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Abstract
This paper describes a mobile robot equipped with a sonar
sensor array, Werrimbi, in a guided feature based map
building task in an indoor environment. Common indoor
landmarks such as planes, corners and edges are located and
classified with a multiple transducer sensor array. Accurate
odometry information is derived from a pair of narrow
unloaded encoder wheels. Discrete sonar observations are
incrementally merged into partial planes to produce a
realistic representation of environment. Collinearity
constraints among features are exploited to enhance state
estimation. The map update utilises Julier-Uhlmann Kalman
Filter (JUKF) which improves the accuracy of covariance
propagation through nonlinear equations and eliminates the
need to derive Jacobian matrices. Correlation among map
features and robot location are explicitly represented. Partial
planes are also used to eliminate phantom targets caused by
sonar specular reflection.

1. Introduction
The aim of this work is to implement an autonomous
mobile robot capable of navigating in an a priori
unknown indoor environment using a sonar sensor
array. Such systems require map building capability,
which is a cyclic process of moving to a new position,
sensing the environment and incrementally registering
findings into a map to assist subsequent motion
planning. Map integrity cannot be sustained by
odometry alone due to errors introduced by wheel
distortion and slippage. Extereoceptive sensing provides
supplementary information to odometry.

Sonar systems are often associated with grid
based strategies because of the wide beamwidth of
ultrasonic transducers [13]. Grid map update schemes
range from Bayesian [10], Evidential [17] to Fuzzy [16].
Localisation with a grid map can be complex. A
localisation scheme for a laser system has been
developed in [5], whereas [3, 15] do not incorporate
localisation. Feature based mapping schemes have
become more commonplace [4, 18] after Kuc and Siegel
[8] presented a method for discriminating planes,
corners and edges using sonar data gathered at two
positions. Later Kleeman and Kuc [7] developed a sonar
sensor which allows target classification at one position.
However, all sonar observations are discrete elements.

Therefore, while navigating along a wall, the robot sees
the wall not as an entity but as a set of approximately
collinear planar elements. Data fusion methods
associated with feature based mapping include Kalman
Filter [1,12,19], maximum likelihood estimation [11]
and heuristic rules [3]. Another important consideration
with sonar systems is phantom targets, and has been
tackled with a credibility count scheme [4].

The mapping strategy presented here is feature
based. Important contributions of our research are: (i)
Discrete planar and corner elements gathered by the
sonar sensor at various stages are merged incrementally
to form partial planes. Planar elements are only merged
to the partial plane which is adjacent to them to avoid
false closure, such as sealing a doorway. (ii) Our
research extends ‘plane to plane’ and ‘corner to corner’
matching [4,18] to exploit the relational constraint
between a corner and two intersecting planes to further
improve the fidelity of the map. Relational constraints
are described in [1] and are used by [14] in known
environments. (iii) The partial planes in our approach
are used to remove some phantom targets caused by
specular reflection, which would be detrimental to path
planning. (iv) A new filter called here the Julier-
Uhlmann Kalman Filter (JUKF) [20], is used to evaluate
state transition equations, generate state-measurement
cross covariance and propagate error covariance
matrices. The JUKF method obviates the need to
evaluate Jacobian matrices while improving accuracy of
propagating error covariance through non-linear
equations. Its performance is compared with the Iterated
Extended Kalman Filter (IEKF) [6] formulated for the
same purpose.

The paper is structured as follows: Section 2
describes the robot system architecture, the sonar sensor
and the odometry system. Section 3 introduces the JUKF
method and section 4 covers the environmental model
and methods for growing the map primitives. The JUKF
formulation of the mapping problem is under section 5,
and section 6 discusses a method for identifying
phantom targets. Map management issues of fusing new
features and removal of redundancy are contained in
sections 7 and 8. This is followed by experimental
results in section 9 and finally conclusions in section 10.
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Figure 1 : The robot system architecture

The communication backbone of the robot is a ISA AT
Bus. Through it a 486DX2-66MHz board controls a
custom made sensor control card and a motion control
card. With the sensor control card, transmission of
ultrasound is triggered by grounding the 300V-biased
transducer for 10µs and the echo waveform is sampled
via a 12bit ADC at 1 MHz. The motion control card
contains a MC1401 chip which provides PID control to
the four motors of pan tilt mechanism and two drive
wheels. For every motor an encoder provides feedback
information.
2.1 Sonar Sensor
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Figure 2: The sonar array configuration
The custom sonar array in Figure 2 classifies common
indoor features into planes, 90° corners and edges as
well as accurately estimating their range and vertical
and horizontal bearing angles.  See [7] for a complete
description.  The sensor repetitively fires TR1 and
listens to TR1 R0 and R2 while panning anticlockwise
at 90°/sec to locate the directions of potential targets.
Then, it pans clockwise, slowing down at the directions
of the potential targets found earlier, and fires T0 and
listens, then fires T2 and listens to classify targets.
2.2 Odometry System
The odometry system relies on a pair of unloaded
encoder wheels made as sharp-edged as possible to
reduce wheelbase uncertainty, and are independently
mounted on linear bearings to allow vertical motion and
minimise the problem of wheel distortion. Since the
drive wheels are distinct, large accelerations can be
achieved with accurate odometry. The error model used
to propagate error covariance can be found in [2].

3. JU Method of Propagating Error Covariance
Suppose that the ns×1 vector $( | )S k k  is an estimate of

state S(k) at stage k, and associated with the estimate is

an error covariance ns×ns matrix Pss(k|k), then by
generating a set of sigma points σj from the columns
of ± n k ks ssP ( | )  A set of 2ns data points can be formed,
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Here Ω() and Λ() are respectively defined as the
functions for producing the mean and covariance of its
input parameters. Readers are referred to [19] for the
theoretical background.

4. Environmental Model
4.1 Map Primitives
The environmental model consists of the following
primitives:

Partial Plane is characterised by its state parameters

[ ]a b
T  from the line equation ax by a b+ = +2 2 ,

the Cartesian coordinates of its approximate
endpoints, and a status associated with each
endpoint, indicating whether it is terminated with
another partial plane to form a corner. When a wall
is first detected, it is registered as a partial plane
with only one endpoint. It is then grown as the robot
moves along the wall.

Corner is characterised by its Cartesian coordinates

[ ]x y
T  only. Sonar sensing cannot provide

indication of orientation of corners.

In addition, the covariance and cross-covariance
among these features are also kept [12]. Edge
measurements are found to be generated by stray
features, such as joins between wall segments, hence
they are ignored at this stage. The current strategy also
records the unclassifiable features as unknown. In the



future, clusters would be formed to assist in obstacle
avoidance path planning.

4.2. Growing Map Primitives

Since the robot is operating indoor, discrete feature
elements are assumed to come from a few planes, so that
they can be merged using some collinearity constraint
to give a more realistic representation of the
environment.
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Figure 3 : Conditions for growing map primitives with a
plane measurement
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Figure 4 : Conditions for growing map primitives with a
corner measurement

A planar measurement would be fused to a
partial plane if it satisfies the conditions depicted in
Figure 3. A corner measurement would be fused to a
corner if it is close enough to it, otherwise it would be
fused to two intersecting planes if it satisfies the
conditions depicted in Figure 4. For all gray condition
boxes in the figures, χ2 test (to be described later) is
applied. Every time a reobservation of a feature/relation
occurs, the state of every map feature would be updated
because of their correlation. The unterminated endpoints
of partial planes are projected to the new gradient
determined by the new state parameters, whereas the
terminated endpoint are re-calculated from the
intersections of all pairs of partial planes marked as
terminated with each other.

5. JUKF Formulation of Mapping Problem

A snapshot of the map building scenario at stage k+1 is
depicted in Figure 5. The robot has just moved to a new
position and sensed a few new features. It is now ready
to use some features for localisation, and add the
remaining features to the map.

new plane

new plane

corner

new plane

existing partial plane

existing partial plane

= connectivity yet to be established

robot

Figure 5 : Status of map and data fusion at stage k+1

The 2D coordinates and orientation of the robot,
as well as the speed of sound at stage k is denoted by the
state vector x0( ) [ ( ) ( ) ( ) ( )]k x k y k k c ks

T= θ .

Further assume that a partial map already exists, and the
parameter vectors of the N existing features are x1(k),
x2(k), x3(k) ... up to xN(k). Pmn is used to denoted the
cross-covariance between state m and state n.

The state transition model being used is
x F x U0 01 1( ) ( ( ), ( ))k k k+ = + (5)

where [ ]U( ) ( ) ( )k L k R k
T+ = + +1 1 1

 is the amount of

rotation of the left and right wheels. The new state, its
covariance, and cross-covariance with all existing map
features j are
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respectively, where Odom(..) represents the new
odometry error model developed in [2] that takes in the
robot’s wheel covariance matrix Cov(U(k+1)) and
wheel turns U and outputs the propagated covariance
matrix.

A measurement vector consists of a time of flight
ri and a direction Ψi to a target, and is denoted as

[ ]M i i i

T
k r k k( ) ( ) ( )+ = + +1 1 1ψ (9)

Every new measurement is tested against all the
possible collinearity constraints set out in section 4.2, in
order to grow the map primitives. A typical constraint
would involve a new measurement Mi, current position



of the robot x0, and a few existing map features. In the
following example, one existing feature xi is involved,
and the constraint equation would look like:

( )G x x M 00 1 1 1( ), ( ), ( )k k ki i+ + + = (10)

Due to noise, the constraint equation does not
hold exactly. This leads to the definition of residual
vector (also known as innovation) required by Kalman
Filter:
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and its error covariance,
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Since all the measurement vectors are assumed

uncorrelated, block processing is not required. Also, if a
corner measurement is found to lie on one partial plane

only, fusion is not carried out because only a 1×1

collinearity residual vector can be formed with the 2×1
corner measurement. Discarding the corner
measurement after use wastes some useful information,
but registering the corner as a new primitive after fusion
introduces redundancy which results in a near singular
global error covariance matrix. More complex map
management schemes, such as reparameterisation,
would then become necessary.

The constraint is only considered valid if it
satisfies a 95% confidence χ2 test:
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To update the state of every existing feature xj,
the cross-covariance between xj and zi is required.
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then applying Kalman update equations [14],
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and for all combinations of existing features xm and xn,
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The process is then repeated until all
observations have been processed. The formulation
involving two states is similar. The actual
implementation also adopts the principle of Relocation-

Fusion introduced by [12] which lessens the sensitivity
to position bias at the expense of optimality. The
equation development is similar to [12] and are not
shown here. The remaining features are considered new
and are simply incorporated into the global state vector,
following its estimation. More information is contained
in section 7.

6. Distinguishing Phantom Targets
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Figure 6 : Example of treatment of phantom targets

Robot positions from which features are observed are
stored. When the map is sufficiently complete, many
phantom targets caused by specular reflection can be
eliminated by checking whether the line of sights from
the positions they were observed are blocked by some
partial planes. If the phantom targets are too close to
some partial planes they are considered ambiguous and
would not be eliminated.

7. Fusion of Remaining New Features

After localisation, the fusion of the remaining features
will make use of the estimated robot position. For each
new feature xi,

( )x H x Mi ik k k( ) ( ), ( )+ = + +1 1 10
(17)

hence
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and all the cross-covariance among the new and the
existing features are also generated. Let xj, ∀ ≠j i denote

the objects already in the map,

P H x M x
P P

P P
Cov Mij

JU
i j

j

j jj
ik k diag( | ) ( $ , $ ), $ , , ( )+ + =





























1 1 0

00 0

0

Λ

(20)
8. Removal of Redundancy
This occurs when (i) two existing partial planes are
actually collinear and adjacent to each other, (ii) two
existing corners are the same (iii) an existing corner
appears to be located at the intersection of two existing
partial planes. In such cases, internal fusion is
performed by forming residual vectors in a manner
similar to section 5 (without the measurement vector),
for example, in case (iii) three states are involved,
G x x x 0( , , )i j k = (21)



If internal fusion is successful, in the first case,
one of the partial planes is discarded (together with its
covariance and cross covariance with other features) and
the endpoints of the other are updated; In the second
case, one of the corner is discarded; In the third case,
the corner is discarded and the endpoints of the two
partial planes are updated.

9. Experimental Results
Experiments have been carried out in four structured
environments erected with cardboard boxes. Only one
set of results are shown here. The odometry of the robot
has been calibrated to reduce systematic errors, and the
parameters required by the non-systematic error model
have been obtained in [2] prior to experiment.

Since the boxes were lined up manually using the
parquetry flooring,  the variance associated with the
time of flight measurement and angular measurement
were set larger than that achievable by the sonar sensor
[7] in order for the collinearity constraints to hold. For
all experiments, the following values were used:

• standard deviation of time of flight = 16 µs
• standard deviation of direction = 3.5°
• initial value of speed of sound,      cs = 342.5 m/s
• initial standard deviation of           cs = 0.18 m/s

The first two standard deviations could be
significantly reduced for real walls rather than boxes.
The results are shown in Figure 7(a)-(d) with a 1 metre
grid. 7(a) shows the actual environment. 7(b) shows all
the sonar features detected at various positions (before
position correction) being superimposed on the same
diagrams, and the ‘scan lines’ from one of the position
indicate the typical number of features the sonar sensor
can capture at any one time. The sensor detects the gaps
between the boxes as edges. 7(c) and 7(d) are the IEKF
and JUKF generated maps respectively.

In the experiment, Werrimbi was programmed to
repetitively enter, make a 180° turn, leave an enclosure
four times to investigate the long term performance of
both filters. Both filters had remained consistent until
the final ‘exit’ from the enclosure when two partial
planes are formed where one plane is physically present.
Nevertheless, other partial planes are consistent and all
standalone corner features have been fused to form
intersecting partial planes. Various phantom corners
(and the clusters of unknown around them) can be
observed, and the corners at (0.2m, -1m) and (2.5m, -
1.5m) (the top left is the origin) have been eliminated
because they are blocked by a partial plane. The corner
at (2.3m, -2.4m) has been considered ambiguous but the
one at (5m,-1m) has been considered valid because it is
not blocked by any plane.

10. Conclusion and Future Work
The capability of autonomous navigation by mapping of
our mobile robot system in a simple environment has
been demonstrated. JUKF has proven useful and also
comparable to IEKF. The mapping algorithm is now
being upgraded to enhance its robustness. Current
research focal points include the incorporation of edge
measurement into primitive growth, clustering of
unknown targets for the purpose of path planning, and
also a map matching strategy to re-establish robot’s
position when its uncertainty is too large.
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pointy symbol  is edge, dark colored pointy symbol is corner, circle is unknown and finally the white triangle is the robot.


