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Mobile Robot Self-Localization without
Explicit Landmarks 1

R. G. Brown2 and B. R. Donald3

Abstract. Localization is the process of determining the robot’s location within its environment. More
precisely, it is a procedure which takes as input a geometric map, a current estimate of the robot’s pose,
and sensor readings, and produces as output an improved estimate of the robot’s current pose (position and
orientation). We describe a combinatorially precise algorithm which performs mobile robot localization using
a geometric model of the world and a point-and-shoot ranging device. We also describe a rasterized version
of this algorithm which we have implemented on a real mobile robot equipped with a laser rangefinder we
designed. Both versions of the algorithm allow for uncertainty in the data returned by the range sensor. We
also present experimental results for the rasterized algorithm, obtained using our mobile robots at Cornell.
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1. Introduction. Localizationis the process of determining the robot’s location within
the environment. More precisely, it is a procedure that takes as input (i) a map, (ii) an
estimate of the robot’s current pose, and (iii) a set of sensor readings and produces
as output a new estimate of the robot’s current pose. Any of (i), (ii), and (iii) may be
incomplete, and all are toleranced by error bounds. For example, the map may lack
information, the pose estimate may contain only orientation information, and the set of
sensor readings may have elements with impossible values. The output estimate can be
incomplete, disconnected, or toleranced. Bypose, we mean either (a) the position and
orientation of the robot in the world or (b) the translation and rotation necessary to make
a set of sensor readings (or a local map, built from those readings) best match an a priori
global map.

In this paper we present algorithms which for estimating a mobile robot’s pose by
computing sets of poses which provide a maximal-quality match between a set of current
sensor data and a map. For ease of exposition, and in the interest of completeness, we
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first treat the localization problem as a precise combinatorial problem in computational
geometry. We then show how the problem can be solved using rasterized algorithms. The
rasterized algorithms, which are drawn from the same high-level concepts as the com-
binatorial algorithms, can be used by real mobile robots with limited computational and
sensing resources. Finally, we present experimental results for the rasterized algorithm,
obtained using our mobile robot, LILY , at the Cornell Computer Science Robotics and
Vision Laboratory. This paper is based on a portion of the Cornell Computer Science
doctoral thesis [Bro].

The main concept underlying the localization algorithms presented in this paper is
that of thefeasible pose. A feasible pose is one that is consistent with the available range
and map information: our algorithms partition the robot’s configuration space into poses
that conflict with available range information and poses that do not; these latter are the
feasible poses. Poses are feasible or infeasible relative to several parameters: a pose is
feasible with respect to a map and a range vector if that pose places the robot such that the
range vector terminates at an obstacle boundary and is otherwise unobstructed. A pose
is feasible with respect to a map and asetof range vectors if it is feasible with the map
and each of those individual range vectors. We can determine feasibility within an error
bound: to do this, we allow the length of a range vector to vary within an uncertainty
bound and determine the poses that are consistent with some pose plus-or-minus the
uncertainty bound. We can extend feasibility within an error bound for multiple range
readings, as well. We can also determine the minimum error bound for which there exists
a feasible pose. Finally, with multiple range readings, we can count how many range
readings are feasible with a given pose and map, and look for poses that are feasible with
a maximal number of the supplied range readings.

How do we compute the feasible poses for a particular mapM and range probez? At
an intuitive level, the procedure is to find all locations for the robot where its rangefinder
would returnz in the world M represents. Treatz as a vector whose tail is located at
the robot and whose head lies at an obstacle boundary: ifz can be situated with its
tail at a pointp, such that the head ofz touches an obstacle boundary, but no obstacle
boundary intersectsz anywhereother than its head, thenp is a feasible pose for mapM
and range probez. Figure 1 shows how our method of localization works. We denote the
feasible poses for a mapM and a single range probe,z (resp. a set of range probes,Z) by
FP(M, z) (resp.FP(M, Z)). Part (a) of Figure 1 shows a map,M . Parts (b), (d), and (g)
show three vectors,x, y, andz, that represent three different range probes. Part (c) shows
FP(M, x): the solid black lines areFP(M, x), because those are all of the positions inM
where we can place the tail ofx so that its head touches an obstacle, but its body does not.
Parts (e) and (h) showFP(M, y) andFP(M, z). Part (f) showsFP(M, {x, y}): the two
black dots are the locations inM whereFP(M, x) andFP(M, y) intersect. Since there
are two dots, the two range probes,x andy, are insufficient to localize the robot inM
uniquely. By taking a third range probe,z, though, the robot can be uniquely localized:
part (i) shows the intersection ofFP(M, x), FP(M, y), andFP(M, z). This intersection
is located at the single black dot. Therefore,FP(M, {x, y, z}) is that single point, so the
robot must be located at that point.

In Section 2 we discuss the feasible pose concept at length and provide algorithms
to compute feasible poses. We give an exact combinatorial algorithm to compute fea-
sible poses for a set of range probes and a map specified as a set of polygons, for the
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Fig. 1.How the localization algorithm works: Given (a) a mapM and (b) a range vectorx, we can determine
(c) the set of feasible posesFP(M, x). (d) and (e) showy andFP(M, y). The black dots in (f) areFP(M, {x, y}).
(g) and (h) showz andFP(M, z). (i) shows the single point which isFP(M, {x, y, z}). The robot must occupy
that position to get range vectorsx, y, andz in mapM .

case where the robot has translational uncertainty (unknownx–y position) but no ro-
tational uncertainty (the robot knows which way it is facing). This algorithm makes
use of tools from computational geometry. We provide analysis of the algorithm, and
describe how it can be extended to the case where the robotdoes notknow which way
it is facing. We then present and analyze algorithms for computing feasible poses in the
rasterizeddomain; in this case, the map is a binary array where ones represent obsta-
cle cells and zeros represent empty cells. We feel that rasterized algorithms are more
appropriate for solving many robotics problems; one reason for this opinion is that, in
practice, rasterized algorithms often are easier to implement and run faster than their
exact counterparts. Figures 2 and 3 show maps of our laboratory (a hand-drawn map
for reference, and a map generated by our mobile robot LILY ) and the output of the ras-
terized localization procedure for the map in Figure 2(b) and instantaneous range data.
The robot-generated map is a statistical occupancy grid, defined in the next paragraph.
The map was generated by the robot moving to a series of separate locations, sweeping
a point-and-shoot laser rangefinder around in a circle while taking range readings, and
performing updates to the occupancy grid based on those readings. For more examples,
see Section 3. Table 1 summarizes the asymptotic complexities of the various localization
algorithms. Note that all of our algorithms handle uncertainly in sensor measurements
robustly.

The Underlying Spatial Representation. The map-making technique we chose for this
system is a variant of thestatistical occupancy grid. Moravec and Elfes introduced this
method of map-making in [Elf], [Mor], and [ME] as a way of making detailed geometric
maps using noisy sensors (sonar rangefinders, in their case). A simple occupancy grid
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Fig. 2. The circles in these figures show the actual location and size of the robot. The circles are overlaid on
(a) the hand-drawn map and (b) LILY ’s map.

Fig. 3.The output of the localization procedure. In this picture the darkness of each cell is proportional to the
number of range readings for which that cell is feasible. The black cells are the most feasible: these are the
most likely positions for the robot. The circle overlaid on the output shows the actual location of the robot for
this localization test.
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Table 1.The Time-complexity of our algorithms.∗

One probe m Probes

Exact combinatorial O((n+ s) logn) O((mn2 + s) log(mn))
Rasterized O(n2) O(mn2)

∗For the combinatorial algorithms,n is the number of features in the
map,m is the number of range probes, ands is the number of intersec-
tions between features, which isO(m2n2) worst case. For the rasterized
algorithms, the map has sizen× n.

is a bitmap, where ones represent occupied cells and zeroes vacant cells. The main idea
behind the statistical occupancy grid is that, since range data is inexact, the contents
of each cell should be a probability: a cell containing a high probability is likely to be
occupied, while a cell with low probability is likely empty. Moravec and Elfes use an
update rule based on Bayesian probability to maintain the contents of each cell based on
range readings that impinge upon that cell. We chose to adapt their work for a number
of reasons, but primarily because a grid-based map-making technique fit best with our
ideas about rasterized computational geometry for robotics (as discussed in Section 2).
Figure 2(b) shows an occupancy-grid map of our lab generated by LILY using range data
obtained from her laser rangefinder.

Experimental Work. In Section 3 we will discuss the results of some experiments we
have performed with our mobots. We chose these experiments to allow us to assess the
performance of our algorithms. We show maps of a small office and part of a large
laboratory made using our laser rangefinder to build statistical occupancy grids. We also
show results of running the localization algorithms described in Section 2 from locations
within these environments, using laser rangefinder data and those maps.

1.1. Related Work in Navigation, Localization, and Map-making. A number of papers
have been written in the last 8 years or so about localization (or pose estimation). Most
authors, including ourselves, appear to be using roughly the same informal definition
of pose estimation, but there is considerable difference in the sensor and world models
under which the various authors perform their pose estimation.

At the theory level, the primary work to which we wish to compare our localization
algorithms is that of Guibas et al. [GMR]. They present the localization problem at a
theoretical level: The input is a world polygon and a visibility polygon. The visibility
polygon is a star-shaped polygon representing the output of a swept rangefinder. They
describe an algorithm which preprocesses the world polygon so that a localization query
(in the form of a visibility polygon) can be answered in optimal time,O(m+ logn+ A),
wheremandn are the number of vertices in the visibility polygon and the world polygon,
respectively, andA is the size of the output. The output, in this case, is a list of points
at which the visibility polygon can be made to match the world polygon (i.e., feasible
poses). Preprocessing the world polygon takes timeO(n5 logn) (worst case—expected
case is apparently more likeO(n2 logn)). A single-shot query (with no preprocessing)
can be answered in timeO(mn). The main lacunæof this result are (i) there is no attempt
to deal with uncertainty, (ii) the preprocessing assumes a static world. If the world model



520 R. G. Brown and B. R. Donald

changes at all, the preprocessing price must be paid again, and (iii) the model of a swept
rangefinder as producing a visibility polygon is difficult to realize on a real robot. Note
that these difficulties are not insurmountable, since the algorithm may well be adapted
to compensate for these. A more fundamental difficulty with this algorithm is that, in
general, obtaining the visibility polygon, as a list of vertices and edges, is extremely
difficult with any physically realizable sensor.

In [Kle2] Kleinberg also presents an algorithm which approaches mobile robot local-
ization from a theoretical viewpoint. He provides an on-line search algorithm by which a
mobile robot moving within its environment can uniquely determine its location without
access to an a priori map.

Many authors have described localization algorithms that make use ofbeaconsor
landmarks. These are typically features of the environment which it is easy for the robot
to recognize.Active beaconsare objects in the environment that emit a signal which the
robot can sense;passive beaconsare natural features in the environment, such as corners,
straight line segments, and vertical edges, that the robot has a good chance of identifying.
In [MR] a localization system consisting of a directional infrared detector system and a
set of beacons that emit modulated infrared signals is described. If the robot can detect the
angles to three beacons at known locations, it can use trigonometry to solve for its own
position. Kleeman [Kle1] achieves a similar result using active sonar beacons—elapsed
times between the receptions of chirps from the series of known-location emitters enable
the robot to compute its location; in fact, he uses an Iterated Extended Kalman Filter [Jaz]
to merge pose estimates based on the active beacons with that based on dead reckoning.
Leonard et al. [LDWC] define ageometric beaconas “a special class of target which can
be reliably observed in successive sensor measurements (a beacon), and which can be
accurately described in terms of a concise geometric parameterization.” The beacons they
use are typically walls, corners, and cylinders. They use a Kalman Filter to combine the
“measured” location of nearby beacons with the “expected” location (based on odometry
and the robot’s map) to compute new pose estimates. An example of outdoor beacon-
based navigation is given in [KK]. Their beacons are such features as “peaks,” “pits,”
“ridges,” and “ravines”; these are appropriate to navigation in rough natural terrains.

Several attempts have been made to use computer vision to detect and locate bea-
cons [CC], [AH], [RWA+]. Chenavier and Crowley [CC] use an Extended Kalman Filter
to estimate position from odometry, sonar data, and the location of visually detected
landmarks. They select their landmarks by hand, choosing objects with strong verti-
cal edges. This work is similar to that in [MR] and [Kle1], except that the landmarks
here are extracted from an image. They support their work with rudimentary experi-
mental evidence. Atiya and Hager [AH] present an algorithm that determines both the
correspondence between observed landmarks (vertical edges in the environment) and
an a priori map, and the location of the robot from that correspondence. They detect
and locate their visual landmarks using stereo vision techniques. They present results
of extensive experimentation in an uncluttered (empty) interior environment, indicating
that their system works very reliably in this context. Roth et al. [RWA+] use images
and odometry in a very novel way: They computecontrolled hallucinations, which are
mockup three-dimensional renderings of their robot’s immediate environment, based
on an a priori map and a dead-reckoning estimate of pose. They then use a matching
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algorithm to match real image edges to model edges, and update the pose estimate based
on the model-to-image transformation.

Drumheller [Dru] did some of the early work in sonar-based localization. He obtains
a large number of sonar readings, each with the transducer rotated a few degrees from
the previous, then takes the polygon formed by the endpoints of these sonar “rays,” and
extracts straight line segments from it. He then uses theinterpretation-tree-based two-
dimensional matching algorithm of Grimson and Lozano-P´erez [GLP] and an a priori
line-drawn map of the environment to produceinterpretations(lists of possible (sonar
segment/wall) pairings). Each interpretation corresponds to a pose for the robot. He
then uses thesonar barrier test, which he defines as an additional constraint on sonar:
that “an admissible robot configuration must not imply that any sonar ray penetrates a
solid object.” His algorithm returns the interpretation that passes the sonar barrier test
and has the greatest amount of sonar contour in contact with the walls. Gonzalez et
al. [GSO] use a similar approach, except that they use maps made by the robot (both
a map made of line segments and a map of cells), use a laser rangefinder to obtain
their sensory data, and use an iterative algorithm to match their maps against their
sensory data. Holenstein et al. [HMB] use sonar data to perform localization: They
extract “edge,” “wall,” “corner,” and “unknown” features from this data, then find the
transformation that maps each sensed feature onto a map feature of the same type.
They then plot the transformations and look for clusters of similar transforms. This is
similar to several matching algorithms based on the Hough Transform. See, for example,
[SHD].

Beveridge and Riseman [BR] use a three dimensional, perspective-based computer
vision matching algorithm to track a robot’s progress as it navigates in hallways. Because
of the physical and visual unclutteredness of hallway scenes, they are able to use the
motion of detected edges to detect the robot’s position and motion relative to the walls,
corners, and doorways in its environment.

A sonar sensor which is capable of tracking environment features is presented in
[MDW]. This sensor uses a noncollocated transmitter–receiver pair to trackregions of
constant depth. This sensor is used as part of a localization algorithm for a moving mobot
in an indoor environment.

Moravec and Elfes introduced thestatistical occupancy gridmethod of map-making
in [Elf], [Mor], and [ME] as a way of making detailed geometric maps using noisy
sensors (sonar rangefinders, in their case). A statistical occupancy grid is an array, where
the contents of each cell is based on the confidence that the part of the environment
corresponding to that cell is occupied. The main idea behind the statistical occupancy
grid is that, since range data is inexact, the contents of each cell should be a probability: a
cell containing a high probability is likely to be occupied, while a cell with low probability
is likely empty. Moravec and Elfes use an update rule based on Bayesian probability
to maintain the contents of each cell based on range readings that impinge upon that
cell.

Much research has been done on motion planning and execution for mobile robots.
Takeda and Latombe [TL], for example, approach the problem of motion planning with
uncertainty by computing asensory uncertainty fieldfor each configurationq in the
robot’s configuration space. The sensory uncertainty field estimates the distribution of
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possible errors in the robot’s pose estimate when it is in configurationq. This information
is used by a path planner to generate paths that minimize expected errors; the paths
so generated are easier to execute reliably. Ratering and Gini [RG] describe ahybrid
potential field, which combines a global, a priori potential field, generated from the
robot’s map with a local potential field generated from instantaneous sensory data. This
hybrid potential field is designed to enable a mobile robot to execute a motion plan in
the presence of unknown, moving obstacles.

2. The Mobile Robot Localization Algorithm.

2.1. Introduction. In this section we will describe in detail our approach to localization
and also describe a family of algorithms for localization by mobile robots, beginning
with precise computational geometric algorithms and progressing to algorithms which
can be made to run efficiently on real mobile robots.

Before diving into formal, mathematical descriptions of localization algorithms, we
define and “type” some of the terms and objects we will be using in this section. When
we refer to amap in this section, we mean an a priori description of the environment,
which will typically be either a collection of polygons supplied as lists of edges, or
a bitmap (a two-dimensional binary array). Arange probeor range vectoris a vector
whose length is the value returned by a rangefinder (typically, a laser rangefinder or other
point-and-shoot distance measuring sensor) and whose orientation is the rangefinder’s
heading relative to the robot’s coordinate frame.

Why do we need a localization algorithm? In the domain of robotic manipulator arms,
position sensing is a sensing primitive—it is typically possible to get a position reading
that is within some (small) error bound of the actual position of the manipulator. Fur-
thermore, the error bound is a constant; it does not grow over time and applies over all
configurations of the arm. With mobile robots, this assumption does not hold; odometry
from wheel shaft encoders is fraught with error. One method for tracking the position of a
moving object isdead reckoning: starting from a known position and computing current
position by integrating velocity over time. This works poorly in practice: control and
sensing uncertainty integrated over time make the dead reckoning estimate of position
extremely inaccurate. Some work has been done toward developing localization tech-
niques and algorithms that operate by comparing geometric representations of the robot’s
environment with instantaneous sensory data, in such a way as to provide estimates of
the robot’s pose within its map: Guibas et al. [GMR] present the localization problem
as a matching problem between a world polygon and a visibility polygon. The visibility
polygon represents the output of a swept rangefinder. This algorithm provides a list of
poses within the world polygon from which the view is consistent with the rangefinder
polygon. We attempt in this paper to present algorithms that solve a similar problem,
but one which lends itself somewhat better to the sensors and computational resources
available on an actual mobile robot.

2.2. Localization Algorithms. The main results for this section comprise algorithms
to computefeasible pose sets. A feasible pose set is the set of all poses in the robot’s
configuration space, C, which are feasible with the given inputs. Primarily, we consider
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Fig. 4. A range probe is a vector with its tail at the robot and its head at an obstacle boundary. Pose (a) is
feasible under the shown range vector, but poses (b) and (c) are not.

the case where C isR2, and the robot has perfect orientation sensing, but no position
sensing. We also consider anR2 × S1 configuration space, where the robot has no
knowledge or only limited knowledge about its orientation with respect to the world.
In this section we will give the foreground of combinatorially precise computational
geometric algorithms; we will discuss versions of these algorithms that can be made to
run efficiently in Section 2.3.

2.2.1. Definition of the Localization Operation: Computing Feasible Poses. We rep-
resent a range reading as a vector with the tail at the robot. In order for a given position
within a geometric map to be consistent with a particular range reading, the following
statement must be true: If we place the tail of the range vector at the given position, then
(i) the head of the range vector must lie on an obstacle but (ii) the body of the vector
must not intersect any obstacles. This comes from the following interpretation of range
reading: “a reading of 57 cm in directionθ means that there is nothingwithin 57 cm of
the rangefinder in directionθ , but there is somethingat 57 cm.” Possible positions of the
robot, given the positions of the obstacles, meet the following condition: any place the
tail of the vector can be positioned such that the head of the vector intersects an obstacle
but no part of the body of the vector lies on an obstacle, represents a place where the
robot can be and get that range reading. Figure 4 demonstrates this interpretation. Given
a range vectorz, then we can compute the possible locations of the robot. Before we can
define feasible pose precisely, we need a few definitions: The Minkowski sum of two
sets,X ⊕ Y (as described in [LP]) is the vector sum of all points inX with all points
in Y:

X ⊕ Y = {x + y | x ∈ X, y ∈ Y}.

X ª Y is the vector sum ofX with the 180◦ rotation ofY:

X ª Y = {x − y | x ∈ X, y ∈ Y}.

⊕ is also calledconvolution; the Minkowski sum is mathematically closely related to
the convolution integral used in signal processing. Ifx andy are points,̀ (x, y) denotes
the open line segment between (but not including)x andy. Let ∂X denote the boundary
of the setX. Let M be a polygon representing the boundary between free space and
obstacle in the robot’s map. Letz be the vector representing a given range probe. We can
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express the feasible poses for modelM and probez:

FP(M, z) = ∂(M ª z)− (M ª `(0, z)),(1)

where “−”denotes set difference. In fact, we can dispense with the∂, because the interior
of M ª z is contained inM ª `(0, z). This gives us

FP(M, z) = (M ª z)− (M ª `(0, z)),(2)

which is an equivalent definition, but that extends more easily to the case with uncertainty.
For purposes of explication, we define two more sets,D(M, z) andE(M, z):

D(M, z) = M ª z,

E(M, z) = M ª `(0, z).

SinceFP(M, z) = D(M, z) − E(M, z), D(M, z) is, in some sense, the set of points
“added in” by the head of a given range probe, whileE(M, z) is the set of points
“subtracted out” by its body. Figure 5 illustrates an example calculation ofFP(M, z).
Precise localization will, in general, take multiple range probes. Given a set of range
probesZ, we define

FP(M, Z) =
⋂
z∈Z

FP(M, z).(3)

We deal with translational uncertainty by one of two mechanisms: theconsistent
readingmethod and thevarying epsilonmethod.

Theconsistent readingmethod says, “ifFP(M, Z) is empty (there are no points in
the intersection of the results of all range readings), what is the set of all poses that are
contained in a maximal number ofFP(M, z), for z ∈ Z?” For example, suppose there
are 24 range readings taken (say, one every 15◦), and no point in the map is in all 24
feasible pose sets, then look for the set of poses contained in any 23 of the sets, or any
22, and so on (this can be done without increased complexity, as explained below). This
introduces a quality measure to the result: a point that is contained in all 24 point sets
is a better match than one that is only contained in 23, or 22. This tactic enables the
algorithm to be robust in the presence of bad range readings. Note that, in this context,
Bad range readings are those that are missing or impossible, or which simply do not
correspond to the actual distance from the sensor to the nearest object in the appropriate
direction—essentially, sensor values that are outside tolerance bounds. It also can handle
the case where a movable obstacle in the robot’s vicinity occludes a stationary obstacle,
causing one or more range readings to be different than expected (see, for example,
Figure 6). This idea can be formalized as follows: If a setX is a subset of ambient space
U , then thecharacteristic functionfor X is a functionχX : U → {0,1} such that, for all
u ∈ U ,

χX (u) =
{

1 if u ∈ X,
0 otherwise.
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Fig. 5.(a) A set of polygons,M , and a range vectorz. (b) M with D(M, z) overlaid. (c)D(M, z)with E(M, z)
overlaid. (d)FP(M, z) = D(M, z)− E(M, z) shown with the originalM .

Using this notation, the function that maps a pointp ∈ C onto{0,1} based on whether
m ∈ FP(M, z) isχFP(M,z) . Given a setZ of m range readings, we define rnk(M, Z, p) as
the function from C to{0,1, . . . ,m} that, for eachp ∈ C, counts how manyFP(M, z)
contain it. Precisely,

∀p ∈ C, rnk(M, Z, p) =
∑
z∈Z

χFP(M,z) (p).

We can now define the set of points inC that are contained in a maximal number of
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Fig. 6. The consistent readings method can handle new obstacles: if the robot (the circle) has a feasible pose
under the twelve range probes shown in (a), it will still have a feasible pose meeting nine of the twelve range
probes, when three of the range probes are changed by the introduction of a new obstacle.

FP(M, z). Let κ = supp∈C(M, Z, ·). Then define

loc(M, Z) = {p | rnk(M, Z, p) = κ}.

Thevarying-epsilonmethod for coping with uncertainty uses epsilon balls (we refer to
an uncertainty ball about the origin with radiusε asBε. Bε will be anL2 disk (Euclidean
distance metric) unless otherwise specified). Given a map,M , and a range readingz ∈ R2,
we want all posesp wherep⊕z⊕Bε intersects an obstacle, but the portion of`(p, p⊕z)
lying outsidep⊕ z⊕ Bε does not. We denote the feasible poses forM andz with an
uncertainty ball of radiusε by FPε(M, z):

FPε(M, z) = (M ª (z⊕ Bε))−
(

M ª `
(

0, z

(
1− ε

‖z‖
)))

.(4)

Again, we define the “additive” and “subtractive” parts of the formula:

Dε(M, z) = M ª z⊕ Bε,

Eε(M, z) = M ª `
(

0, z

(
1− ε

‖z‖
))

,

so thatFPε(M, z) = Dε(M, z) − Eε(M, z). We can now treat the range reading as
having the form, say, “57 cm plus or minus 2 cm.” WhileFP(M, z) are typically sets
of line segments,FPε(M, z) is typically a set of two-dimensional “bands” that are, in
effect, the line segments “grown” byε. The intersection of two or moreFPε(M, zi ) is
also typically a set of two-dimensional regions, rather than a set of points or segments.
We now measure the quality of a match by saying “how large must we makeε in order
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Fig. 7.A localization example: A map (the black squares), three range probes (z1,z2, andz3), and an uncertainty
ball of radiusε. For Figures 7–11, the small, partially occluded grey squares key the shading ofD(M, zi ). The
darker, unoccluded grey squares key the shading ofE(M, zi ).

to find a point that is in every feasible pose set?” We can alsocombinethe consistent
reading method and the varying epsilon method by asking “How large do we need to
make epsilon so that there exists a point that is in, say, 90% of the feasible pose sets?”
(If we havem range probes, what is the minimum epsilon such that there exists a point
that is contained within≥ 0.9m of theFPε(M, z)?) Figures 7–11 show an example of
localization with three range probes. The first figure depicts the map,M , and the three
uncertain range probes,z1 throughz3; the next three show theDε and Eε sets for the
three range probes. The fifth figure showsFPε(M, Z), the region that is consistent with
all three range probes, overlaid with the originalM and the threeDε.
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Fig. 8. D(M, z1) andE(M, z1).
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Fig. 9. D(M, z2) andE(M, z2).

2.2.2. Exact Algorithms for Localization inR2. Given localization operations that
we have just defined, we can now define algorithms to compute the various feasible
pose sets. Our first set of algorithms are exact combinatorial algorithms to perform
localization when the map is a set of polygons in the plane. Initially, we define the
geometric framework for these exact algorithms and provide a rough sketch of a brute-
force algorithm to perform the localization operation. We then describe how we can use
a “plane-sweep” technique to provide a localization algorithm with better asymptotic
behavior than that of the brute-force method.

Equation (2) said that for mapM and probez:

FP(M, z) = M ª z− M ª `(0, z).

This is the set-theoretic definition of the feasible pose set for a given map and probe.

ε

z

z
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3
z1

Fig. 10. D(M, z3) andE(M, z3).
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Fig. 11.Here, we show the threeFP(M, zi ) = D(M, zi )− E(M, zi ) overlaid. The white rectangle with two
curved corners in the center is the intersection,FP(M, {z1, z2, z3}).

We can develop an algorithm for computing feasible pose sets directly from this. Suppose
M is a set of convex polygons withn vertices and edges. We can computeD = M ª z
in time O(n). We can also computeE = M ª `(0, z) in linear time: Lozano-P´erez [LP]
showed thatBª A, for convex polygonsB andA with b anda vertices, respectively, can
be computed in time2(a + b). This time bound is achieved by building the result set
directly by merging the edge lists ofA andB in order of increasing orientation relative
to the coordinate system. If we treat the closure of`(0, z) as the boundary of a two-sided
polygon, then we can apply this result to our problem. Note thatD is simplyM translated
by−z, and is therefore still a set of polygons.E is a set of polygonal regions, but each
region is an open set. Taking the set difference can be done in a na¨ıve fashion inO(n2)

time by taking the set difference between each regionP+ in D and each regionP− in E,
yielding exactlyFP(M, z). Note that it is important in the exact case that we treat the
regions inE as open, since the boundary of a region inE includes the boundary of the
corresponding region inD (this follows from the definition), so if we do not treat theE
objects as open sets, we will obtain no feasible poses.

We can adapt this algorithm to the varying-epsilon method in a straightforward
fashion: Dε is computed by convolvingM with z ⊕ Bε, Eε by convolving M with
` (0, z(1− ε/‖z‖)), as per (4). The cost of computingDε and Eε is still linear. The
brute-force algorithm we just described for the zero-uncertainty case can still be used
here, except for two changes. First, we no longer have to worry about the boundaries
of the E objects, and can treat all regions in bothD andE as compact. Second, if our
uncertainty region is anL2 disk, then we have to allow for circular arcs in the boundaries
of our objects. While this higher algebraic complexity creates additional implementation
details, it has no effect on asymptotic combinatorial cost.

For a setZ of mdifferent range probes, we can computeFPε(M, Z) straightforwardly
by first computing eachFPε(M, z)and then computing the intersection of thosemsets. In
general, a set ofk linear and circular segments in the plane can haveO(k2) intersections.
Thus, if M hasn edges, eachFPε(M, z) has complexityO(n2), so the union of all of
theFPε(M, z) has complexityO(mn2). Hence, we can compute the intersections of the
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union in time4 O(n4m2). A property of each individualFP(M, z), however, yields a
tighter bound. Remember that the complexity ofU is the number of edges and vertices
required to describe it, while the complexity of an arrangementA is the number of vertices
required to describeit. This complexity (A’s) is bounded from above byO(N+s), where
N is the complexity of the generating sets, ands is the number of intersections between
elements of these sets. In our case,N = O(mn2) becauseFP(M, z) has complexity
O(n2) and there arem z’s:

LEMMA 1. Suppose Z contains m range probes. Let U be the union⋃
z∈Z

FPε(M, z).

Then(i) the complexity of U is O(mn2), and (ii) the number of intersections in the
arrangementA generated by the sets{FPε(M, z)}z∈Z is O(m2n2). The number of inter-
sections inA is O(m2n2).

PROOF. We have just shown (i) ifM hasn edges, eachFPε(M, z) has complexity
O(n2), so the union of all of theFPε(M, z) has complexityO(mn2). (ii) Although
there areO(n2) segments on the boundary of an individualFPε(M, z), they all lie on
∂(Dε(M, z)), which is just a translation of the boundary ofM ⊕ Bε. The segments,
therefore, lie onO(n) lines and circles. In addition, the interiors of these segments do
not overlap. Thus, there can only beO(n2) intersections between them. Analogously,
when we take the union ofm FPε(M, z), theO(mn2) segments lie onO(mn) lines.A,
therefore, can only haveO(m2n2) intersections.

In fact, these bounds are tight:

LEMMA 2. (i) The complexity of U is2(mn2), and (ii) the number of intersections in
the arrangementA is2(m2n2).

PROOF. (i) Figure 12 shows a set of polygons,M , which hasn edges. It also shows
FP(M, z) for a sample range probe,z. If M hasn/8 vertical rectangles andn/8 horizontal
rectangles, there areÄ(n2) of the open squares between the rectangles. Each open square
contains part ofFP(M, z), soFP(M, z)must have sizeÄ(n2). FPε(M, z) for ε smaller
than half the size of the open squares, has similar appearance, but with regions such as
shown in Figure 13. (ii) If we have a set ofm different range probes,Z, such as the ones
shown in Figure 13, with eachz ∈ Z shorter than the size of those open squares, each
FPε(M, z) will have that same complexity.U , therefore, for thisM andZ, hasÄ(mn2)

edges. Furthermore, we can selectZ such that eachFPε(M, z) intersects every other
within each of the open squares. In that case, each square containsÄ(m2) intersections,
leading toÄ(m2n2) intersections overall. Lemma 1 gives us upper bounds equal to these
lower bounds, allowing us to conclude that these bounds are2-tight.

4 A more efficient algorithm is given later, in Theorem 7.
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FP(M,z)
M z

Fig. 12.A lower bound:M hasn edges, butFP(M, z) hasO(n2) connected components.

Plane-Sweep Localization Algorithms. We now explain how to construct plane-sweep
algorithms to compute the various types of feasible pose sets we have defined and
to analyze these plane sweeps to determine their asymptotic behavior. The Appendix
provides a review of the basic plane-sweep algorithm for finding all intersections between
line segments in the plane and of the modification of this algorithm to output depth of
coverage of an arrangement of polygons. The Appendix is a condensed treatment of

Fig. 13.A set ofm range probes,{zi }which, together with a square region boundary, induce anFPε(M, z)with
m2 intersections. The sequence ofzi have endpoints lying along a diagonal line, with the distance between
adjacentzi decreasing by a factor of two each time, allowingm to be arbitrarily large.
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material found in, among other places, [PS], [NP], [Don], and [Lat]. The last paragraph
of the Appendix describes a version of the polygon arrangement algorithm which outputs
the depth of coverage of polygons of two different colors (e.g., how manyred polygons
cover a given member of the arrangement and also how manybluecover that member).
The localization algorithm described below builds on the ability to compute polygon
arrangements among polygons of multiple colors using a plane-sweep algorithm.

THEOREM3. Given a set of polygons M and a range vector z,we can compute FP(M, z)
in time O((n + s) logn), where n is the number of edges in M and s is the number of
intersections between M and Mª z.

PROOF. We can computeD(M, z) and the union ofE(M, z) with its boundary each
in time O(n). The standard arrangement-computing plane-sweep algorithm runs on this
collection of polygons (which has a total of 2n edges) in timeO((n + s) logn), as
shown in [NP]. We modify the sweep-line data structure so that each segment on the
sweep-line knows how many polygons ofD(M, z) (color these polygonsred) and how
many polygons of∂(E(M, z)) (color these polygonsblue) cover it. Since we have a
constant number of colors to keep track of, we can make this change without altering
the asymptotic cost of processing each event. As we build up chains that, upon closing,
are output as regions of the arrangement, we decorate each edge with thered andblue
coverage depths of the region on each side of that edge; this information gets output with
the edge list for each region. Once the arrangement has been computed, we make a list
of all the edges (order is unimportant). This list isO(n + s) long. We go through this
list and output all of the edges that havered coverage of depth> 0 andbluecoverage
of depth> 0 on one side andred andblue coverages of depth 0 on the other. These
are the segments ofD(M, z) that are not covered by theinterior of any polygon of
E(M, z), and that therefore lie inD(M, z)− E(M, z). This step takes time proportional
to the length of the list to perform. The overall work done therefore to compute the
annotated arrangement and filter out the segments that are part ofFP(M, z) takes time
O((n+ s) logn).

THEOREM4. Given a set of polygons M, a range vector z, and an uncertainty valueε,
we can compute FPε(M, z) in time O((n+ s) logn).

PROOF. As noted previously,FPε(M, z), for ε 6= 0 is a set of generalized polygons
(line segments and circular arc segments). The introduction of circular arc segments does
not change the asymptotic behavior of the plane-sweep algorithm. For this problem, we
again use the arrangement-generating plane sweep with two colors, red and blue. Since
the feasible poses are now, in general, regions of nonzero area, we only need to output
for each region what itsredandbluecoverage depths are. We then filter the list of output
regions, keeping all regions with(red,blue) coverage of(k,0), for anyk > 0. In this
case the filtering step takes time proportional to the number of regions, which is bounded
by the number of edges in the arrangement. Since both the arrangement computation
and the filtering computation are no more complex than in the zero-uncertainty case, we
conclude that we can computeFPε(M, z) in time O((n+ s) logn).
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The analysis for multiple range probes goes similarly. The main difference in the
analysis is that we must establish that we can perform all the work necessary to keep
track of 2m colors without increasing the asymptotic cost of the algorithm. Fortunately,
we do not have to perform a general 2m-colored arrangement, Theorem 5 explains how
Lemma 1 allows us to extend Theorems 3 and 4 efficiently to the computation of feasible
poses with multiple range probes:

THEOREM5. Given a set of polygons, M and a set of range probes, Z, we can compute
FP(M, Z) in time O((mn2 + s) log(mn)), where n is the number of edges in M, m is
the number of range probes, and s is the number of intersections in the arrangement
generated by the sets

{D(M, z), E(M, `(0, z))}z∈Z .

Furthermore, s is O(m2n2) in the worst case.

PROOF. If we can get eachFP(M, z) to be nonoverlapping (no two regions intersect),
then we can computeFP(M, Z) by computing the intersection of them FP(M, zi )

by a straightforward arrangement algorithm: we run a plane-sweep algorithm over the
union of theFP(M, zi ) and extract the regions with coverage depthm. Each of the
FP(M, zi ) can have complexityO(n2), so we would expect computing the arrangement
of them FP(M, zi ) to take timeO(m2n4 log(mn)). Lemma 1, however, says that this
arrangement will only haveO(m2n2) intersections; so its computation will take time only
O(m2n2 log(mn)) in the worst case. Therefore, we can use the (conceptually simple)
method of taking them individual arrangements and computing the intersection of those,
and still meet our time bound.

COROLLARY 6. We can computeloc(M, Z) in time O((mn2+ s) log(mn)).

PROOF. Since we have to examine each region boundary of the arrangement in any
event, we can count the number of range probes each region boundary is consistent
with at no extra asymptotic cost, since addition is no more expensive than ANDing. By
outputting coverage information with each edge or vertex, we increase the size of the
arrangement by a factor ofO(logm), but that leaves the time to output the arrangement no
longer than the time to compute it. Thus, we can output the count-annotated arrangement
in the same time as we can output the coverage-annotated arrangement.

THEOREM7. Given a set of polygons, M , a set of range probes, Z, and an uncertainty
valueε,we can compute FPε(M, Z) in time O((mn2+s) log(mn)),where n is the number
of edges in M, m is the number of range probes, and s is the number of intersections in
the arrangement generated by the sets

{Dε(M, z), Eε(M, `(0, z))}z∈Z

(which is O(m2n2) in the worst case).

COROLLARY 8. We can computelocε(M, Z) in time O((mn2+ s) log(mn)).



534 R. G. Brown and B. R. Donald

Theorem 7 follows from Theorem 4 and Lemma 1 in the same way that Theorem 5
does. Corollary 8 follows from Theorem 7 using the same arguments used to get from
Theorem 5 to Corollary 6.

Finally, we wish to consider the problem of determining the minimum uncertainty,
ε, such thatFPε(M, Z) is nonempty. Megiddo, in [Meg], provides a mechanism for
transforming decision procedures into minimization procedures, for some problems.
This mechanism, known asparametric search, applies to decision procedures that have
a distinguished quantitative input,d (for example, a decision procedureP(A, B,d) that
determines whetherf (a,b) ≤ d, for a given functionf of two arguments,A and B),
such that there exists a critical valued∗ for any instance ofA, andB, such that ford < d∗,
P(A, B,d) is “no,” and for d ≥ d∗, P(A, B,d) is “yes.” The minimization problem
Pmin(A, B) is to find the value ofd∗. Parametric search typically takes a serial decision
procedure that operates in timeO(T(n)) and a parallel decision algorithm that operates
in parallel timeO(P(n)), and produces a minimization procedure that operates in time
O(T(n) logk(P(n))) for some positive integerk. Agarwal et al. [AST] show how this
mechanism can be applied to finding the minimum hausdorff distance [HK1] between
two point sets. We can use a similar approach to develop an algorithm to compute the
smallest uncertainty ball,εmin, such thatFPεmin

(M, Z) is nonempty. Agarwal et al. [AST]
take a decision procedure with worst-case timeO(m2n2 log(mn)) and are able to obtain
a minimization procedure that takes worst-case timeO(m2n2 log3(mn)). We conjecture
that we can do likewise with our problem.

2.2.3. Allowing Rotational Uncertainty. Until now, we have assumed that the robot
has perfect orientation information; i.e., that it always correctly knows which direction
it is facing. This may not be a valid assumption. Even if the robot has a compass, that
compass will have only limited resolution and accuracy; the error may not be small
enough for us to ignore it. If robot does not have a compass, then it is reduced to relying
on its orientational odometry. Even if the orientational odometry is very good, there
will arise occasions, such as initialization-time or after a sliding motion, when we will
need to determine the robot’s orientation by comparing sensory data with previously
gathered information. For experiments performed to date using our robots, we have been
able to use orientational odometry with fair success; however, robots with less fortunate
kinematics may not permit this. For example, see the description of the treaded robot
CAMEL in [Bro].

It is probable that we could perform localization inR2 × S1 by computing feasible
pose sets inR2× S1 directly. The planar map used thus far in the paper is essentially the
configuration space of a point robot moving among planar obstacles (for a more detailed
discussion of configuration spaces, see [LP] or [Lat]). The configuration space of a point
robot with orientation is essentially the map we would use forR2× S1 localization. By
convolving that three-dimensional set with a set of range probes, we can formulateD and
E sets analogous to the ones computed in the plane. We can use a space-sweep algorithm
(the three-dimensional analog to a plane-sweep algorithm) to compute these feasible pose
sets. We have not fully explored the detailed analyses or the complexity bounds for the
sweep algorithm needed for this particular problem; however, we believe the cost to be
high (on the order ofO((m+n)6 logk(mn)) for somek), as the complexity of the problem
seems closely related to that of finding the minimum Hausdorff distance between two
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sets of points, segments, and polygons in the plane under Euclidean motion (translation
and rotation). The current best algorithm for this problem (proposed in [CGH+]) has
an upper time bound ofO(m3n3 log2(mn)), for two setsP with complexitym and Q
with complexityn. This bound appears to be close to optimal (withinO(logk(mn)))
[Ruc].

Theta-Slice ApproximatingR2× S1 Localization. Perhaps a more practical method of
handling rotational uncertainty in the localization process is to approximate the procedure
just outlined by performing translation-only localization at a set of discrete rotations.
We can computeMkr for k = 0,1, . . . , p−1 in O(np) time, whereMkr is M rotated by
2πk/p. If we can perform the translation-only localization at eachk1θ in timeT(n,m)
for an environmentM of sizen andm range probesZ, then we can determine which of
thek1θ angle offsets is (are) most compatible withM andZ in time O(pT(n,m)).

Separating Orientation Localization from Translation Localization. We may not want
to extend the localization algorithm to handle rotational uncertainty at all. Under some
robot and environment models, it makes more sense to perform rotational localization
separately from translational localization. Among the models to which this applies are (i)
robots equipped with bounded-error compasses or gyroscopes, and (ii) robots operating
in environments such as uncluttered office environments where a large majority of the
vertical surfaces in the environment have orientation along a set of cardinal axes. In cases
like this it may make more sense to use some sort of sensory alignment procedure to
reduce orientation uncertainty; using such a procedure in coordination with a translation-
only localization algorithm may be more efficient than using anR2 × S1 localization
algorithm.

2.3. Using Rasterization for Practical Localization Algorithms. For performance rea-
sons, we use rasterized algorithms when we implement geometric algorithms on the
robot. In our experience, combinatorially precise geometric algorithms such as those
developed in Section 2.2 are not possible to implement on real robots. Rasterization is
a necessary component of the algorithmic development, and as important as the design
and analysis of the combinatorial algorithms. More strongly, we feel that any description
of our work would be incomplete, if not misleading, were it not to describe the rasteriza-
tion. To our view, such a lacuna would be as serious as omitting the asymptotic bounds.
Rasterization is not a mere “engineering detail” but, rather, an integral part of any sys-
tematic attempt to develop physical geometric algorithms that are to be implemented
and used in practice. See [DKM] for a methodology for the integrated codevelopment
of combinatorially precise and rasterized geometric algorithms.

A rasterized algorithmemploys the following technique: given a geometric descrip-
tion (for example, lists of edges or vertices), embed that description in an array by
digitizing the primitives (in essence, “plotting” geometric primitives from the descrip-
tion on an initially blank bitmap). Given an algorithm that runs on geometric descrip-
tions, convert (by hand) the algorithm to perform on a discretized grid. We believe that
algorithms operating on discretized arrays are useful, in that they are often easier to
implement than the original combinatorial algorithms, and they often run faster. See
[Lat], [BL], [LP], [LRDG], [HK2], and [CK] for examples of how rasterization can
be applied to robotics algorithms. In this section we define rasterized algorithms, and



536 R. G. Brown and B. R. Donald

define some basic building blocks from which rasterized algorithms can be built. We then
present rasterized versions of the translation-only (R2) localization algorithms presented
in Section 2.2.2.

Another reason for preferring rasterized algorithms for on-robot implementations
lies in the type of data that is actually available to the robot. Many results in theo-
retical robotics are built on the data typeset of polygonal obstacles(polyhedral ob-
stacles, in three dimensions). It is impossible, however, to make a map that is a good
polygonal/polyhedral representation of an unstructured environment. Part of this is due
to limited sensor accuracy, but there are more fundamental problems: For one thing, the
world is not made up of polyhedral objects. Objects in the world, such as piles of cables or
hockey bags, can often only be represented approximately using polygonal/polyhedral
shapes. The cost of representing such an object can be high, as it may require a large
number of segments or faces. In addition, obtaining that representation will likely re-
quire arbitrary application of line- and curve-fitting procedures. Given a specification
of required accuracy for our maps, we believe it is simpler to select a minimum feature
size (based on that specification), and to make our maps using that feature size as their
resolution. Thus, we feel rasterized maps are the most straightforward way to repre-
sent the real-space world our robot encounters. We want, therefore, to use rasterized
computational geometry algorithms for manipulating our maps, since using standard
computational geometry algorithms would require frequent conversion between raster-
ized and polygonal representations, leading to loss of accuracy.

2.3.1. Introduction to Rasterized Computational Geometry. Rasterized algorithms are
not new. Many existing rasterized algorithms were originally developed by researchers
in computer vision and computer graphics. Computer vision researchers often use ras-
terized algorithms, largely because computer vision algorithms operate, at least at low
levels, upon images obtained from video cameras or scanners, which invariablyprovide
rectangular arrays of intensity and/or color values. Computer graphics researchers de-
sign algorithms that create images for display upon video screens, which almost always
expectrectangular arrays of intensity and/or color values. A video image has limited
resolution, causing features below a certain scale to disappear and the locations of larger
features to be known only approximately (usually to the nearest pixel). Thus, it makes
sense to design computer vision and computer graphics algorithms that will operate well
on rectangular arrays of limited resolution data. For example, there is often little advan-
tage to a hidden-surface removal algorithm employing exact (rational) arithmetic and
numbers for precision, if the output is to be displayed on a screen with 1024 pixel×768
pixel resolution.

2.3.2. Some Building Blocks for Rasterized Algorithms. The fundamental data type of
rasterized algorithms is thegrid. A grid is divided up intocells, each of which can take
on an integer value. Most operations fall into two categories: grid-level and cell-level.
Basic grid-level operations include cellwise arithmetic and logic (for example, given
two equal-sized grids,A andB, (A+ B)[i, j ] = A[i, j ] + B[i, j ]) and transformation
operations (e.g.,x–y-translation (A[i, j ] = B[i + p, k + q]) and reflection (A[i, j ] =
B[ p− i,q− j ])). Cell-level operations typically assign a value to each cell as a function
of its neighbor cells. More complex functions are built up from sequential applications
of these basic operations.
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Fig. 14.Discretized convolution:P ª Q.

Discrete Convolution. The Minkowski sum operation, defined in Section 2.2.1 as

P ⊕ Q = {p+ q | p ∈ P,q ∈ Q}

can be applied directly in the rasterized domain. In the continuous domain, ifP andQ
are finite sets of discrete points, we can computeP ⊕ Q by a simple iteration: for each
p ∈ P, iterate over allq ∈ Q, outputtingp+ q. In the rasterized domain there are no
continuous point sets: curves and areas in the continuous domain are transformed into
contiguous sets of pixels. Since all finite sets of discrete points have finite cardinality, we
can computeP⊕Q for any pair of finite rasterized sets,P andQ. The operation denoted
⊕, applied to a rasterized domain, is exactly the operation that is known in digital signal
processing [OW], [OS], image processing, and computer vision circles [MH], [Mar] as
convolution. In digital filter design, for example, a common application of convolution
is the Finite Impulse Response filter, whose output is computed by convolving a linear
or rectangular region with a sampled input. For example, many of the “smoothing”
filters and edge-detectors in common use today rely on this operation. Since it is very
common, convolution is an operation that many processors (particularly those designed
specifically for digital signal processing) are optimized to perform. Since specialized
signal/image processing hardware is capable of performing this operation very quickly,
discrete convolution is a very useful operation for rasterized-algorithms. Figure 14 shows
a sample rasterized convolution.

Floodfill/Brushfire Algorithms. Breadth First Search [AHU] is an often-used order for
visiting nodes in a graph, in which we visit/examine/compute upon the nodes adjacent to
the start node first, then those that are at distance two from the start, then those at distance
three, and so on until all nodes have been visited. In the context of rasterized algorithms,
this order is known as a “floodfill” or “brushfire” algorithm. In its simplest form, the
procedure to floodfill an array can be described as (i) number all source cells 0 and place
them on the floodfill queue, and (ii) while the queue is nonempty, dequeue a cellc; if
c bears the numberi , number all of its unnumbered neighbor cellsi + 1 and enqueue
them. This algorithm floods from a set of source cells in contours that are determined
by the definition ofneighbor. If we define neighbors to be those cells that share a side
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Fig. 15.(a) A pixelized shape shown with floodedL1 andL∞ contours. (b)Loctagoncontours flooded out from
a point source.L2 circles are shown for reference.

(resp. side or corner) with the current cell, then we flood in diamond (square) shapes so
that the number of a given cell is its distance to the nearest source cell under anL1 (L∞)
distance metric. Figure 15(a) shows the shape of these contours for a sample pixelized
shape.

We can defineobstacle cellsin the array as those that cannot be flooded. If we do this,
then the contours define the distance to the nearest source cell via a path that does not
cross any obstacle cell. In fact, in [LRDG] this property is used to design a very fast robot
path planner that computes the shortest path from anywhere in the robot’s configuration
space to a specified goal. Once the contours are in place, the path from a given start point
to that goal can be determined in real time, provided it exists; if there is no path to the
goal, this can be determined virtually instantaneously. We use a variant of this planner
on LILY .

Sometimes we want to be able to flood from a set of source points only out to a
specified distance. For example, consider the C-space obstacles generated by a path-
planner for a circular robot. These C-space obstacles are the real obstacles grown out by
the diameter of the robot in all directions. Thus, if we are interested in the grown-obstacle-
map of a diamond- or square-shaped (i.e.,L1 or L∞ circular) robot with radiusr , we
can easily compute its C-space by the following modified floodfill algorithm: (i) number
all obstacle cells 0 and place them on the floodfill queue, and (ii) while the queue is
nonempty, dequeue a cell;if its number is less thanr , number all of its unnumbered
4-connected neighbor cells (resp. 8-connected neighbor cells) one higher and enqueue
them. This algorithm floods from a set of source cells in contours that are circular under
an L1 (resp.L∞) distance metric. It only floods out to a specific distance, however, so
that the set of all numbered cells after the algorithm is run is the same set of cells as
obtained by taking the Minkowski sum of the obstacle map and anL1 (L∞) disk of
the radius of the robot. Since we never enqueue a cell more than once, the cost is only
proportional to the area of the map with the flood-fill case, as opposed to the map-area
times disk-area cost of the Minkowski sum. Unfortunately, it is not possible to flood in
this same fashion using anL2 disk. It is, however, possible to approximate a smallL2
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disk (one with radius less than 20 cells) with an octagonal region (an “Loctagon” disk)
whose boundary is never more than one cell-size away from the boundary of anL2 disk
of the same radius. This “Loctagondisk” is obtained by alternating in a prespecified pattern
between 4-neighbor and 8-neighbor growth. Figure 15(b) shows the distance contours
associated withLoctagongrowth, along with theL2 circles they approximate. Which set of
neighbors we use for a particular cell depends solely on the value assigned given to that
cell. Given that we ordinarily use a map whose cell-size is within an order of magnitude
of the robot size, this method of determining the grown-obstacle-space is adequate, and
in practice much faster than taking the Minkowski sum.

It is also useful to be able to “flood” in a specific direction. A sample application here
is computing the grown-obstacle-space of a rod-shaped robot at various orientations. As
before, we could perform this operation by taking the Minkowski sum of the original grid
contents and the pixelized vector representing the direction and distance of growth. A
faster way to do this is to extract from the pixelized vectorVr a list of “neighbor numbers,”
which map from the pixels ofVr to the integer range [0− 7]. neighbor[i ] represents
the direction from thei th pixel of Vr to the(i + 1)st (its neighbor going away from the
origin): the pixel to the right has neighbor number 0; the pixel above and to the right has
neighbor number 1; the rest of the neighbors are numbered in counterclockwise order
from there. Now, when we do the floodfill, if we take a cell numberedi off of the queue,
we only number and enqueue the one neighbor cell that is indicated byneighbor[i ].
This way, we flood from source cells only in the direction of the pixelized vector. In
fact, making this approach work properly is slightly more complicated: Since the grid
really only recognizes eight distinct directions at a local level, it is possible for the
vector that should stem from a source pixel to be partially or wholly omitted, in the case
where the surface tangent of an obstacle at that source pixel is close to the direction of the
range vector. This happens when the 8-directional pixelized vector points locally into the
obstacle, even though the original vector points out of the obstacle. Figure 16(a) shows
an example of this problem. The vector shown is sourced from the starred cell; the first
three cells of the pixelized vector lie within the obstacle, even though the original vector
points out of the obstacle when sourced from the obstacle’s upper boundary. We address
this difficulty using a lookahead scheme that causes the flood to work correctly without
affecting the algorithm’s asymptotic performance. In Figure 16(b), we have added the
pixelized vector sourced at the cell marked “+.” Hashed cells lie on the pixelized vectors
sourced at either “∗” or “+,” while cross-hashed cells are those free-space cells that lie

* *+

(a) (b)

Fig. 16. (a) A pixelized vector may overlap a pixelized object, even though the original (unpixelized) vector
points out of the object. (b) To avoid this and some other difficulties, we use a lookahead scheme based on the
way the pixelized vector overlaps a translated copy of itself.
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on both pixelized vectors. The cells that are forward-hashed, but not back-hashed are
those that would not get numbered if the “∗” vector were eliminated but the “+” vector
remained. To ensure that these cells get numbered properly, at each step the floodfill
procedure looks ahead to two cells: the cell indicated by the neighbor number of the
current cell and the cell that is in the position of the nearest higher-numbered cell that
would notget marked if the neighbor cell already bore a lower number. Which cell that
is for a given potential can be precomputed once for each cell on the pixelized vector
at the beginning of the fill, by examining how the pixelized vector overlaps a translated
copy of itself (translated by one pixel in the dominant direction). Essentially, we create
a picture like the one in Figure 16(b), for the particular vector being used, and look at
the overlap.

The directional floodfill algorithm has an additional small performance advantage
over omnidirectional floodfill procedures: Since we know in advance the direction in
which growth will be taking place, it is not in fact necessary to use a queue-based
implementation to perform directional flooding. It is sufficient to make a single ordered
sweep across the grid, with the direction of the sweep determined by the orientation of
the growth vector. In an omnidirectional fill, we must be certain that all cells at a distance
less thank from the source cells have been processed before beginning to process the cells
at distancek; otherwise, some cells may get a larger than necessary potential number
(in fact, we can prevent this, but only by increasing the cost of the procedure due to
the necessity of processing some cells multiple times). In the directional case, we only
need to ensure that the lower-numbered cells that contribute to the numbering of a cell
at distancek be numbered. For this reason, we can sweep the grid in a direction that will
cause cells on a straight line from a given source cell to be processed in order of increasing
distance. This does not affect the asymptotic behavior of the flooding procedure, but may
allow significant reduction in the constants pertaining to the performance of a particular
implementation of the procedure.

2.3.3. Rasterized Localization inR2

Localization Using Discrete Convolution. A simple implementation of the algorithm
to compute the feasible pose set for a given rasterized range vector, map, and uncertainty
follows directly from the definition ofFPε(M, z) in (4): suppose we have an inverted
range vectorz, uncertaintyε, and mapM (Figure 17). Create a setZr that is the set of
integer grid-points that intersect the vectorz at a distance greater thanε from the head of
z. Create also a setZε that is the set of integer grid-points with a Euclidean distance ofε

of the head ofz. Regard the mapM conceptually as a set of points, but maintain it as a
two-dimensional array. ComputeD (which can be regarded as the set of all cells that are
within ε of a cell that is itself the vector sum ofz with some obstacle cell) by convolving
M with Zε. Remember that convolution of a bitmap with a point set is equivalent to
offsetting the bitmap by the coordinates of each member of the point set, and computing
the union of each of those offset bitmaps byORing them all together. Next, we compute
an intermediate setE (the set of all cells that are withinr − ε of an obstacle cell in the
direction ofz) by convolvingM with Zr . Now,FP is just the set differenceD − E.

The complexity analysis is straightforward. Given a map with sizen×n, a vector that
discretizes intor cells, and an uncertainty ball of radiusε, then the time required can be
expressedO(n2(r+ε2)). This is the number of cells in the map times the number of times
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Fig. 17.A map,M , a range probez, and an uncertainty ball of radiusε. zr is the rasterized representation of
`(0, z(1− ε/‖z‖)). zε is the rasterized representation of(z⊕ Bε).

that an offset-and-copy operation has to be performed on the map. With multiple range
probes, the cost is linear in the number of such probes: we can intersect them feasible
pose setsFP(M, zi ) in timeO(n2m), which does not increase the asymptotic cost beyond
the O(n2(r + ε2)m) total cost for computing them individual FP(M, zi ). Determining
the coverage of each cell inM can be done in the exact same time complexity by counting
the number ofFP(M, zi ) that contain that cell instead ofANDing the cells together. In the
discretized case we can determine the optimalε for a given coverage at a cost increase
of O(logn) by a simple binary search tactic: since we can only select integer values for
ε, we need not resort to parametric search. This gives us an overall time complexity for
determining the smallest nonemptyFP(M, Z) of O(n2m logn(r + ε2)).

Speeding up the Rasterized Localization Algorithm. The algorithm of Section 2.3.3
does redundant work. For a single range probez, each cell in the mapM is copied and
operated uponO(r + ε2) times, forr the length of the range probe andε the radius of
the uncertainty ball. This is true even of those cells that are inside an obstacle, or out in
the middle of free-space. We can reduce the cost of computing an individualFPε(M, z)
to O(n2), independent ofr andε. This means we can compute the smallest nonempty
FPε(M, Z) in time O(n2m logn).

We can reduce the cost of computingFPε(M, Z) to O(mn2r ) by approximating
the error ball so that we can use a floodfill-based method to computeD. We do this
using much the same method as used to compute the C-space obstacles: We translate
the map by−z, then grow it by an “Loctagon” disk of radiusε, using a limited range
floodfill, as described in Section 2.3.2. This is the approximateD set, which is al-
most the same as theD computed by the more expensive convolution method. It is,
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Fig. 18. M ª z flooded by anε of 2, shown with the originalM .

in fact, identical forε ≤ 4 cells. Forε between 5 and about 20, the boundary of the
Loctagon disk of radiusε lies within one cell-size of theL2 disk of the same radius.
Figure 18 shows a sample rasterizedM along with theD set. TranslatedM pixels are
numbered 0; pixels at distances 1 and 2 away from 0-numbered pixels are numbered 1
and 2.

We further reduce the cost toO(mn2)by using the directional floodfill of Section 2.3.2
to computeE. For a range vector at angleθ of lengthr (resp.r−ε, if the uncertainty value
is nonzero), we do this in the following way: we start with the obstacle pixels in place
and numbered zero, and perform a directional floodfill out to distancer (resp.r − ε).
Finally, we computeFPε(M, z) by merging the two arrays by the following algorithm:
(i) Set all numbered cells inD(M, z) to a distinguished negative valuekD . (ii) If a cell
in E(M, z) has a number, we copy that number into the corresponding cell inD(M, z).
All cells that still bear the valuekD are feasible pose cells for mapM and range probe
z. Figure 19 shows a directional flood fromM in the direction of−z. Figure 20 shows
FPε(M, z): numbered cells are inFPε(M, z). The white regions are cells covered byDε,
and gray regions are the originalM .

2.4. Summary. In this paper we defined a model of mobile robot localization that builds
upon the concept offeasible poses, which are poses for a mobile robot that are consistent
with available range and map data. We model a point-and-shoot rangefinder as a sensor
that returns the distance to the nearest object in the direction of its sensitivity, toleranced
by an error bound. A feasible pose relative to a map and a range vector is essentially a pose
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Fig. 19. M flooded in the direction ofz by distance||z|| − ε.

Fig. 20.FPε(M, z): the shaded and numbered cells are those fromDε that do not lie underEε . The original
M is included for reference.
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from which a rangefinder could return the given range vector, in a world characterized
by the map. We provided formal definitions for feasible poses relative to single range
probes and relative to sets of range probes, both with and without uncertainty in the range
data. We gave exact computational-geometric algorithms to compute feasible poses.
Finally, we defined feasible poses in a rasterized framework, and provided algorithms
to compute feasible poses usingrasterized computational geometry. One of our robots,
LILY , uses a laser rangefinder and these rasterized algorithms to perform self localization
by computation of feasible poses. In Section 3 we show examples of our localization
system in operation.

3. Experiments and Results

3.1. Research Program. In this section we describe and present the results of exper-
iments we performed to test the rasterized localization algorithm. We show maps that
our robot, LILY (Figure 21) has made of two rooms within our building as well as the

1

2

7

5
4

3

6

Fig. 21.LILY , one of the Cornell Mobile Robots: 1. The pan/tilt servo-able laser rangefinder. 2. The modular
enclosure. 3. Sonar wide-angle range sensors. 4. Infrared directional modems and proximity detectors. 5. Con-
tact sensors. 6. The modular, distributed, SCHEME-based robot controller. 7. Synchrodrive wheel-base (RWI,
Inc.).
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Fig. 22.(a) A hand-drawn map of Russell’s office at Cornell. The small diamonds are the places where LILY

sat while making the map shown in (b) At each location, she performed map updates based on 300 readings
taken while she sat stationary and her pan-tilt head swept around the circle.

results of five different runs of the localization algorithm, wherein LILY used the maps
she made, along with instantaneous range data, to localize herself within those rooms.

3.2. Map-making and Localization Experiments. Figures 22–31 show results of map-
making and localization experiments performed using LILY . Figures 22–24 show the
results of experiments run in a small (about 4 m× 4 m) office. Figures 25–31 show
the results of experiments run in our laboratory (with dimensions roughly 7 m× 9 m).
For these experiments, we specified a map size of 256× 256. The scale factor between
the world and the map was 50 mm= 1 cell. This let us build maps of areas with size
up to 12.8 m× 12.8 m.5 In the maps generated by LILY , the white regions are those
which are most certainly vacant, while the darkest regions are those which are most
certainly the boundaries of obstacles. Grey regions are those for which either the robot
was unable to obtain data (for example, the interiors of obstacles) or the region was
ambiguous (e.g., occupied at some heights and vacant at others). LILY stores her map
as an array of 8-bit values (0 to 255). Since we want a binary map for the localization
algorithm, LILY converts the occupancy grid to a bitmap by applying a threshold at an
occupancy probability of 50%− ε (ε, here, just means “a small value”). In practice,
LILY assigns a value of “occupied” in the binary map to any location in the statistical
occupancy map holding a value greater than 127. Since 50% denotes “no information,”
this assigns a value of “occupied” in the bitmap to any cell for which we lack evidence
that it is unoccupied. The same threshold was used for all experiments.

5 For the office examples, we have cropped the map and localization grids to 128× 128 so we can show the
pertinent portions of the map more clearly.
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(a) (b)

(c)

Fig. 23. The circles in these figures show the actual location and size of the robot for localization test 1
(important for judging the scale of the localization errors). The circles are overlaid on (a) the hand-drawn map,
(b) LILY ’s map, and (c) the localization procedure output.

LILY builds these maps by the following process (see Figure 22(a)): The map is ini-
tialized with all elements at 50% probability of occupancy. LILY moves to a series of
spatially separated positions, which can be a combination of hand-selected and auto-
matically generated locations. At each position, LILY stops moving, and remains sta-
tionary while her laser rangefinder slowly spins around in a circle, taking 300 range
readings. For each reading, she performs a statistical update to the map based on her
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(a) (b)

(c)

Fig. 24.The circles in these figures show the actual location and size of the robot for localization test 2. The
circles are overlaid on (a) the hand-drawn map, (b) LILY ’s map, and (c) the localization procedure output.

perceived position and orientation, and the distance and direction values provided by the
rangefinder.

The rule LILY used to update cells when it made the maps is an exponential-decay
update rule: probability is raised by the rulepnew(x) = 1− (α(1− pold(x))) and lowered
by the rulepnew(x) = αpold(x). In practice, we use distinctαraise andαlower values, for
raising and lowering probabilities, respectively. The values we used in the examples
shown in this section were 0.3 forαraise and 0.15 forαlower (the same values were used
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(a) (b)

Fig. 25. (a) A hand-drawn map of our laboratory at Cornell. The small diamonds are the places where LILY

sat while making the map shown in (b). At each location, she performed map updates based on 300 readings.

for all tests—no retuning was necessary). Also, since we implemented the occupancy
grid as an array of bytes, it was adequate to implement the update rules as 256-entry
lookup-tables (in effect, making each cell of the map a 256-state finite state machine),
speeding the update procedure considerably.

In normal usage we slant the laser rangefinder toward the floor so that the laser beams
hit the floor about two meters from the robot. The primary reason for this is to increase
the reliability of the information we obtain from the sensor: If the rangefinder is level

(a) (b)

Fig. 26.The circles in these figures show the actual location and size of the robot for localization test 3. The
circles are overlaid on (a) the hand-drawn map and (b) LILY ’s map.
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Fig. 27.The circle shows the actual location and size of the robot for localization test 3. It is overlaid on the
localization procedure output.

(a) (b)

Fig. 28.The circles in these figures show the actual location and size of the robot for localization test 4. The
circles are overlaid on (a) the hand-drawn map and (b) LILY ’s map.
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Fig. 29.The circle shows the actual location and size of the robot for localization test 4. It is overlaid on the
localization procedure output.

to the floor, then its beams may not hit an object for a distance of several meters. If the
objects hit are far away, the precision of the value returned is poor; furthermore, the odds
of the sensor returning a completely false value are increased. In the map-making and
localization experiments described in this section, we used the laser rangefinder in the
down-slanted mode. Since the rangefinder was slanted toward the floor, we discarded
those readings which were greater than 2.1 m, since those corresponded to the rangefinder
sensing the floor, rather than an obstacle. For these experiments, we also discarded any
readings smaller than the rangefinder’s minimum range of 0.3 m.

In Figures 23 and 24 we show the results of two different runs of the localization
procedure in the office environment. The (a) parts of these figures show the hand-drawn
map of the office with a circle depicting the actual location of LILY ; the circle has the
same diameter as LILY (LILY has a cylindrical shape) drawn to scale. (Note that LILY

never uses or sees the hand-drawn maps—these are only shown here for the reader’s
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(a) (b)

Fig. 30.The circles in these figures show the actual location and size of the robot for localization test 5. The
circles are overlaid on (a) the hand-drawn map and (b) LILY ’s map.

convenience.) The (b) parts show the same circle overlaid on the map generated by
LILY . The (c) parts show the output of the localization procedure run at the indicated
location. In the localization output figures we have coded the display in the following
way: cells which arenot in FP(M, z) for any of the chosen range probes are white.
Cells whichare in FP(M, z) for one or more range probes are shown in shades of grey,
such that darker cells are consistent with more probes. The darkest cells (the black ones)

Fig. 31.The circle shows the actual location and size of the robot for localization test 5. It is overlaid on the
localization procedure output.
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are those which are consistent with a maximal number of probes. For these tests, we
took probes at fixed intervals (one every 45◦). In test 1 there were cells consistent with
seven of the eight range probes. In test 2 there were cells consistent with six of the
eight. Note that the darkest cells are all within or very near to the circle denoting LILY ’s
position.

A further comment on interpreting these results: As pointed out, the circle is a to-scale
representation of LILY ; this means that a dark cell on the border of the circle represents
a candidate feasible pose which is in error by approximately 100–200 mm, against the
6–13 m scale of the maps. This is due to a combination of measurement error in the
actual range probes, and the cumulative effect of measurement error during the map-
making process, exacerbated by the effect of varying cross-section objects in LILY ’s
workspace.

Figures 26–31 show the results of three different runs of the localization procedure in
the laboratory environment. The (a) and (b) parts of Figures 26, 28, and 30 are analogous
to the (a) and (b) parts of Figures 23 and 24. Figures 27, 29, and 31 are analogous to
the (c) parts of Figures 23 and 24. For these three runs of the localization procedure,
the darkest pixels are, again, within or bordering on the circle denoting LILY ’s position
for each run. In these cases, we took probes at 15◦ intervals. In test 3 seven probes
were within acceptable range. In tests 4 and 5 ten and eleven probes were within range,
respectively. For test 3 the maximal number of consistent range probes was six; this
value was nine and eleven for tests 4 and 5.

3.3. Future Experiments. The test results we have obtained with our map-making and
localization system seem to indicate that our approach to map-making and localiza-
tion (combining a map-making system based on the work of Moravec and Elfes with
a rasterized implementation of a computational geometry localization algorithm), us-
ing a point-and-shoot laser rangefinder, provides a promising avenue for mobile robot
navigation. In this paper we can show only a few examples of this system in action;
understandably, we have selected the ones which best illustrate our claims about the
system. We have run the map-making and localization algorithms dozens of times on
LILY , though, and have found them to be consistently reliable.6

Our navigation system is, clearly, still in the development stage, and there are many
more experiments we would like to perform using it. We would like to extend the
implementation of our navigation system to incorporate a number of other features that
we have addressed in this paper. We have not yet been able to test many aspects of our
navigation system, including

• Three Dimensions: We feel that the robot’s maps would better reflect the environment
if they incorporated height information. Approximating a three-dimensional world
with a two-dimensional map reduces the accuracy of the map and the accuracy that
one can expect from the localization algorithm.
• Rotational Localization: We have not yet tested our rotational localization strategies

in concert with our translational localization algorithms.

6 As the reader compares our work with competing algorithms, it is important to note that our localizations
were performed on robot-made maps (not a priori hand-drawn maps), and real range data.
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• Simultaneous Map-Making and Localization: For the examples shown in this sec-
tion, it was the case that we made a map using dead reckoning, then used the localiza-
tion algorithm to locate the robot after we moved the robot to an unspecified position.
We would like to perform experiments in which the robot, for example, makes a map,
or a portion thereof, then uses a combination of localization and dead reckoning to
build an improved map; for these experiments, the robot would also determine for
itself where it needed to explore to improve the quality of its map.

3.4. Evaluation. On the basis of the experiments outlined in this section, we feel that
our localization algorithms performed very well. In addition to the results presented
here, LILY has built well over a dozen maps, and performed about a hundred localization
passes, with varying but generally very good results.

4. Conclusions and Further Research Directions

Closing Summary. We defined mobile robot localization as the process of findingfea-
sible poses, locations that are consistent with the robot’s internal map and with instan-
taneous range data. We presented algorithms to perform localization inR2 given a map
and a set of range probes; the first of these were exact combinatorial algorithms which
produced feasible pose sets from a polygonal map and a set of range probes. We then
introduced the concept ofrasterizedalgorithms, and presented rasterized algorithms to
produce feasible poses when the map is a two-dimensional bitmap.

Finally, we presented the results of real localization experiments performed using
LILY . We showed maps generated by LILY using her laser rangefinder and the results we
obtained when we ran our localization algorithms on LILY using real of range data.

Further Research Directions. The work described in this paper suggests a number
of interesting extensions at both theoretical and implementational levels. One set of
extensions to the localization algorithms would be to extend them toR3 andR3×S1. For
the rasterized algorithms, this would primarily be an implementational extension, but
for the exact algorithms there would be nontrivial complexity analysis required to obtain
time bounds for localization in these higher dimensions. From a practical standpoint, it
would be more interesting to determine whetherR3 localization usingR3 maps would
overcome the difficulties encountered when we useR2 localization on anR2 map to find
the robot’s pose in anR3 world.

We have not yet explored in detail the use of history to improve the quality of local-
ization estimates: We have only used previous pose estimates in the sense that we have
assumed accurate orientation information. As a simple example, suppose we know from
a previous execution of the localization routine that we are in, say, one of two or three
small, disconnected regions. If we execute the localization routine again and determine
that we are in one of a different set of two or three small, disconnected regions, and find
that only one region in the new result is anywhere near any of the regions in the previous
result, then, clearly, we know that we are most probably in that specific region.

Another promising direction would be to pursue active sensing issues in localization
further, including (i) which range probes are most useful in localizing the robot and (ii) if
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we cannot fully disambiguate the robot’s current pose using instantaneous range data
obtained from the robot’s current pose, what is the best motion the robot can make to
obtain data that will give it a more unique pose estimate? Work in this direction might
be based on Kleinberg’s on-line localization algorithm, presented in [Kle2].

Conclusion. Much work has been done on mobile robot navigation problems. What we
have done is to provide exact combinatorial algorithms with complexity analyses for the
localization aspect of navigation and to provide rasterized versions of these algorithms
which are suitable for execution upon a mobile robot. Both the exact algorithms and the
rasterized algorithms are designed to handle sensor uncertainty robustly.
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Appendix. The Plane Sweep. In this appendix, we review the family of algorithms
known as “plane sweeps.” The following discussion is a condensed treatment of material
found in, among other places, [PS], [NP], [Don], and [Lat]. Suppose we have a set of
n line segments in the plane, and we want to determine all of the intersections between
them. The obvious way to do this is to go through all(n)(n − 1)/2 pairs of segments,
determine whether they intersect, and if so, where, and output all of the intersections.
The cost of doing this isO(n2), as it takes constant time to process each pair. However,
this cost is completely independent of the actual number of intersections; we would
like an algorithm that is cheaper thanO(n2) if there are significantly fewer thanO(n2)

intersections.
The plane-sweep segment-intersection algorithm meets that cost condition. The idea

behind this algorithm is that we have a vertical line that we sweep across the plane,
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Fig. 32.An example of the segment-intersecting plane sweep in operation.

stopping whenever we encounter a significant event. We keep two data structures, the
sweep-line and the event queue, which contain information regarding the intersection of
the sweep-line with objects in the plane, and upcoming events in the sweep, respectively.
The event queue,E, contains scheduled future events, in this case, left and right end-
points of line segments and intersections of segments, supports the following operations:
FIRST(E), INSERT(x, E), and MEMBER(x, E). By using a balanced-tree implementa-
tion, we can make these operations require at most log-time. The sweep-line,S, contains
a description of the intersection of the sweep-line with the geometric structure being
swept. We needS to support the operations INSERT(x, S), DELETE(x, S), and LEFT-
and RIGHT-NEIGHBOR(x, S). In this case the main information contained inS is the
vertical position of all segments that currently cross the sweep-line. Figure 32 shows
a sample set of line segments and the position of the sweep-line at three of the events
that occur during the sweep. The chart at the right shows the list of segments that the
sweep-line encounters in top-to-bottom order for each event, as well as the event(s) that
occur at that sweep position. Initially, we set the event queue to contain thex-coordinate
of all segment endpoints, and set the sweep-line to be empty. At each event, we have
to update bothS andE. At any event, we delete that event fromE and use the FIRST
operator to determine thex-coordinate of the next event. At the left end of a segment`,
we (i) insert`’s y-coordinate and slope intoS, and (ii) compute and insert intoE the
x-coordinate of the intersection(s) of` with its neighbor segments inS. At the right end
of `, we deletè from S. At the crossing of̀ and another segment,q, we (i) deletè and
q from S, (ii) insert them intoSagain in the opposite order, and (iii) compute and insert
into E thex-coordinate of any intersections between` or q and their new neighbors.

The initialization cost of the algorithm isO(n logn): we must insert all of the left
and right endpoints ontoE. All of the event-driven updates take timeO(logk) when
there arek items inSor E. Since there are onlyn segments, the size ofSwill always be
O(n). E will likewise haveO(n) elements, since there are at most then left endpoints,
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Fig. 33.Computing polygon depth coverage with a plane sweep.

then right endpoints, and a number of intersections that is no larger than the number of
elements inS. Thus all events will take timeO(logn). If there arec intersections overall,
then the cost of running the plane sweep will beO((n+ c) logn). If c isÄ(n2/ logn),
then the plane sweep will be at least as expensive as the brute-force approach, but in
most cases arising in practice, the plane sweep will be less expensive.

Another major advantage of the plane-sweep approach is that we can do a lot more
than just find intersections, without paying an asymptotic time penalty. Figure 33 shows
a collection of overlapping polygons with the areas of overlap shaded proportionally
to the depth of coverage. We can use a plane-sweep algorithm to compute all of the
areas of overlap of a set of polygons, along with the depths of coverage. The output of
this algorithm is known as thearrangementof the input polygons. For this sweep, each
entry in the sweep-line structure contains an integer that is the depth of coverage at the
associated segment of the sweep-line (0 for free-space, 1 when inside one polygon, 2
when in two, and so on) and also a pointer to the list of edges that describe the left-
of-sweep portion of the polygonal region that that segment of the sweep-line passes
through. When an intersection occurs, if it closes off a polygonal region, we output that
region’s boundary and depth. This does not increase the cost of the algorithm, since we
can amortize the cost of outputting the region’s boundary down toO(1) time per vertex
of that boundary. The chart on the right of Figure 33 shows the state of the sweep-line
at threex-coordinates (not necessarily thex-coordinates of events).

We can compute more sophisticated coverage information using almost the same
algorithm. The sweep algorithm can be used with various sorts of generalized polygons.
Of particular interest to us here is the class of generalized polygons whose edges are line
segments and circular arcs. The only fundamental change we must make to the algorithm
is to insert anyx-coordinate where a circular arc is tangent to the sweep-line; since there
are only a constant number of these per arc (≤ 2), the performance analysis does not
change.



Mobile Robot Self-Localization without Explicit Landmarks 557

We can also compute more specific arrangements. For example, in Figure 33, suppose
that polygonsA, C, andD are colored red, while polygonsB andE are colored blue.
We can compute both red coverage and blue coverage at once, in the same manner as we
compute overall coverage, by keeping an array of color depths in each sweep-line entry.
This can still be done with the same time bounds as before, if we use some care about
how we track and output coverage information. The ability to compute multicolored
arrangements in this fashion is a key part of the localization algorithms we will describe
next. The plane sweep algorithm is a key subpart of many computational geometric
algorithms. For other instances of applications using the plane sweep see, for example,
[PS], [Don], and [Lat]).
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