in

Section 3. Note that the endpoints of the edges ofA′(q) are not fixed, but vary during
the sweep.

Fig. 14. An angular sweep between two visibility rays at vertexv. The lightly shaded regions are visibility
triangles. The thick solid edges compriseA′, and the dashed line is the overlap region.
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4. Repeat steps 2 and 3 forA sweeping throughH .
5. Take the intersection of the regions computed forA sweeping throughG and H ,

respectively.

The resulting region is the set of all placements from whichA at any position inG∪H
can be detected, butA ∈ G andA ∈ H cannot be confused.

6. Experimental Results. The algorithms for computing the complete and partial
visibility regions of a polygon have both been implemented and used in conjunction
with existing packages for graphics, geometric modeling, and plane sweep.

We used the implementation of the complete visibility algorithm to build a demon-
stration of robot surveillance using two of the mobile robots in the Cornell Robotics and
Vision Laboratory. The autonomous mobile robots are called TOMMY and LILY . The task
was for TOMMY to detect when LILY entered a particular doorway of the robotics lab.
Initially TOMMY is at a position from which this doorway cannot be seen. Below we
describe the various components of the system.

6.1. The Visibility Component. We constructed by hand a map of our lab, and used
that map as the input environment to the complete visibility system. The map and the
computed visibility region of the doorway are shown in Figure 15.

TOMMY’s task was to monitor the doorway, which is marked in the figure with “G”.
The dark gray regions are obstacles representing real objects in the room—chairs, desks,
couches, bookshelves, etc. Given that most of the objects are regularly shaped and resting
on the floor, the idea of using polygons as “footprints” of three-dimensional objects turned

Fig. 15.The map and complete visibility region for the robotics lab.
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out to give a good approximation of the three-dimensional geometry. Given this map, our
algorithms give us the exact placements from where the doorway can be monitored. The
lightly shaded region in Figure 15 is the complete visibility region for this environment—
the exact set of placements from where the doorway can be entirely seen with a sensing
device such as a CCD camera.

6.2. Choosing a New Placement. Based on the visibility region and the initial configu-
ration of TOMMY, a new configuration is computed inside the visibility region. A motion
plan to reach that new configuration is generated along with the distance from there to
the goal.

In particular, we do the following to choose such a placement. We first shrink the
visibility region to account for model and sensor uncertainty. The procedure to perform
this shrinking returns a list of edges making up theshrunk visibility region. We now want
to choose a new point inside this shrunk visibility region, one that is closest to the current
position of the robot. We use the following heuristic to find such a point: we discretize
the edges of the shrunk visibility region, obtaining a list of candidate points. We then sort
this list of points by distance from the current position of the robot. Then test each of the
points, searching for one that is reachable from the current position in a one-step motion.
The first such point found is returned as the new configuration. If no such point is found,
this is signaled. This could be due to two reasons: a point reachable in a one-step motion
was missed due to the discretization being too coarse, or no one-step motion plan exists
(i.e., the robot would have to move around corners, or cannot reach the visibility region at
all). While the former case could easily be fixed by iteratively refining the discretization,
the latter case requires the use of a full-fledged motion planner.

Figure 16 shows the shrunk visibility region and one of the starting points we used,
as well as the new placement which was computed using the method described above.

6.3. Computing the Viewing Direction. The planner computes a viewing direction
depending on the new placement and information obtained from the map. We fix a
coordinate frame for the lab with the origin in one corner of the room. Then we compute
the vector between the new computed placement and the centroid of the goal. The
θ component of the new configuration is simply the angle of this vector. The final
output from the planner is a vector containing thex-, y-, andθ -components of the new
configuration, along with the distance in world coordinates from this new configuration
to the centroid of the goal.

6.4. LocatingLILY . LILY ’s task is to move into the doorway and wait for TOMMY. LILY

is run without a tether. She is programmed to translate a fixed distance and stop (in the
center of the doorway). She then waits until her bump sensors are activated. When a
bumper is pressed, LILY translates a fixed distance in reverse, rotates by 180◦, and then
translates forward a fixed distance in order to leave the room.

Here is how the surveillance and recognition parts of the system work.
We first built a calibrated visual model of LILY . We used the Panasonic CCD camera

mounted on TOMMY to take a picture of LILY from a known fixed distance (4 m). We then
computed the intensity edges for that image using an implementation of Canny’s edge
detection algorithm [8]. The actual model of LILY that we created and used is shown
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Fig. 16.The shrunk visibility region, the computed new configuration, and the one-step motion.

in Figure 17. We did not alter the intensity edges that Canny’s algorithm output, and
experimentation demonstrated that our results are relatively insensitive to the particular
image taken.

Based on the distance information from TOMMY’s new configuration, the model edges
are scaled to the expected size of LILY ’s image as seen from this configuration, using the
fact that the image size is inversely proportional to the distance.

The video camera on TOMMY is used to grab image frames repeatedly, which along
with the scaled model are input to a matcher that operates on edge images. The following
loop is performed until a match is found:

1. Grab a frame.
2. Crop it, keeping only the portion of the image where LILY is expected to be.

Fig. 17.Our model of LILY .
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Fig. 18.Intensity edges for the cropped image.

3. Compute intensity edges for the cropped image.
4. Run the matcher to find an instance of the scaled model in the cropped image.

Figure 18 shows the intensity edges for a crop of one of the images that was grabbed
with TOMMY’s videocamera once TOMMY had moved into the computed configuration.

The matcher used in the experiment is based on the Hausdorff distance between sets
of points and was written by Rucklidge [28] and has been used extensively in the Cornell
Robotics and Vision Laboratory for image comparison, motion tracking, and visually
guided navigation [17].

The particular matcher used here is a translation-only matcher that uses a fractional
measure of the Hausdorff distance. Matches are found by searching the two-dimensional
space of translations of the model, and computing the Hausdorff distance between the
image and the translated model. A match occurs when the Hausdorff distance of a certain
fraction of the points is below some specified threshold. All translations of the model
that fit the image are returned.

The dark gray outline in Figure 19 shows all matches that were found between the
scaled model of LILY and the image in Figure 18.

Based on where LILY is found in the image, TOMMY first performs a rotational correc-
tion so that LILY is centered in the image. An estimated value for the focal length of the
camera was used to perform a rotation to correct for errors in dead reckoning. TOMMY

then moves across the room to where LILY is using a simple guarded move.

6.5. Analysis. We videotaped several runs of the system. For these runs, we used two
different starting positions for TOMMY, on different sides of the room, both from where
the goal doorway could not be seen. We also demonstrated the robustness of the system
by having people enter and leave through the doorway while TOMMY was monitoring it.
The system performed consistently well. TOMMY never reported a false match—neither
when the doorway was empty, nor when other people stood in the doorway. Once LILY

was in position, the recognition component (on a SPARC 20 running Solaris) typically
took 2–4 seconds to locate LILY . Disk access time accounted for some of this time
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Fig. 19.Matches found between the image and the scaled model.

(saving and loading image files) and could be eliminated by using a different file access
strategy.

7. Conclusion. In this paper we introduced efficient and robust algorithms for au-
tomatic sensor placement and control. We propose these algorithms as solutions for
problems in the area of visibility-based planning of sensor control strategies.

We presented methods for computing the placements from which a sensor has an
unobstructed or partially obstructed view of a target region, enabling the sensor to observe
the activity in that region. In particular, we have presented algorithms for computing the
set of sensor placements affording complete or partial visibility of a stationary target,
complete visibility of a target at any position or orientation within a goal, and partial
visibility of a target translating through a goal at a known orientation. The algorithms
account for uncertainty in sensor placement and aim.

The EDR system of Donald [12] provides a framework for constructing manipulation
strategies when guaranteed plans cannot be found or do not exist. An EDR strategy
attains the goal when the goal is recognizably reachable, and signals failure otherwise.
Our results extend the guarantee of reachability to a guarantee of recognizability for the
case of a polygon translating in the plane. In future work we plan to address the problem
of planning sensing strategies when the target polygon may translate and rotate, resulting
in unknown orientations of the target inG andH .

The implementation of the complete visibility algorithm was used as the planning
component in a robot surveillance system employing both task-directed and visually
cued strategies. The system plans and executes sensing strategies that enable a mobile
robot equipped with a CCD camera to monitor a particular region in a room, and then
react when a specific visually cued event occurs. Our experimental results demonstrate
both the robustness and applicability of the visibility algorithms we have developed.
They show that complete visibility of a goal region can be computed efficiently, and
provides a good model of detectability in an uncluttered environment. We believe that
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this successful effort has validated our principled approach to planning robot sensing
and control strategies.
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