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Abstract

Multirobot systems are  becoming more and more significant in industrial, commercial  and scientific
applications  including:  plant  maintenance,  warehouse  operation,  space  missions,  operations  in
hazardous environments and military applications. Localised control has advantages over hierarchical
control because the robots can be autonomous.

The goals of this project are to closely examine the algorithms that can control multiple mobile robots
and  to  study  the  complexity  of  such systems.  Ultimately  it  would  be  useful  if the  algorithms  are
implementable in mechanical platforms. This analysis was  made possible through the creation of  a
Java&#129; application to run dynamic simulations.

The  applications created  as  part  of  the  project  show how  a  group  or  groups  of  robots  can  be
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controlled by various algorithms. Animation was chosen as the preferred mode of analysis due to the
overwhelmingly complex nature of large groups of mobile robots. Each mobile agent is programmed
with  the  same  simple  algorithm  that  cause  the  group  to  exhibit  a  complex  behaviour.

The report  that follows focusses  on the behaviours that  are possible through the implementation of
localised control.  It  also examines the required  mobility of  the mechanical  base  and resolution of
detection  devices.  The algorithms presented  make few assumptions about the type of  robot  used.

Demonstrated in  the following  chapters  are  examples  of  algorithms  for Flocking and  for Forming
Lines.  The process  of  designing for localised control  is explained  and a  structure is presented  on
which further work can be built.

The results  show that it is possible to create  complex behaviours using relatively simple algorithms.
Using methods presented  in this report,  the implementation in a  physical  group of  robots  is made
quite feasible.
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I. Introduction

The nature of this project is theoretical rather than practical. While the report examines the potential
applications and attempts to demonstrate the capability of multiple mobile robots, these algorithms are
not  yet  implemented  in real  robots.  The mode of  demonstration is to  use  simulated robot  agents
referred to as 'boids' to implement various algorithms.

The concept of 'boids'  is not new and was initially developed by Craig Reynolds[1] who wrote the
first detailed paper on this subject. The basic concept he proposed was to replicate the behaviour of
birds, specifically the species such as sparrows which are observed to move in flocks. The behaviour
and internal mechanics of a flock or  swarm are quite complex to analyse but can be demonstrated
using artificial entities.

The  potential  uses  for  this  type  of  programming  vary  from  dynamic  sculptures  to  military
applications.  The  inspiration  for  starting  the  project  was  a  water  sculpture  using  multiple  mobile
robots to  emulate the behaviour of fish in the water. The fluid environment in this case would cause
some  difficulties  in  turning  and  detection  but  essentially  the  same  algorithm  could  be  used.

Of a more serious nature, military applications could include offensive robotic swarms that home in on
a  target  and attack en  masse.  The approach  of  a  large number of  mobile robots  or  drones  could
confuse and more easily infiltrate a  security or  defence system than a  single large unit. Also being
researched  by  the US military is the concept  of  replacing military satellites with 'constellations'  of
small mobile units[4]. This makes the destruction of the satellite much harder as it could still function
with reduced numbers.

This report examines the concept of multirobot systems in terms of the complexity and to some extent
the computation power of such systems. In the following chapter it will be shown that the system of
boids  was  too  complex  to  model  analytically. The  path  followed  has been  to  use simulations  in
discrete time.

The algorithm itself is executed locally in each  mobile agent of the flock or  swarm. This means that
each  agent  makes  decisions  depending  on  what  is  detected  in  the  immediate  environment.
Communication between  robots  has been  implemented in other  studies but for this project  it was
ruled out as an unnecessary complexity.

Communication can be essential when the environment is very complex. For example in a warehouse
with many passageways and dead ends it would be useful for an agent to be able to signal its siblings.
Possible protocols  would be:  STOP,  WAIT, GO AWAY and HELP.  A  simple language like this
would enable robots to inform each other of special situations and perhaps initiate and coordinate a
higher order function such as moving or lifting a large crate.

A number of algorithms were implemented in the course of this project. Two complex behaviours are
presented  in  detail  in  this report.  The  flocking  behaviour  described  above  is the  most  commonly
demonstrated phenomena. A number of steps were taken to optimise the flocking the behaviour and
make the implementation less dependant on sensory devices.

The forming lines algorithm is a new concept and shows the flexibility of multiple robot systems. Both
of these behaviours are achieved without the use of 'transmitters' or 'beacons' which are commonly
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used to direct agents in existing systems.

A  copy of  this report will be  available on  the Internet  and the disc attached contains copies  of all
demonstrated behaviours. 

II. Complexity of Multirobot Systems

There is a lot of interest in scientific circles in the study of complex systems. Recent developments
have shown that organic compounds such as DNA  can be used to implement algorithms and solve
complex problems.

There is a question as to whether a similar development could be made using some form of swarming
algorithm. There are two ways to approach this problem. The agents can be made more complicated
in order  to  perform in a  more complex way. The other  approach  is to  make do  with the existing
simple agents and create an environment where computation is possible.
The agents  used throughout this report  are  referred to  as  'boids'  and have very simple properties.
They move at a constant speed and have a  limited detection range,  they are also restricted in how
quickly  they  can  turn.  With  these  restrictions  is  quite  hard,  if  not  impossible,  to  implement  a
calculating device. 

A. Computational Power

The simplest implementation that uses these properties is logical gates. Shown below are two types
of  'gates'  that  represent  logical  AND  and logical  XOR.  The concept  is  that  a  boid  represents  a
TRUE  value and  no  boid represents  FALSE.  The  output of  the  gate  is TRUE  if  any boids  pass
through the gate.

The logical function AND  should output TRUE only if both  inputs are  TRUE. The function XOR
should output TRUE if only a single boid is input to the gate. 

Figure 1: Representation of an AND gate. 

This scenario represents a logical AND in that a boid will only appear at the other side of the gate if
both are present. With either boid absent the lone boid will be blocked by the wall. With two boids,
they will be attracted and take a common path through the gate. 
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Figure 2: Representation of an XOR gate. 

The figure above shows how we can implement an XOR gate. In this case a boid only appears ar the
other side of  the gate when it is alone.  With two boids present they will be attracted to each other
and together  be  blocked  by  the  wall. This model  could  be  changed to  an  OR  gate  by  removing
central portion of the wall

The idea of having no boids is where this model fails. How can the 0 output of a gate be recognised.
Also, in the case of the AND gate what can be done with the two boids that emerge. The solution is
to  make each  gate  a closed system with input and output channels.  At certain times a  boid would
emerge  representing  a  TRUE  value  or  not  emerge  representing  a  FALSE  value.

For  example a  NOT  gate  would emit a  boid every  timestep unless a  boid had been  passed  to  it
during that timestep. This adds some complications to the implementation as boids have to be made
to appear or emerge at set times. The AND and XOR gates would be modified as shown below: 

Figure 3: Modular representation of logical gates. 

The difference between these models and the previous are that the boids that enter the gates are not
necessarily the ones that emerge. The area behind the gate detect boids that pass through the gate and
emit a boid to represent a TRUE value. The exception, as mentioned above, would be the NOT gate
which would emit a boid when the input was FALSE (no boid entered).

A NAND gate could be implemented using the AND followed by a NOT. With NAND gates we
can  create  any  logical  functions.  The  above  analysis  shows  that  swarming  agents  are  to  be
considered quite seriously in terms of their ability to solve problems. Obviously this could be built on
and examined in more detail but that is beyond the scope of this project. 
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B. Complexity of the swarm

The control of swarming robots is complex enough that all existing research has been done through
animation or computational analysis. It would be interesting if we could prove that the algorithm is in
fact  impossible  to  model.  The  closest  existing  mathematical  structure  is  the  three-body  problem
which occurs in dynamical astronomy.

The three-body  problem is a  sort of intermediate dynamics and mathematics problem between the
two-body problem, which is straightforward and easy to solve analytically, and the n-body problem
which has just a few solutions for some very general properties.

The general problem of  the motion of  three bodies  (assumed to be  point masses)  subject only to
their mutual  gravitational  attractions has  not  been  solved  analytically. The  two approaches  to  this
problem are: 

1. solve the problem using computational analysis/animation, or
2. assume one of the masses is infinitesimally small compared to the other two and thus cannot

affect their motion (the restricted three-body problem). 

Clearly  the flocking  system  does  not  have quite  as  many  interactions as  a  planetary system  and
momentum properties  have not been  implemented at this stage.  While these points would make the
boid system easier to analyse there are some features that combine to make the problem unsolvable
for more than  two boids.  It  is  also not  feasible to  make an  assumption similar to  point 2  above.

In  a  physical implementation of  any boid system each agent would be  running a separate  internal
processor. Calculations for turning the robot would take place at discrete times in each boid but the
members of the flock would not perform calculations at the same time. This uneven discretisation is
responsible for making even some computational models unreliable. 

III. Localised Control

The most commonly accepted form of control is distributed control in which a centralised processor
coordinates the motion of all agents. This means that the robot agents have to be in contact with the
controller at all times and the controller must divide its processing time between  the agents. Adding
additional agents adversely affects existing agents by slowing the processor.

By converting to localised control  the problems mentioned above are  corrected.  The robot  agents
contain  their  own  processors  and  do  not  have  to  remain  in  contact  with  the  controller.  The
disadvantages are that the robots become more complex and must be able to react on their own to
different situations.

Research into cooperative robots using localised control has produced three distinct types of control:

1. Traffic control: When multiple agents move within a common environment, they typically move
to avoid collisions.
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2. Cooperative manipulation: This can cover a number of scenarios including the most common
examples of pushing or lifting a box[3]. 

3. Foraging: This title is self-explanatory and could cover anything from cleaning up toxic waste
to locating survivors after an earthquake. 

The approach  of this project has been  to restrict  study to  the first category  in this list because this
class is not dependent on objects in the environment.

The  problem  of  producing  complex  behaviour  patterns  in  multiple  mobile  robots  is  one  of
experimentation  and  iteration.  The  first  step  is  to  look  at  the  desired  behaviour  and  then  try  to
determine what the individual agents would have to accomplish to be part of the proposed behaviour.
Once  this  is  established  the  simulation  can  be  run  and  modifications  made  if  the  result  is  not
satisfactory.

Many useful behaviours are found in the animal kingdom where we can observe behaviours such as
flocking, following and foraging. More difficult to define are the behaviours that would be useful in an
industrial  environment  such  as  a  factory  or  warehouse.  The  first  process  described  here  is  the
flocking behaviour.

The observations of flocks of birds and schools of fish tell a lot about what is required to implement
this behaviour. The points to notice are: 

1. The birds/fish form a distinct group,
2. The members of the flock/school tend to be evenly space, not bumping into each other
3. The flock/school tends to have an overall direction. 

The way to  approach  an algorithm is to  enforce these  three behaviours in each  individual boid as
described in the next chapter. Once  a basic model is implemented it is necessary  to refine the boid
properties  in order  to  get  the best  behaviour.  This is a  matter  of changing the weighting factors  of
different force  components.  For  example,  if the boids  are  bumping into each then the repulsion is
increased. This process is described in a later chapter.

The  second  behaviour  described  in  this  report  is  forming  lines.  The  key  points  to  notice  in  this
behaviour are  that the boids only want to have two neighbours in order to form a line. It  would be
useful if the boid formed a line with its two neighbours and also kept a reasonable distance from them.
As  with  the  previous  example  the  algorithm  has  been  implemented  and  then  refined  through  an
iterative process. 

IV. Flocking Algorithm

Flocking occurs  in nature and is exhibited by birds,  fish and some insects.  The sight of  a migrating
flock of  birds  is one we are  all familiar with. This behaviour is based  on  the principal  that there  is
safety in numbers and the whole is more important than the parts.

A flock of birds gives the appearance of a larger entity and dissuades attackers. If a flock or swarm
is attacked,  the  survivors can  scatter  and  regroup  at  a  safe distance.  This scattering  can  confuse
predators  and  prevent  them  from  capturing  more  than  one  or  two  members  of  the  flock.
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The three rules that implement flocking are: 

1. Cohesion: Each boid shall steer to move toward the average position of local flockmates.
2. Alignment: The boids will align to the direction their neighbours are travelling.
3. Separation: All boids in the flock will maintain a separation distance from their siblings. 

The  effect  of  these  rules  when  implemented  in  multiple  mobile  agents  is  to  cause  flocking  or
swarming. Removing or disabling one of the rules removes the apparent cooperation between swarm
entities and makes flocking impossible.

The  demonstration  presented  in  this report  involves  some  additional  features.  There can  be  two
schools  of  boids  that  flock  but  remain  distinct  from  each  other.  To  add  some  realism  to  the
simulation, barriers can be introduced which the boids will avoid by  flocking around or away from.

Initially an existing applet[2] was acquired that provided a useful structure for this type of application.
The interface required a lot of work and the algorithm that was implemented was not very effective.
Assumptions were being made about being able to detect the speed of other boids. This can be quite
difficulty.

In a relatively small mobile robot it is difficult to implement a high quality detection system. The most
common way to determine velocity is to numerically differentiate the position. When there are small
errors  in  the  position  estimation then  the  velocity  figures  can  be  quite misleading.  The  algorithm
presented  below  does  not  rely  on  velocity  but  does  require  the  direction  of  neighbours  to  be
determined.

A possible solution would be to have beacons present on the front and rear of each robot. Once the
distance to  the boid has been approximated then the direction of  travel can  be determined by the
angle between the two beacons and which one is closer.

The algorithm that controls flocking calculates the desired direction of travel for each boid. There are
two sets of rules in this function, one for boids in relation to siblings and another for barriers or boids
of another school.

The algorithm runs as follows for each boid in the flock: 

1. For each detectable neighbour or barrier

2. If that neighbour is a sibling (of the same colour) then the target point is a weighted average of
alignment and either attraction, or repulsion if the boid is too close.

3. Else if the neighbour is of another colour or a Barrier, the target point is in the opposite
direction to the other Bird or Barrier 

4. When all the detectable boids have been accounted for, take a weighted average of the
various target points.

5. Move towards this point. 
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The results  presented  later  in this  chapter  will show this algorithm in action. The following section
describes how the weighting factors were decided to give the most effective flocking behaviour. 

A. Weighting Factors

The flocking is achieved through a  form of  vector addition. The various boids  and obstacles in the
vicinity  of  a  boid  effect  it  in  different  ways.  As  shown  below  there  are  three  types  of  effects:
alignment, attraction and repulsion.

Alignment and attraction are only present when two boids of the same colour are in close proximity.
The repulsion effect comes into play when a boid approaches a barrier or another boid of a different
colour. Repulsion also takes place when boids of the same colour move too close to each other. 

Figure 4: Vectors associated with the flocking algorithm 

Using weighted averages  as a scheme for combining the effects of all detectable  boids allows us to
make different effects dominant under different conditions. For example, when two siblings first detect
each other at the limit of the detection range, it is more important for them to get closer to each other
than to align directions. Similarly when two boids are too close the most important component will be
repulsion.

After much experimentation, the following values have been settled on. For sibling boids the alignment
component is weighted by a  fixed value of 100  and the attraction/repulsion component is weighted
by:

 

if the boids are too close, or

 

if they are outside the separation distance. The following graph shows how the attraction/repulsion
component will dominate when it is most important. In this diagram the detection distance has been
set to half the detection distance giving a symmetric parabolic curve as shown below. 
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Figure 5: Relative weightings for boids due to sibling proximity 

If the boids are moving relatively fast then we may want to keep them closer together so that they do
not lose each other. This can be achieved by decreasing the separation distance from 60 in this case
to 30. The graph would then be skewed to the left, the end points would be the same but the end of
the parabola would move left to lie at 30.

The most important feature of  the Attraction curve above is that  there  is the stationary point at  the
separation  distance.  In  an  earlier  swarm  model  the  attraction/repulsion  curve  was  of  constant
magnitude. This meant that  when the boid was close  to the separation  distance it was  propelled in
alternating  directions.  To  ensure  that  the  boid  motion  is  smooth  it  was  important  to  remove  any
discontinuities and use a smooth curve.

The dominant effect in most cases is that  of alignment. The attraction component becomes as much
as double the weight when the boid is at the periphery of detection. Similarly the repulsion component
prevents the boids from becoming too close. The combination of these two components is scaled to
a vector of length 100.

The  figure  below  shows  how  the  target  point  is  determined  for  a  single  neighbouring  boid.  The
scheme devised here is such that when the boids are at the desired separation distance the attraction
component will be  zero and the target point will be determined by the alignment component. In this
way the boids tend to align neatly without too much changing of direction. 

Figure 6: Sum of attraction and alignment 

In terms of energy methods we can imagine each pair of boids as being coupled by a linear spring.

10 of 27 4/22/01 4:27 PM

Thesis: Swarming Robots http://members.ozemail.com.au/~dcrombie/project/thesis/



The parameter minDISTANCE represents the equilibrium position. When the distance between two
boids diverges from this value, there is an increasingly strong impulse applied to restore equilibrium.

The repulsion weighting  for barriers  and boids  who are  not  siblings is weighted  higher so  that  the
obstacle avoidance behaviour dominates in situations where flocking would result in collision with a
barrier. As mentioned above, the weighting of the components due to sibling is 100. The weighting for
repulsion from other boids and barriers is:

 

This is again best displayed graphically as shown below: 

Figure 7: Relative weighting for boids due to barriers 

This graph shows that  in most cases  the effect of a  barrier  will be weighted much higher than the
previously described  components.  One drawback  with this method is that in a  very large group of
boids the alignment component is multiplied by the number of neighbours detected. In the simulation it
is  thus  possible  for  a  group  of  ten  or  more  boids  to  'ignore'  a  barrier  placed  in  their  path.

As stated previously the system is solvable for a system with only two boids. When there is a flock
of n boids, however, there can be as many as:

relationships.  For a  small group of  five boids, each  would be  affected by  up to ten  forces.  This is
another reason why to have a clear understanding of the flocking behaviour it was necessary to resort
to computer simulation.

To summarise this section, there are a number of components affecting the direction of travel of each
boid. For  siblings, there  is a weighted average of  attraction/repulsion and an  alignment component.
The sum is scaled to  a  vector  of  length 100.  For  other  boids  and obstacles there  is the repulsion
effect  described  above,  weighted  by  up  to  1000.  The  effects  of  all  boids  and  barriers  in  the
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immediate environment are averaged and the boid turned towards the resultant point. 

B. The Swarm applet

The applet discussed in this section appears  as  shown in the illustration below. This depiction is a
screen shot of the applet running on a the Macintosh Applet Runner. The appearance is similar inside
the Netscape  browser  and can  also be  seen  through the Applet  Viewer which is available on  the
ANU Department of Engineering computer system.

In this figure the values displayed for Bird Speed, Bird Turning and the two distance parameters are
the default values of the applet. To change the first two values the user can use the arrow keys on the
keyboard. The distance parameters are modified by holding down shift while using the arrow keys. 

Figure 8: The Swarm applet 

In this figure above all the components of the Swarm applet are visible. The lower section contains a
control panel while the upper portion of the applet is a canvas used to display the animation. The
applet window can be resized by dragging the lower right corner.

The flock in this case consists of a group of five red boids, a group of ten blue boids and the single
barrier object represented by concentric circles. The boids have separated themselves into two
schools according to colour.

To control the number of red or blue boids the user can use the scrollbars. This will increase or
decrease the population by one. The Reset button will remove any barriers and restore the number
of boids to the default value. The Pause button halts the animation until it is pressed a second time.

In the following sections a number of test cases are displayed and explained in detail. It must be
emphasised that the flocking behaviour is dynamic and not easily conveyed in printed form. Through
the project Internet site or the software included with this report a better understanding of the
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behaviour can be gained. 

C. Boid Parameters

Here we see how the maxTURN parameter directly effects the path taken by the boids. A single
boid is used and sent towards a barrier with different values of maxTURN. As expected the higher
the maximum turn value, the quicker the boid turns.

From the extreme of no turning, where the boids passes straight through the barrier, the angle turned
by the boid gradually increases and its closest approach to the barrier becomes greater. This
parameter can be used to determine whether different platforms are suitable for this type of control. 

Figure 9: Changing the boid parameters 

The other parameters that would change the shape of these paths are: the boid speed and detection
distance. Increasing the speed makes control of  the boid harder as it can move further during each
timestep. Increasing the detection radius would cause the boid to turn earlier and not come so close
to the barrier.

The speed  parameter mentioned above is not  necessarily the physical speed  of the boid.  What this
represents is the distance the boid will travel between each direction calculation. This means that the
speed parameter could be decreased to represent an increase in processor speed. Similar the turning
parameter defines how far in degrees the boid is able to turn each timestep. 

D. Alignment

The first and perhaps the simplest way to demonstrate the flocking algorithm involves just two boids.
As shown in the figure below, the two boids start in separate corners and move towards each other at
an angle. When the boids come within the detection range the flocking algorithm says that they must
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align their direction of  travel. It is clear from the picture that the final state has the boids  moving in
parallel paths at the designated separation distance.

The smoothness of  this transition is  due to  the  design of  the  attraction/alignment weighting factors
discussed  earlier.  In  an  earlier  model  the  boid  paths  would  tend  to  zig-zag  before  finding  an
equilibrium position. 

Figure 10: Boid alignment 

In  the diagram  below we see  an  analysis  of  different sections of  the boids  path.  When they first
detect each other there is an attractive force bringing them together, and a force making them align.
The  result  of  adding  these  two  effects  each  timestep  is  the  curved  path  seen  above.

The  boids  approach  until  they  are  at  or  near  to  the  equilibrium  distance.  Once  they  are  at  this
distance, there is no need for them to move with respect to each other so they take parallel paths and
would keep those paths indefinitely. 

Figure 11: Flocking equilibrium 
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In this simple case it is easy for the boids to reach an equilibrium. With a few more boids and barriers
the behaviour becomes chaotic and predicting the motion of the flock becomes impossible. 

E. Flock obstacle avoidance

The case demonstrated here introduces a barrier to the previous example. The boids start in identical
positions as the above case but the barrier placed in their path forces them to take evasive action. This
should demonstrate the way a flock avoids a stationary barrier.

As mentioned previously, the depiction of the barrier within the applet is used to display some of the
flocking parameters,  namely the separation  distance and detection  range.  The separation  distance,
indicated  by  the darker  circle,  shows  the  equilibrium distance  sought  by  boids  who are  siblings.

The outer  circle  indicates the range  at  which all  boids  can  detect  objects  in  their environment. A
closer examination of this figure shows that the boids initially start to turn when they come within this
distance  of  one  another  and  then  again  when  they  come  within  the  outer  circle  of  the  barrier.

When the boids reach the barrier, they do not separate as one might expect. The upper boid reaches
the outer circle of the barrier slightly before the lower boid. The response of the first boid (boid 1) to
detecting the barrier is to turn upwards, away from the barrier. Once this occurs boid 2 is induced to
turn for a number of reasons. 

1. Alignment: The boid turns to match the alignment of its sibling,
2. Attraction: The boid is attracted to its sibling as the distance between them increases,
3. Repulsion: When the boid has turned a small distance, the barrier is on the other side. 

The first two points induce the lower boid to turn upwards. This is counteracted by the effect of the
barrier which is to turn away (down). Due to the weighting scheme described previously, the overall
effect is to turn up. Once the turn is started, the barrier is on the other side so boid 2 turns hard left. 
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Figure 12: Obstacle avoidance 

The alignment effect is very important in implementing obstacle  avoidance.  When a  large group of
boids  approaches  a  barrier  only the leading boids  will come within detection range of  the barrier.
Following boids will react to the movement of the leaders and turn early, without even detecting the
barrier.  In  this  way  a  form  a  communication  occurs  between  the  boids.  By  reacting  to  their
environment the leading boids change the environment of following boids. 

F. Avoidance between boids

The following  picture shows three  boids  approaching from  different directions.  The boids  coming
from the top and bottom of the canvas are of the same colour so they align their direction of travel.
The boid coming from the right is a different colour and as such is repulsed from the other two and is
turned around. Boids that are siblings will always move to flock together unless there is an overriding
repulsive force due to a close barrier or boid of another colour. 

Figure 13: Avoidance between boids of different colours 

The figure below shows in detail the forces that are acting on the three boids at a single point in time.
The boid on  the right is repulsed from the two other  boids  with the closer  boid having the greater
effect. From the diagram it is clear that the resultant point will be to the right of this boid forcing it to
turn as shown above. 
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Figure 14: Breakdown of avoidance behaviour 

The distance between  the two siblings is greater  than the separation  distance so  they are attracted
and at the same time align their directions. The third force on these two boids is to move away from
the right-most boid.

As with a spring, if the boids approach  the each  other at  too great  a rate  they can  overshoot and
oscillate before finding equilibrium. The rounding of boid positions to integer values and the weighting
factors  described  in  a  previous section  serve  to  damp  these  oscillations  and between  two  boids
equilibrium is quickly established. 

V. Forming Lines

To illustrate the flexibility of this application a variation on the flocking behaviour is demonstrated in
this chapter. The Forming Lines applet displayed here was created by changing only a small portion
or about 30 lines of the program code. In some respects this applet is less complex than the previous
model. The rules can be related to three specific cases in addition to the obvious case which is to go
straight if there in nothing within detection range.

A  line is a  two-dimensional object  so  in this application we need only consider a  boid having two
neighbours. If there  are more than two boids within detection distance then the two closest will be
most important. When each boid forms a line of three with its nearest two neighbours then the overall
effect is a continuous line of boids as shown below. 
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Figure 15: Forming Lines applet 

The boid colour in this applet is an indication of the rule that the boid is following. A boid that can only
detect one neighbour is coloured blue and those with two or more neighbours display a red colour. In
the figure above the end boids should appear darker  than those  between them. A boid that  has no
neighbours  within  its  detection  radius  is  coloured  grey  and  will  travel  in  a  straight  line.

To  start  with  it  must  be  realised  that  even  when  the  line  is  formed  there  will  be  two  different
behaviours exhibited. The boids at  the end positions will be following slightly different rules to those
arrayed between  them. What we want to avoid is boids swapping places  ie. if the end boid moved
around it's neighbour it could conceivably displace it and move up a position in the line. 

A. Rule for End Boids

The first rule concerns the end boids. As they can only detect one neighbour then the best they can
do is maintain their separation distance from that boid. Note that this only constrains their motion to
the perimeter of a circle. The two cases that invoke this rule are shown below. 

Figure 16: In-line attraction 

In this case  the boids are further apart than the separation distance.  The algorithm for forming lines
tells  each  boid  to  move towards  the  other  along the  line  that  joins  them.  It  should  be  noted  that
although the algorithm gives a point for the boid to move to, this is not achieved immediately as the
boid must first turn in the given direction. The act of  turning tasks the boid away  from the point at
which the original calculation was made.
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This means that a boid may sometimes never reach any of the points specified to it by the algorithm.
In controlling boids one must be aware of this and that the overall behaviour is a result of many small
steps.  This  demonstrates  the  divergence  from  classical  control  where  a  command  is  given  and
completed before another is sent. 

Figure 17: In-line repulsion 

The second  case  pictured  above shows  two  boids  that  are  too  close  (closer  than  the separation
distance). To satisfy the forming lines algorithm they are told to move away from each other along the
line that joins them.

The combination  of  these  two rules  under most  conditions will  cause  two  boids  to  oscillate with
relation to each other trying to maintain the separation distance. In the first case the boids are told to
move towards each other but when they do it is likely that they will overshoot as each is unaware of
the movement of  the other. A  weighting scheme similar to  the one used in flocking would damp this
oscillation. 

B. Rule for Inner Boids

When a  boid can  detect two neighbours then must move to  form a  line of three but where does it
want to be in this line? The boid has the choice of three positions, between the neighbouring boids or
at either end. The different cases are shown below.

If the figure below the lower boid can detect  two neighbouring boids. Their average point is further
from it than the closer boid. The algorithm says that this boid must move behind its closest neighbour
to form a line containing the further neighbour. The target point is marked by a small circle. The larger
circles in this illustration represent the separation distance. In all cases the boids seek to maintain this
distance. 

Figure 18: Moving to then end of a line 

In the case depicted in the next figure the upper boid can detect two neighbours. Their average point
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is closer than either of the two boids so it moves to this point, again marked by a small circle. If the
other  two boids  can detect  each other  then they will follow the previous case  and a  line will form
even quicker. 

Figure 19: Moving into a line 

These rules are quite powerful in practice as not only does the upper boid move to form a line when
following  this  rule  but  the  motion  of  the  other  two  boids  assists  in  this  endeavor.  Rather  than
uncooperative behaviour the usual difficulty is that  the boids  move too  quickly and overshoot  their
desired position in the line.

For  more complex cases  where a  boid can  detect  a  multitude of  neighbours,  it ignores all but the
closest  two and follows the above rule according to  their positions.  The case  of  not  being able to
detect  any  boids  is  identical  to  the  previous  algorithm  and  the  path  taken  is  straight  ahead.

This behaviour is less demanding on the detection capability of the robots than the flocking algorithm
presented  earlier.  For  flocking it  was  necessary  to  detect  the  position and  direction of  travel  of
neighbouring boids. The forming lines algorithm only needs to be able to  detect their positions. This
algorithm may serve as a fallback position should the detection of direction prove infeasible. 

VI. Discussion of Source Code

A brief study of existing resources showed that by far the preferred mode of research was through
swarm  animation,  typically  using  the  Java&#129;  language.  Because  of  existing  experience  in
programming the choice was  made to customise a  Java&#129;  application as  a  base for studying
various swarm models.  A  list of  related sites on  the Internet  has  been  included in this  report  as
Appendix 1.

The  advantage of  Java&#129;  as  a  programming  language  is its  object  orientated approach  and
ability to execute on different platforms without separate compilation. The progress and results of this
project have been presenting on the Internet with some positive response. The use of this electronic
medium  means  that  the  applets  presented  are  available  to  anyone  with  Internet  access.

The  existing  resources  are  primarily  demonstrations  with  only  a  brief  analysis  if  any  of  the
performance.  The  decision  to  create  a  new  application  was  aimed  at  obtaining  a  complete
understanding of  the process. The applications created  have been  continuously updated throughout
the project and will now perform exceedingly well as a research tool.

This section  will discuss in  detail  the  functional sections of  the Java&#129;  code.  An applet  can
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consist of a number of 'class' files which represent modular components of the code and are ideally
independent of each other. It is possible therefore to replace a class file with a different version of the
same name and execute the applet with no need for recompilation.

The main area  of  study has been  the swarming or  flocking behaviour that  was  demonstrated in a
previous chapter.  The code  is quite short,  comprising approximately 10 pages  in total (included as
Appendix 2 and on  disc in text format).  It  is broken  into a  number of distinct classes  for ease  of
modification. The diagram below shows the relationship between  the various classes  that  form the
Swarm applet: 

Figure 20: Components of the Swarm applet 

A. Swarm.class

This class is responsible for setting up and initialising the applet appearance and contents. The Swarm
class also implements the Runnable interface which means that it creates and controls the animation
thread.

The operation of this class runs as follows: 

1. Create swarmCanvas and swarmPanel objects, adding them to the applet.
2. Start the thread and pass the boundary values to the Bird class.
3. Respond to key press and events passed from the control panel (below).

The  Swarm  class  contains  the  initial  conditions  of  the  applet.  The  constants  defined  here  are
NUMBLUE,  NUMRED  and  MAXPOP  for  Bird  populations;  SPEED  and  TURN  for  Bird
movement  parameters;  MINDIST  and  MAXDIST  for  Bird  separation  and  detection  distances
respectively. 

B. swarmPanel.class
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The  swarmPanel  class  contains  only  one  method,  designed  to  initialise  and  implement  a  set  of
controls. The controls appear in the lower portion of the applet and include sliders that allow the user
to change the boid populations, and buttons that pause and reset the animation. 

C. swarmCanvas.class

This class  controls  the appearance  of  the  upper  portion of  the applet  where the  animation takes
place.  The animation flicker has been  removed through double buffered graphics. This means that
each new frame is first drawn off screen and brought to the front seamlessly. There is a slight cost in
animation speed but this is outweighed by the improved appearance.

The paint method first blanks the screen with a white background each timestep. A more advanced
version could make use of clipping regions to only update areas that have changed but the complexity
of this would detract from the purpose of the applet.

This method also draws  the Bird parameters,  these appear  in black at  the upper left corner  of the
applet. The parameters change in response to key inputs as described previously. The painting of the
flock elements is achieved through a call to the Flock.display method.

The  only  other  method  of  the  swarmCanvas  class  allows  the  user  to  add  a  Barrier  to  the
swarmCanvas via a  mouse  click.  To make the implementation  of  Barriers  more realistic the code
adds duplicate Barriers outside the region of the canvas to produce a wrap-around effect when they
are placed at the perimeter. 

D. Flock.class

This is perhaps  the most important section of  the code  as  it implements the flocking algorithm and
coordinates  the Bird  objects.  In  addition to  construction,  this class  includes  methods for  adding,
removing, displaying and directing Birds in the flock.

The flock is implemented as a Vector. This object type is appropriate because it allows objects to be
added and removed in any order  and is not limited in size. The addBird method simply extends the
Vector vBirds by one element of the specified colour. To remove a Bird we have to first locate one
of the specified colour and then remove it from the Vector.

An important  note  here  is  that  the  removeBird and move  methods of  the  synchronized type.  This
means that they cannot both act on the flock at the same time. Without this specified the removeBird
function can remove a Bird in the middle of a move operation.

Similar  to  the  swarmCanvas  class  the  display  method  of  the  Flock  class  makes  use  of  the
Bird.display method for each member of the flock. The move method takes the same approach but
the  Flock  class  must  first  generate  a  direction  for  each  Bird  to  steer  towards.

The object oriented nature of this language means that the Flock class need not know how the Bird
moves, only that it has to pass a  value between  0 and 360 degrees.  This value is determined in the
generalHeading function which, for each boid in the flock, applies a simple algorithm to come up with
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the preferred direction.

The flocking algorithm is the most complex section of the code and will be described  in a separate
section. For each of the applets presented in this report, it is the generalHeading function that changes
the behaviour of the boids. 

E. Bird.class

The  Bird  class  has  a  number  of  static  variables,  arenaWIDTH,  arenaHEIGHT,  maxSPEED  and
maxTURN, these are common to all Birds. The Birds all have four individual properties, these define
the position (x, y), direction (Ð) and colour of the Bird.

This figure shows how the Bird parameters are defined. The x- and y- coordinates are taken from the
top left corner of  the applet. The angle property is measured in a counter-clockwise direction from
the horizontal, as shown. The colour property is obviously rendered graphically. 

Figure 21: Properties of the Bird class 

As described in the preceding section, the Bird.move function takes an angle as its only parameter.
When this method is called the Bird decides which direction to turn and changes its direction to the
given angle to the extent that this is possible under the maxTURN condition.

The remaining methods in the Bird class are used to extract parameters involving the individual Birds
and set the limits of the animation. 

F. Barrier.class

The Barrier class is an extension of the Bird class and as such inherits all the properties of that class
and a Barrier object can also be referred to as a Bird. The changes from Bird are that we overwrite
the constructor, move method and display method.

This means  that  a  barrier  is  essentially treated  as  a  stationary  Bird.  Because  the barrier  colour is
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black, it repulses all boids that come within the detection range.

All code described in this chapter has been written under Java&#129; version 1.02. The most recent
version available is version 1.1.4 which makes some significant changes to the event model. The first
step for anyone wanting to work further with the code should be to adopt the new specifications. 

VII. Discussion

The limitations of the Swarm applet are that the boids are modeled as point elements. In other words
they have no physical size and so cannot obstruct each other. The flocking area is not really realistic
as  the  boids  can  move  off  one  edge  and  'wrap  around',  coming  in  the  opposite  side.

Unfortunately, the mechanics flocking algorithm does not carry across the boundaries of the applet.
This means that members of the flock can be lost temporarily when they cross these boundaries. This
could be corrected  by  repelling boids from the boundary  or  enhancing the code  to allow flocking
across boundaries.

When using the Applet Viewer or Applet Runner the window can be resized which gives more room
for the algorithm to work. Inside a web browser the size of the applet can be restrictive - particularly
for the Forming Lines applet. The primary goal of this report is to provide guidance for the creation
and  programming of  real  mobile robots.  The  tools provided  with  this report  will  hopefully prove
useful in the creation of such robots.

Some conditions that have not been modelled so far include: variations in speed and direction due to
uneven terrain, boids that can change speed and collisions when boids come too close. Some kind of
subsumptive control would be useful in dealing with the occasional collision. Subsumption means that
the boid can temporarily change its behaviour in response to an event.

The most well known robots that use subsumption architecture are the insect-like robots designed by
Rodney Brooks. Genghis is a cockroach-like robot the size of a football, built by Rodney Brooks ar
the  MIT.  The  Genghis  robot  has  six  legs  and  implements  localised  control  for  each  of  them.

The  subsumption  architecture  divides  the  control  architecture  into  task  achieving  modules  or
behaviours.  Each  layer forms a  complete behaviour able to  control  the robot.  The idea is that  the
robot starts in a low-level behaviour and when appropriate moves to a higher level. For example, the
first behaviour might be  to  stand still and test  the detection  system, the second would be  to  begin
moving and the third would be to interact with the environment.

When something goes wrong or a robot gets stuck it can move back to a lower level of behaviour to
correct the problem. This could be applied to the flocking algorithm as follows. When the boid comes
too  close to  a  neighbour or  barrier  it could temporarily halve it's speed  or  go into a  more detailed
avoidance mode. This behaviour would be completely independent of the normal flocking behaviour. 
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VIII. Conclusions

A number of behaviours have been  described in this report.  Each of the above applets  presents a
complex behaviour generated by a simple algorithm. The first behaviour demonstrated was flocking.
The separation  property of  the flocking algorithm is essential for controlling large groups of mobile
robots  and  preventing  collisions.  The  cohesion  and  alignment  properties  serve  to  coordinate
movements in such a  way that  the boids  remain in contact  with each  other  and travel  in the same
general direction.

The cost saving from having many homogeneous robots could be significant making such technology
more prevalent in the future.  Potential  applications are  both  scientific and military. The concept  of
multiple mobile robots can be used for traffic or flow control, foraging and cooperative manipulation.

Traffic control could include both air and road traffic. A collision avoidance system in every car is a
basic implementation of parts of the flocking algorithm. If cars are also programmed to maintain the
velocity  (direction  and  speed)  of  their  neighbours  then  that  is  essentially  flocking.

The application of  foraging could involve search  and rescue teams at  disaster sites either above or
below ground. Another use could be to collect hazardous materials after a spill or other accident. In
the Mars Pathfinder this year we have seen a vehicle that, if produced in numbers, could be used to
more effectively explore distant planets.

The tools and information contained in this report should serve as a solid base for future research in
this area. 
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Appendix 2: Source Code

The attached pages contain the following four files:

Swarm.java (containing also the swarmPanel and swarmCanvas classes)
Flock.java
Bird.java
Barrier.java 

The correct method for embedding this applet in an html document is:

     <APPLET code="Swarm" width="400" height="250">
     <PARAM name="numred" value="5">
     <PARAM name="numblue" value="5">
     <PARAM name="speed" value="5.0">
     <PARAM name="turn" value="30">
     <PARAM name="min" value="45">
     <PARAM name="max" value="60">
     </APPLET>

The parameters are optional and default values will be inserted if required. The first two parameters
control the flock populations, the next two control the boids movement and the last two the separation
and  detection  radii  respectively.  This  is  a  useful  way  to  change  the  behaviour  without  having  to
recompile the applet.

The code is documented and should be relatively easy to follow for someone with experience in 'C'
or  Java&#129;.  A  hard copy  is  provided here  for  the flocking algorithm only,  because  the other
applications are essentially identical. For example the Forming Lines applet only changes one method
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in the Flock class and removes the Barrier class. All of the applets are attached on floppy disc. 

© Duncan Crombie, 1997 
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