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ABSTRACT:

This paper describes a novel method for organizing a randomly distributed
group of sensors. The group is heterogeneous in the sense that it contains
sensors of different types that can detect either unique or multiple target types.
For a given distribution of sensors, the goal of the system is to determine the
optimal combination of sensors that can detect and/or locate the targets. An
optimal combination is the one that minimizes the power consumption of the
entire sensor network and gives the best accuracy of location of desired targets.
We approach the problem in two phases. First, sensors are clustered according
to morphology and location. Next, a genetic algorithm determines the optimal
combination of sensors fo achieve a given objective. The genetic algorithm
restricts reproduction, crossover and mutation operations to sensors belonging
to the same cluster. We devised a chromosome decoder that changes the
original constrained optimization problem into an unconstrained problem. The

technique developed is tested on a simulated data set and the results are
described.

1. INTRODUCTION

We are dealing with a network of randomly distributed unattended ground sensors (UGS). These
sensors are remotely deployed and after deployment their location is known. The sensor network
adapts its structure in order to achieve the goals specified by the commander in the mission objective.
The complete system consists of modules that perform self-organization, target localization, target
tracking, track fusion, Id fusion, communication etc. Self-organization can be viewed as the brain of the
sensor network because it directs the other modules. This paper deals exclusively with two of the self-
organization modules: clustering and optimization.

2. PROBLEM DESCRIPTION

The system being developed performs self-organization of a sensor network in order to achieve a given
mission objective. The mission objective, specified prior to mission execution, defines the surveillance
goal of the mission. The mission statement encompasses a description of the geographical arca for
surveillance and the targets of interest. A soldier issues the mission objective. Mission objectives can
range from target detection, to location and identification. Targets include, but are not restricted to tanks,
trucks, helicopters, and people. The sensor network adapts its structure in order to achieve the goals
specified in the mission objective while minimizing the overall power consumption of the network. It is
envisioned that the system may optimize additional network functions later.

The main goal of the self-organization is the optimization of the sensor network. Self-organization
has to choose, at each moment in time, the set of sensors that need to be on (and transmit data to the other
system modules). From the viewpoint of optimization, we have a multi-objective problem with no
unique solution. Therefore, only a Parcto-optimal solution can be achieved. We deal with multi-
objective optimization because sensors are chosen to achieve the highest accuracy of detection, location
and identification of targets, while minimizing the energy used by them at each moment. The system
performs combinatorial optimization choosing tuples of sensors that need to be on. If we need at most
one sensor per target, each k-tuple is a possible solution, where k is the number of targets. The number of

combinations is described by:
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where n is the number of sensors, and & - the number of targets. The resulting search space is of
exponential complexity. Figure 1 shows the increase in search space for a problem with 24 targets. The
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hand are simulated annealing and genetic
algorithms. We choose to use genetic
algorithms because they have been proven to
be very useful for optimization due to their ability to efficiently use historical information to obtain
new solutions with enhanced performance [Gol-89]. Genetic algorithms are also theoretically and
empirically proven to provide a robust search in complex search spaces and they do not get trapped in
local minima as opposed to gradient descent techniques.

Figure 1. Search space size vs. number of sensors.

3. SYSTEM DESCRIPTION

The self-organization system consists of three modules: Initialization, Network Objective Adaptation and
Optimization. Initialization prepares the stage for all the other self-organization modules. After sensors
are deployed, their location and status are fed back to the initialization module. The module responds by
executing the Confidence Factor Assessment sub-module, which provides the commander with visual
and numeric measures of the nominal coverage of the space of interest (specified in the mission
objective). The network’s ability (or inability) to detect or locate targets in all parts of the relevant space
provides an early decision point to the commander. While this is being displayed, the Clustering sub-
module organizes the sensors into clusters. These clusters discretize the search space and enable the
optimization module to run in an efficient manner.

Network Objective Adaptation is a module responsible for translating the broad Mission
Statement issued by the commander into a precise Network Objective that will be used by
Optimization as its goal. The Network Objective is only valid at a specific moment in time and it
evolves rapidly as various events happen in the environment.

The Optimization module is responsible for optimizing the sensor network to a given goal defined by
the Network Objective. Optimization of the network architecture to the network objective is
performed by a set of Genetic Algorithms (GA). They will be described in detail in sections 6 and 7.

4, CLUSTERING MODULE

The system performs sensor clustering in order to reduce — =g S~
the search space for the optimization algorithm. In a

broad sense, clustering is the organization of all the
sensors into cohesive groups. Some cardinal rules are
adhered to in this procedure. One rule is that sensors that
only detect the same type of target can be part of the same
cluster. The premise of the clustering procedure is that
there is a set of targets in the considered space that are to
be located and monitored. The aim is to determine an
appropriate sct of sensors that can achieve this result while
sensors that are out of range of the target are ignored.

The solution proposed in this paper is to begin by partitioning the area of interest by a temporary
grid. The size of the grid is based on the detection range of the particular sensor or sensors being
considered. Each cluster of sensors is then associated with a contiguous topological grid space.
Clustering is thus based on physically defined regions. The method is applicable to a space of any
size or shape. Clusters are target based, i.e., restricted to sensors that can detect the same type of
target. Co-located sensors detecting different types of targets will belong to different (albeit
overlapping space) clusters. This rule is enforced to ensure a coherent target response. Grid size is
determined by a factor times the minimum detection range of the sensors that are able to detect
targets of the same type. This allows target-based sensor selection, utilizing only those sensors that
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Figure 1: Cluster membership grids.
Solid lines refer to a grid for the sensor
to the left while dashed lines are a grid

for the sensor to the right.




can sense a particular target. The range within which an object can be detected by a sensor has been
defined as the range vector of that sensor.

The clusters that result from this grouping are fuzzy. A sensor belongs to a particular cluster if
the disk defined by its range vector overlaps the grid space associated with that particular cluster.
Graphically, consider the smaller disk to the left in Figure 2. The disk represents the sensor’s range
(the portion of the area that it can “see”). The solid-line grid spaces refer to the clustering grid that
has been applied to the particular geographical arca. Of the 6 grid spaces shown fully, the sensor
overlaps 4 spaces. The sensor, then, is a member of 4 clusters, and it is able to detect targets located
in portions of each of these clusters. Figure 2 also shows a larger disk, i.e., a sensor with a larger
range, which also happens to detect a different type of target. This larger range sensor is associated
with the grid spacing of the dashed lines, which relate to a different type of target. This sensor range
intersects two grid spaces and is a member of two
clusters that overlap the four clusters of the smaller
range sensor. It is important to note that grid spaces
for different types of targets can overlap but grid
spaces for the same type of target cannot overlap.

All sensors capable of detecting a target of the
same type and associated with a unique grid space
form a cluster, as shown in Figure 3. Clusters
frequently contain sensors that are located outside
the physical boundaries of the grid. Conversely,
while the grid spaces are non-intersecting, the
clusters that are formed do intersect as sensors can
belong to more than one cluster. Sensors belong to
these fuzzy clusters with a degree of membership
between 0 and 1. The membership value is
computed as the ratio of the area of intersection of
the sensor range circle with the arca of the grid
space.

Figure 3. Clusters of sensors in an area of
surveillance. Sensors are the cross-marks.

5. OPTIMIZATION MODULE

The Optimization module optimizes the sensor network architecture to the Network Objective. It
chooses sensors that will be active at a given moment and tells the other algorithms (i.¢., tracking, Id
fusion) which sensors will report to them. The goal of the module is to choose sensors in such a way
that they achieve the highest accuracy of detection, location and identification of specified targets,
while minimizing the energy used by the sensor network. Genetic Algorithms are used to achieve
this objective.

Each individual of the genetic algorithm population is comprised of several genes. Each of the
genes contains one sensor’s identification. All the sensors, which are chosen by GA to be active at a
given moment, have their identifications coded in the genes. There is a unique identification (integer
number starting at zero) associated with each sensor and the genes use a binary encoding for
identifications.

Clustering helps the genetic algorithm by restricting the number of sensors that can be chosen as
a given gene value, to sensors from the corresponding cluster only. Without clustering we would
have to allow for each sensor to be chosen as any gene value, since we would have no prior
knowledge that certain sensors cannot sense the target (because the target is outside their detection
range, or the sensor is the wrong type). Therefore, clustering reduces the GA search space, allowing
GA to run much more effectively.

The GA’s internal structure (i.¢. number of genes) depends on the network objective. Whenever
this objective changes, the number of genes of the GA also changes. Network objective is comprised
of suspected targets and required operations associated with them. There is at least one gene that is
associated with each suspected target. If the operation is to detect the target, there is one gene
associated with this target (see Figure 4a). When the operation is to locate the target, there are as
many genes as necessary for location. For example, in case of acoustic bearing sensors this number is
three (Figure 4b).

Since in our system a given gene can correspond to any sensor from a given cluster only, the
minimum and maximum values that the gene may take depend on the number of sensors in that
cluster. However, sensors in one cluster do not have consecutive identifications and this poses a



problem for GA. If we allow each gene to take all possible values between minimum and maximum
of sensors’ identifications from a given cluster, GA will produce many invalid solutions. Only those
solutions that have gene values corresponding to sensors (belonging to a given cluster) that can detect
a given target are valid. This means that our problem is a constrained optimization problem.

6. GENETIC ALGORITHMS FOR CONSTRAINED OPTIMIZATION PROBLEMS
Optimization problems with constraints are much more difficult to solve than problems without
constraints. When optimizing an unconstrained function, any combination of bits in chromosomes is
legal. This means that the mutation and crossover operations will always produce a legal offspring.
When the problem has some constraints, the crossover and mutation operations on legal
chromosomes may produce illegal offsprings. The three most used solutions for solving the
constraint problem in genetic algorithms are penalty functions, decoders and chromosome repair
[MIC-96].

The problem that we are solving, as mentioned previously, is a constrained optimization
problem. Since gene values correspond to sensors’ identifications and sensors able to detect a given
target have nonconsecutive identification numbers, it is probable that most of GA solutions will be
invalid. (This is why the use of penalty functions will not be effective.) We will avoid building
illegal individuals by defining a decoder that does not involve specialized crossover and mutation
operators. Our decoder involves sensor remapping. All sensors in the cluster associated with a given
target that arc able to see that target are possible candidates as gene values. Since they have
nonconsecutive identifications, we are performing a remapping from their identifications into
consecutive integers. We will refer to those consecutive integers as mapped Ids. GA operates on
mapped Ids. The use of remapping allows changing the constrained optimization problem into an
unconstrained one that is much easier to tackle by a GA. Unfortunately it is not possible to perform
remapping only once. It has to be redone at each time step, since at each time step the positions of
the suspected targets change, and these positions are used in order to determine the cluster and the
subset of the sensors from that cluster that are able to detect a given target.
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Figure 4. Internal structure of GA for detection (a: One gene per target), and, internal structure of GA
for location (b: As many genes per target as the number of sensors necessary for computing location)

GA internal structure (i.e. number of genes) depends on the network objective.  Whenever this
objective changes the number of genes of GA also changes. Network objective is comprised of
suspected targets and required operations associated with them. With each suspected target there is at
least one gene associated. If the operation is to detect the target, there is one gene associated with this
target (see Figure 4a). When the operation is to locate the target, there are as many genes as
necessary for location. For example in case of acoustic bearing sensors this number is three (Figure
4b).

7. GENETIC ALGORITHM CHARACTERISTICS
The implementation of GA is carried through the GeneHunter  Dynamic Link Library [War-95] of
basic GA functions. This library is linked to our C/C++ program. We are using an elitist GA with a



population of 50 individuals. The probability of crossover is constant and is set at 0.9 and the
probability of mutation is 0.01 (per gene). The GA is run until there is no improvement in the best
individual of the population for 30-280 generations. The number of generations without
improvement depends on the number of sensors. For a small number of sensors (e.g. 100), the results
are satisfactory after 30 generations with no improvement in the fitness function; for large number of
sensors (e.g. 2000) there is a need for as many as 280 generations without change. At this point the
number of generations without improvement, after which the algorithm stops, was set manually. For
the whole system being able to run automatically, a general method for finding the number of
generations, has to be developed.

The fitness function describes the power used by the chosen sensors at each moment in time. It
has the following form:

n
Fitness = —Z power; ),
i=1
where power; is the power used by sensor number i. We are using the negative sign in front of the
sum because GAs can only perform function maximization.

8. DATA SETS

The fifteen data sets that we performed the tests on ranged from 100 to 2000 sensors. In each data set
the sensors were randomly distributed in an area 3-km by 3-km. Sensor power consumption was a
random number with uniform distribution from the [1,10] interval. The sensors belonged to three
categories, each capable of detecting a particular type of target. About one third of all sensors
belonged to each category. The goal was to detect 24 targets belonging to two distinct types. Most of
the targets were located in locations on the perimeter of the area under surveillance. Each of the data
sets is different, even if it possesses the same number of sensors. The difference lies in the location
of sensors and in their individual power consumption.

9. RESULTS

Clustering divides sensors into 259 clusters belonging to 3 categories: 225 clusters for sensors of type
1, 50- for sensors of type 2, and 9 - for sensors of type 3. There are 24 targets: 16 targets that can be
detected by sensors of type 2, and 8 targets that can be detected by sensors of type 3. Each target
belongs to a different grid space. Since the system’s goal is to detect targets, the Genetic Algorithm
has one gene per target, resulting in 24 genes per individual.

Table 1 shows the solutions found for our fifteen data sets. Column 1 represents the number of
sensors, column 2 - the number of generations needed for convergence, column 3 — the maximum
fitness, column 4 the number of different sensors chosen. By looking at column 4 we notice that
always less than 24 sensors were chosen: it means that the same sensor is chosen twice or even three
times. Those “repeating” sensors can detect targets in adjacent clusters. Power used by the sensor
network is minimized when one

Number Number of Maximum Exclusive sensor is chosen for detection of a

of Sensors | Generations Fitness Sensors few targets. Of course this happens

75 -35.417564 13 only if this sensor uses less power

100 85 -46.159046 14 than two sensors from adjacent
81 -32.317928 13 clusters.

115 -42.228832 17 Intuitively, the more sensors

200 126 -37.034901 15 there are, the higher should be the

325 -31.785740 16 fitness function of the Dbest

195 -43.226357 20 individual. This results from the

500 751 36331478 18 fact that the more sensors there are,

269 -38.128483 21 the hlgher Should be the number of

1207 33 866329 19 sensors with .low power

1000 1128 240915699 18 consumption ~ (since  power

637 12 842041 1 consumption is always a uniform

random number from the same

790 ~45.799641 21 interval). Our results do not

2000 1407 -40.973480 21 indicate this trend. The reason is

1068 -43.638779 23 the exponential growing of search

Table 1. GA results for 15 data sets. space with the number of sensors,



as evident by comparing numbers in Figure 1. The number of generations that the genetic algorithm
was run increases (see column 2 of Table 1) at most linearly with the increase of the search space (the
linear coefficient does not exceed 1). Since the fitness functions on the average does not become
lower for larger number of sensors, it indicates that genetic algorithms should be run longer than they
were, in order to obtain quasi-optimal solutions. We still expect the number of generations to
increase linearly with the number of sensors. However the coefficient will not be 1 or less as it is
now, but will be higher (¢.g. 2-3). Another method to improve convergence would be to add a local
search at the end of GA run.

10. CONCLUSIONS

This paper describes a system performing self-organization of a sensor network. The goal of the
system is to choose sensors necessary to perform the operation described in the network objective
while minimizing the power consumption of the entire network. In this paper, special emphasis is
placed on the clustering mechanism and the optimization performed by genetic algorithms.

The clustering method developed is simple yet powerful. It suits the problem at hand in which a
conventional clustering algorithm is too computationally expensive and not as useful as the one
developed. A conventional clustering algorithm groups patterns (in our case sensors) into classes
according to the internal similarity between the patterns. While typical clustering algorithms take
several passes through the data set prior to completion, our method requires a single pass through the
data set. The technique developed in this paper is really not concerned with the similarity of patterns
in the cluster. Instead, it is concerned with the fact that a sensor belonging to a specified cluster will
be able to detect a target located at a specified position.

The exponential grow of the search space made the problem intractable for most optimization
techniques in a reasonable time frame. The fact that the optimal solution is not necessary but a quasi-
optimal solution is acceptable allowed the use of genetic algorithms. The development of GA
internal structure well suited to the problem being solved and especially the smart decoder devised
allowed a fast convergence of the genetic algorithm. The technique developed allows obtaining a
quasi-optimal solution in an exponential search space in a linear time frame. This is a substantial
achievement making it possible for the system to be used in real time.
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