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Abstract

The topic of mobile robot self-localisation is often divided into the sub-problems of global localisation and position tracking.
Both are now well understood individually, but few mobile robots can deal simultaneously with the two problems in large,
complex environments. In this paper, we present a unified approach to global localisation and position tracking which is
based on a topological map augmented with metric information. This method combines a new scan matching technique,
using histograms extracted from local occupancy grids, with an efficient algorithm for tracking multiple location hypotheses
over time. The method was validated with experiments in a series of real world environments, including its integration into
a complete navigating robot. The results show that the robot can localise itself reliably in large, indoor environments using
minimal computational resources. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Perhaps the most fundamental competence re-
quired for navigation by a mobile robot is that of
self-localisation (location recognition). A wide vari-
ety of localisation methods have been proposed, and a
number of successful laboratory prototypes have been
developed [2]. Some of these systems have been val-
idated in larger environments, generally consisting of
enclosed areas within public buildings (Section 1.1).
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In real world environments, a navigating robot needs
to cope with various problems of scalability, includ-
ing perceptual aliasing (where several places appear
similar enough to be confused by the robot), unpre-
dictable variations caused by other inhabitants of the
environment, and limited computational resources.

The topic of self-localisation is usually divided into
two related sub-problems, namelyposition tracking,
which assumes that the initial location of the robot is
known, andglobal localisation, which entails being
able to relocalise under global uncertainty, e.g. to re-
cover from becoming lost. The first problem is well
understood, and a number of successful approaches
have been applied to the second problem in recent
years. However, few systems can deal with both prob-
lems in real-time — one exception is the approach
of Burgard et al. [3], which uses a variable-resolution
metric map to handle varying degrees of uncertainty
in the robot’s location estimates.
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While successful navigation systems have been
developed using metric maps, topological maps have,
by nature of their compactness, the potential for rep-
resenting environments which are several orders of
magnitude larger than those which can be tractably
navigated using metric maps.

In this paper, we are primarily interested in the prob-
lem ofplace recognition(global localisation) for topo-
logical navigation. However, the research presented
shows that overall self-localisation performance can be
improved bycombiningmechanisms for global local-
isation and position tracking. The new system solves
the global localisation problem by tracking multiple
Gaussian hypotheses over the space of possible loca-
tions in the robot’s map. It solves the position tracking
problem by calculating the most likely coordinate for
eachof the possible places.

The method was implemented on a mobile robot
and validated through experiments conducted in a
number of real world environments. It uses three
sources of perceptual information: (1) external sen-
sory information from ultrasonic range-finder sensors,
(2) a global orientation obtained from a compass
sense and (3) local distance information from odom-
etry. The results show that the robot can localise and
navigate reliably in large, complex environments with
only minimal computational resources. The approach
is therefore well-suited to situations in which no radio
link to external processors is available, and operation
within real-time constraints is required. Furthermore,
the method has been tested extensively as an integral
component of a self-navigating robot in indoor envi-
ronments of several hundred metres squared in size.

In summary, our approach offers a number of prac-
tical advantages over previous approaches for robot
navigation in large, real world environments:

1. We do not rely on accurate models of the robot’s
sensors, actuators or environment. A very simple
model, based on a mixture of Gaussian hypotheses,
is used to represent the robot’s location.

2. The robot’s own sensor scans are used for place
recognition, each place in the map being repre-
sented by occupancy histograms extracted from a
local grid model. This means that we do not need
to predefine environmental features such as doors
or line segments, and the method is useful for
navigation in a priori unknown environments.

3. An efficient scan matching technique is used to
remove the high computational cost of matching
local occupancy grids, and to generate candidate lo-
cation hypotheses from the robot’s sonar readings.

4. As a further consequence of (2), we do not
need to perform track splitting or merging, as in
other approaches to multiple hypothesis tracking
[1,16,20,23]. This leads to a very efficient track-
ing algorithm, where the maximum number of
hypotheses is equal to the number of places in the
robot’s map.

5. The full state space in the robot’s map is always
searched. Crucially, this means that the robot
can recover its position after becoming lost or
“kidnapped”, even with incorrect prior information
about its location.

The rest of this paper is structured as follows. After
reviewing related work, we describe the robot plat-
form used in our experiments (Section 2). The new
self-localisation system is detailed in Sections 3 and
4, followed by a quantitative experimental analysis
in Section 5, conclusions and a discussion of possi-
ble ways to combine the new method with existing
techniques.

1.1. Related work

Yamauchi and Langley [28] developed a location
recognition system in which each place is represented
by a local occupancy grid [22]. For self-localisation,
a recognition grid is constructed from the robot’s im-
mediate sensor readings. A hill climbing procedure
is then used to compare the recognition grid with the
previously stored grids in the robot’s map, searching
the space of possible translations and rotations to find
the best match. In a previous study, we showed that
this method of matching occupancy grids produced
better localisation performance than a number of al-
ternative mechanisms such as self-organising neural
networks [8]. The main disadvantage of this approach
is its high computational requirements; for example,
relocalisation using 43 stored grids takes 5 minutes
on a Decstation 3100.

A related approach is that of Weiss and von
Puttkamer [27], using cross-correlation of laser scans
to identify both the place occupied by the robot and
the robot’s position within that particular place. In
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this approach, however, the scans are reduced to
histograms before matching takes place; angle his-
tograms are first convolved to address the problem of
self-orientation, thenx and y histograms are used to
determine robot’s position.

Neither of the above approaches is guaranteed to
solve the global localisation problem in environments
with high levels of perceptual aliasing. A variety of
methods have been proposed for resolving perceptual
ambiguity by incorporating previous location informa-
tion into the recognition of locations. The most pop-
ular is the probabilistic approach known as Markov
localisation (e.g. [3,10,13,17], etc.), which can be ap-
plied to either topological or metric maps.

The main paradigm for probabilistic navigation
using topological maps is that of Hidden Markov
Models, and their extension to Partially Observable
Markov Decision Processes [13,17]. Here, the robot
maintains a probability distribution over a set of dis-
crete locations. Similarly, possible landmarks and
actions are typically defined according to a set of
human-defined categories, e.g. possible landmarks
might be ‘doors’, ‘junctions’, etc. and possible actions
might be ‘Go North’, ‘Go West’, etc. Our approach
differs from other topological methods in that possi-
ble location estimates are continuous valued Cartesian
coordinates, actions are described by arbitrary dis-
placements within Cartesian space, and landmarks
are defined by arbitrary grid patterns.

Probabilistic localisation methods using global
gridmaps have the advantage of high accuracy, but
typically require a great deal of computational re-
sources. A solution to this problem is provided by
Burgard et al. [3], using a variable-resolution map-
ping strategy to trade off global uncertainty against
accurate positioning. The approach uses Markov
localisation to identify possible sub-areas of the
whole state space in which the robot might be lo-
cated, then position tracking is carried out only on
these sub-areas, “zooming in” to a higher level of
resolution when the robot has a high degree of cer-
tainty in its location. Our approach differs in that the
full state space in the robot’s map is always searched,
and efficient matching algorithms are used to resolve
the problem of limited computational resources.

More recently, a number of successful self-localisa-
tion systems have applied Monte Carlo methods (also
known as the condensation algorithm), in which the

underlying probability density function for the robot
location is approximated by a large set of “samples” or
particles [5,15,25]. During localisation, these methods
enumerate random weighted samples which estimate
the posterior distribution by taking into account the
previous samples and new sensor information. How-
ever, these approaches require a high amount of com-
putation to work in large environments, as they suffer
from poor degradation to small sample sets, and can-
not be guaranteed to recover from becoming lost once
the particles have converged around one location in
the map [25].

2. The robot platform

The experiments were conducted using a Nomad
200 robot equipped with a compass and a ring of 16
Polaroid sonar sensors, as shown in Fig. 1. The sensors
are mounted around the robot’s turret, which can be
rotated independently relative to the direction of travel.
Two other motors located in the base of the robot are
used to control the robot’s translational and rotational
movements.

2.1. Compass sense

A separate behaviour was used to rotate the robot’s
turret at small speeds in the direction of ‘North’,
as indicated by a flux gate compass, so that the
sensors were kept at a constant orientation during
self-localisation. The effect of this behaviour was to
smooth out local fluctuations in the magnetic field of
the robot’s environment.

Fig. 1. The Nomad 200 mobile robot. A flux gate compass was
used to keep the turret, and therefore the sensors, at a constant
orientation.
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Fig. 2. (a) Raw odometry. (b) Compass-based odometry. The accumulated rotational drift in the robot’s raw odometry was removed on-line
using the compass sense.

2.2. Dead-reckoning

The compass sense was also used for the on-line
dead-reckoning. We used the robot’s wheel encoders
to measure the distance travelled, but the rotational
component was obtained from the relative angular dis-
placement of the turret against the direction of travel.
This had the effect of removing the accumulated ro-
tational drift affecting the robot’s raw odometry (see
Fig. 2), because the turret was anchored to ‘North’ by
the compass sense, leaving a translational drift error
of up to 5% of distance travelled.

3. Representation

3.1. Environment model

The robot’s map consists of a set ofN stored places,
the centre of each placei being associated with a Carte-
sian coordinate (xi , yi). Landmark information is also
attached to each of the places as follows. Firstly, the
robot takes a detailed sonar scan at its current loca-
tion and a local occupancy grid consisting of 64× 64
cells is then constructed, as in [28]. However, in our
system, we do not store or match the occupancy grids
themselves. Instead, each grid is reduced to a pair of
histograms (one inx direction, and one iny direction),

which is then used as a stored signature for that place
in the topological map (see Fig. 3). In the absence of
a compass, we would also have to consider angle his-
tograms, as in [14].

Each occupancy grid cell represents an area of
15 cm× 15 cm, and is considered as being in one
of three possible states: occupied (O), empty (E) or
unknown (U), depending on the corresponding prob-

Fig. 3. Example occupancy grid and histograms. Occupied cells
are shown in black, empty cells in white and unknown cells in
grey.
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ability of occupancy for that cell, i.e.

State(cxy)




O if P(cxy) > 0.5,

U if P(cxy) = 0.5,

E if P(cxy) < 0.5,

whereP(cxy) refers to probability of occupancy for
the cell at columnx and rowy. These probabilities
were obtained using the standard method for updat-
ing occupancy grids developed by Moravec and Elfes
[22]. One histogram is then derived by adding up the
total number of occupied, empty and unknown cells
in each of the 64 columns, and the other by adding up
the totals for each of the 64 rows. Note that the prob-
ability P(cxy) = 0.5 is the default probability used
to initialise the cells; this value usually indicates that
the cell has not yet been updated because the robot’s
view of the corresponding location is occluded by
some other object.

3.2. Location model

The robot’s location model consists of a set of
competing location hypothesesH = {h1, . . . , hN },
one for each placei. A probability distributionP =
{P(h1), P (h2), . . . , P (hN)} is associated with setH,
reflecting the robot’s belief in each of the hypothe-
ses being its true location. Each location hypothesis
consists of a Cartesian coordinate(xhi

, yhi
), and a

variancevhi
which is used for position tracking. Thus,

each hypothesis is represented by a simple density
function, where the noise around location estimates
is assumed to be distributed equally in all directions
according to a Gaussian distribution. Obviously, this
assumption means that we do not model the robot’s
actuators accurately (e.g. by separating the transla-
tional and rotational components of robot motion).
Nevertheless, we show that the simple mixture model
is sufficient for robust navigation performance at low
computational cost.

4. Self-localisation

4.1. Scan matching

To begin localisation, the robot takes a new sonar
scan. Again, the resulting occupancy grid is processed

to produce a pair of histograms. These histograms
are then convolved with the corresponding stored his-
tograms for all of the places in the robot’s map. For
each stored placei, the matching procedure yields two
useful quantities:

1. The strength of the match between the current and
stored histograms — this is used to provide a like-
lihoodL(S|hi) of obtaining the current sensor scan
S from each place hypothesishi .

2. The most likely offset(rxi
, ryi

) of the robot in
Cartesian space from the centre of the stored grid
pattern, i.e. the position in which the sonar scan for
that place was originally taken.

The first quantity is derived from the product of two
separate metrics; one obtained by convolving the cur-
rent and storedx histograms, and the other by convolv-
ing the respectivey histograms (Fig. 4). The strength
of the match between two histogramsTa and Tb is
calculated using the following evaluation function:

Match(T a, T b)

= 1

w

∑
j

[min(Oa
j , O

b
j ) + min(Ea

j , E
b
j )

+min(Ua
j , Ub

j )], (1)

whereOj , Ej and Uj refer to the number of occu-
pied, empty and unknown cells contained in thejth
element of histogramT, andw = 64 × 64 is a nor-
malising constant such that 06 Match( ) 6 1. In the
convolution, the stored histogram is kept stationary
and the recognition histogram is translated against it,
using the above function to calculate the best match
over the 64 elements of the stored histogram. Any
non-overlapping elements in the recognition histogram
due to the translation are assumed to consist entirely
of unknown cells.

The likelihoodL(S|hi) is then calculated from the
best match scores as

L(S|hi) ∝ Mi∗
x × Mi∗

y , (2)

whereMi∗
x refers to the value of Match( ) produced

by the best matching alignment ofx histograms for
placei.

The most likely displacement(rxi
, ryi

) of the robot
from the centre of each placei is obtained by multi-
plying the translations for thex andy histograms by
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Fig. 4. Matching thex andy histograms. The new histograms are convolved with the stored histograms for each place in the robot’s map
to find the best match.

the dimensions of one grid cell (i.e. 15 cm× 15 cm).
The coordinates for eachhi are then calculated as

xhi
= xi + rxi

, (3)

yhi
= yi + ryi

, (4)

i.e. by combining the coordinates of the place centre
and the offset values produced by histogram matching.

Finally, to obtain an estimate of the variance in the
scan matching, we use the following heuristic func-
tion:

vhi
= k1

(Mi∗
x − M̄i

x)
2

+ k2

(Mi∗
y − M̄i

y)
2
, (5)

where M̄i
x refers to the mean value of Match( ) in

the convolution ofx histograms for placei, and the
constantsk1 = k2 = 1.0 m2 in these experiments.

4.2. Multiple hypothesis tracking

After carrying out scan matching, the place which
yielded the highest match score could be taken as the
winner. However, this simple “winner-takes-all” strat-
egy, using only the current sensory input, is bound
to fail in complex environments due to factors such
as perceptual aliasing and sensor noise. To overcome
these problems, we use a succession of sonar scans
taken from different positions over time, and apply
the following algorithm for accumulating sensory
evidence over time.

At each iteration, the algorithm takes as input a
prior set of location hypothesesH = {h1, h2, . . . , hN }
and the corresponding probability distributionP =
{P(h1), P (h2), . . . , P (hN)} from the previous itera-
tion. On initialisation, these sets will be empty. The
algorithm can be explained in the following steps.

4.2.1. Initialisation
Localisation begins by taking a sonar scan and

constructing a set of location hypothesesH =
{h1, . . . , hN }, as described in Section 4.1. For each of
these hypotheses, the likelihoodL(S|hi) is obtained
using Eq. (2) and the coordinates(xhi

, yhi
) are ob-

tained using Eqs. (3) and (4). The initial probability
distribution overH is then calculated using

P(h′
j ) =

L(S|h′
j )∑

kL(S|h′
k)

. (6)

After initialisation, localisation proceeds as follows.
This algorithm is best explained as a three-step
predict–match–updatecycle (after Crowley [4]).

4.2.2. Predict step
Firstly, the robot waits until it has travelled a further

50 cm, then the coordinates(xhi
, yhi

) of each of the
prior hypotheseshi are translated to take into account
the robot motion, using

xhi
(t) = xhi

(t − 1) + 1x, (7)

yhi
(t) = yhi

(t − 1) + 1y, (8)
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where the vector (1x, 1y) refers to the robot’s own
displacement in Cartesian space observed since the
previous iteration, using its on-line compass-based
odometry (Section 2.2). The additional uncertainty
due to the robot motion is approximated by increasing
the variancevhi

for each of the prior hypotheses as

vhi
(t) = vhi

(t − 1) + k3, (9)

where a value ofk3 = 1 m2 was used for these ex-
periments. This constant is based on an approximate
estimate of the odometry drift (given that our robot
moves a constant distance between scans) plus some
extra noise. This has the effect of “blurring” the den-
sity function for each of the prior hypotheses.

4.2.3. Match step
The robot then takes a new sonar scan, and a sec-

ond set of candidate hypothesesH′ = {h′
1, . . . , h

′
N },

is created from the new sonar information. In the algo-
rithm presented here, exactly one hypothesis is gener-
ated for each place in the map. (Without a compass, we
might need to generate several hypotheses per place,
corresponding to possible orientations of the robot.)

A matching process between the two setsH and
H′ then follows. For each new hypothesish′

j , this
attempts to find theone most likely equivalent prior
hypotheseshi (since only one hypothesis can actu-
ally be the “true” location of the robot). Eachh′

j is
therefore compared to everyhi , and the likelihood
L(h′

j |hi) of obtaining eachh′
j from each predictedhi

is calculated as

L(h′
j |hi)

∝ G(‖(xh′
j
, yh′

j
) − (xhi

(t), yhi
(t))‖)P (hi), (10)

where the functionG(z) = e−ηz2
, a monotonic de-

creasing function of the distance between the means
of the two Gaussians, is used to estimate the likeli-
hood of a match, and the constantη = 0.25 in these
experiments. The value ofG(v) is weighted here by
the prior probabilityP(hi) in order to take into ac-
count the relative weight of evidence afforded to that
particular prior hypothesis.

For eachh′
j , the best matching prior hypothesishj∗

is therefore defined by

∀j : ∀i 6= j∗ : L(h′
j |hj∗) > L(h′

j |hi). (11)

In the event of a tie, one of the best matching hypothe-
ses is picked randomly.

4.2.4. Update step
The likelihood valuesL(h′

j |hj∗) produced by the
match step are used to provide a prior probability
P(h′

j ) by normalising the values produced by Eq. (11).
A new probability distribution overH is calculated
using Bayes rule as

P ′(h′
j ) =

L(S|h′
j )P (h′

j )∑
kL(S|h′

k)P (h′
k)

. (12)

The following equations are then used to update the
Cartesian coordinates of eachh′

j , taking into account
the coordinates of bothh′

j andhj∗.

xh′
j

= xhj∗ + vhj∗
vhj∗ + vh′

j

(xh′
j
− xhj∗), (13)

yh′
j

= yhj∗ + vhj∗
vhj∗ + vh′

j

(yh′
j
− yhj∗), (14)

1

vh′
j

= 1

vhj∗
+ 1

vh′
j

. (15)

The robot then continues to explore, taking a new
sonar scan at 50 cm intervals and updating its estimate
of its true location by repeating the above process.

5. Experiments

5.1. Experimental procedure

For the following experiments, robot sensor data
were collected in four environments at Manch-
ester University, as summarised in Table 1. The
environments were assumed to be unmodified and
semi-structured, being subject to transient changes in
the robot’s sensor data. People were free to move in
the vicinity of the robot, but it was assumed that the
basic structural elements such as walls and corridors
remained constant with respect to time. The sensor
data were recorded by the robot using wall-following,
stopping at 50 cm intervals to take sonar scans. Scans
were taken by rotating the robot’s turret to obtain three
sets of 16 sonar readings at 7.5◦ intervals, yielding a
detailed scan consisting of 48 sonar measurements.
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Table 1
Characterisation of environments (the number of placesN in the respective maps and the number of trials used for testing in each
environment are also shown)

Environment Description Approximate size N Trials

A T-shaped hallway (some features) 16 m× 13 m 25 623
B Conference room (cluttered) 16 m× 11 m 38 478
C L-shaped corridor (few features) 34 m× 33 m 69 570
D Long straight corridor (very few features) 53 m× 3 m 52 430

In order to evaluate localisation performance, some
means of recording the actual location of the robot,
referred to as the “ground truth” location, was re-
quired. To achieve this, we recorded the robot’s on-line
odometry (Fig. 2) during data collection. The collected
odometry data were then corrected off-line, by apply-
ing a uniform correction factor to the successive laps
of each environment to remove the accumulated drift
error (see [7] for a full description of this procedure).
An example showing the application of this method in
a corridor environment is given in Fig. 5. This tech-
nique gives us a rough estimate of the robot’s true
location. The first lap of the recorded data was then
used for map building, and the subsequent laps were
used for testing.

Given the approximate nature of the ground truth
information, we could not measure the exact accuracy
of the new self-localisation method. However, the cor-

Fig. 5. Left: environment C in Table 1. Right: retrospectively corrected odometer data used for performance evaluation (see also Fig. 2).

rected odometer data was sufficiently accurate for us to
be able to measure the robot’s performance in global
localisation, which is the prime focus of this work.
This was achieved by quantising the corrected posi-
tion data into a set of discrete bins of size 1 m× 1 m.
The bin corresponding to the robot’s true location was
then taken as the ground truth location.

For performance evaluation, the coordinate of the
location hypothesis with the highest probability value
was taken as the robot’s “predicted” location. To elim-
inate quantisation errors from the performance mea-
sures, a localisation attempt was classified as being
correct if the predicted location fell into either the
same bin as the ground truth location or into any of the
8 bins adjacent to the ground truth location. In each
environment, the proportion of successful localisation
attempts was calculated as a percentage of the total
number of attempts (“trials”), as given in Table 1.
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Table 2
Scan matching experiment (this shows the percentage of correct
localisation attempts for each environment and the mean valueµ

over all four environments; the mean processor time,T, to match
one pair of scans is given in units oft = 1.83×10−5 s, as measured
on a Sparcstation 20)

Environment Occupancy
grids

Occupancy
histograms

Nearest
neighbour

A 57.0% 62.8% 61.2%
B 84.3% 82.0% 73.8%
C 51.4% 55.0% 41.0%
D 33.0% 32.3% 32.0%

µ 56.4% 58.0% 52.0%
T 13051t 31t t

5.2. Scan matching

First, we assessed the self-localisation performance
of the new occupancy histogram matching method
without using multiple hypothesis tracking. The per-
formance was compared to that of occupancy grid
matching [28], and a third “baseline” method for place
recognition, namely a simple nearest neighbour clas-
sifier. In the latter system, the vector of 48 sonar
readings was normalised, and the dot product was
used to determine the best matching place in the map.
The self-orientation component of the occupancy grid
matching algorithm was disabled here, using our com-
pass sense instead, to enable a fair comparison be-
tween the systems.

To obtain the map, places were stored at regular in-
tervals of 1 m using the corrected position data taken
from the first lap of the ground truth data. Each of the
scan matching mechanisms was then tested in each of
the four environments using the recorded sonar data
from the remaining laps. To assess the computational
efficiency of the algorithms, we also measured the
mean time taken to match one pair of scans. The re-
sults in Table 2 show no measured loss in performance
caused by using histograms rather than full occupancy
grids, and that this was achieved at a greatly reduced
cost in processor time.

5.3. Global localisation

Next, we measured the ability of the robot to carry
out two tasks using both occupancy histograms and

multiple hypothesis tracking: (1) to localise itself un-
der global uncertainty, and then, (2) to recover its po-
sition after becoming lost or kidnapped. Again, the ex-
periment was repeated over a large number of trials, as
indicated in Table 1, each trial starting from a differ-
ent (unknown) location along the recorded route data.
The performance of the wall-following robot was then
measured by playing back the sequence of recorded
sonar and uncorrected odometer data starting from
that particular location. After travelling a distance of
30 m in each trial, the robot was subjected to a “vir-
tual kidnapping”. This was implemented by transport-
ing the robot back to the beginning of the recorded
route data for that particular trial, its odometry being
disabled during the move.

The results given in Fig. 6 show clearly that the
robot is able to localise itself, and remain correctly lo-
calised, when starting from an unknown location. Fur-
thermore, the new self-localisation system was able to
consistently relocalise the robot after being kidnapped
in all of the environments. This was achieved at very
low computational cost; for the biggest map of 69
places (environment C), one complete cycle of the new
localisation algorithm took 0.003 s on a 600 MHz Pen-
tium III processor. To demonstrate the benefit of using
occupancy histogram matching in the new system, we
have also shown the performance of multi-hypothesis
tracking using the baseline method for scan match-
ing described in Section 5.2. Here, we used the dot
product to provide the likelihoodL(S|hi) instead of
Eq. (2), and assumed a constant measurement er-
ror of vhi

= 1.0 m2 instead of using Eq. (5). (This
is consistent with our previous algorithm for global
localisation with a mixture of Gaussians described
in [7].)

5.4. Application to mobile robot navigation

Finally, the new self-localisation system has been
integrated successfully into a complete navigating
mobile robot [6]. This robot has the ability to build
its own maps, localise and navigate reliably in un-
modified, real world environments containing people
which are initially unknown to the robot, without
requiring human intervention. Self-localisation is
carried out autonomously on-line as part of the nav-
igation process. This was achieved in real-time on
the Manchester robot using only its onboard 486
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Fig. 6. Global localisation experiment. This shows the global localisation performance of the new self-localisation system when starting
from an unknown location, and then being kidnapped after 30 m of travel. The performance is compared to that of occupancy grid matching,
as in Table 2, and global localisation using the baseline method for scan matching described in Section 5.2.

processor, thus demonstrating the efficiency of the
new algorithm. In ongoing work, the system has
been tested extensively on a second Nomad 200
robot at Örebro University, and has been used to
construct a hierarchy of robot maps (see [9] for first
results).

6. Conclusions

To achieve reliable self-localisation, a mobile robot
must depend on its ability to recognise places using
landmarks rather than dead-reckoning. Towards this
end, Yamauchi and Langley’s approach [28] over-
comes some of the problems of using occupancy
grids for mobile robot navigation. A globally consis-

tent metric map is not required, because a separate
grid is used to represent each place mapped by the
robot. Also, the approach does not depend critically
on accurate range-finding sensors; similar perceptions
produce similar grid patterns, despite the specular
effects associated with sonar sensors.

However, two major problems remained with this
approach until now: (1) occupancy grids require large
amounts of storage and computation, and (2) they
suffer from perceptual aliasing. We have overcome
the first problem by introducing a matching procedure
based on occupancy histograms rather than entire
grids. To tackle perceptual aliasing, we have developed
an efficient algorithm for multiple hypothesis track-
ing, which does not require the enumeration of a tree
of location hypotheses. The uncertainty in the robot’s
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location model is handled both globally and locally,
using a mixture of Gaussian hypotheses to search the
space of possible locations. The new self-localisation
system has localised successfully in thousands of
experimental trials.

7. Discussion

In a Kalman filter, the robot’s location model is
represented by a unimodal probability distribution
which evolves as a Gaussian. By contrast, the new
self-localisation algorithm maintains a set of compet-
ing Gaussian location hypotheses. The approach can
therefore be seen as a multi-modal generalisation on
the Kalman filter, because the robot’s location model
consists of a mixture of Gaussians, each updated by
a separate filter, rather than a single position esti-
mate. However, we note that our approach makes
some approximations in its treatment of uncertainty,
as discussed in the text, which are modelled more ac-
curately in many Kalman filter implementations (see
[12] on optimal linear filtering).

So far, we have used a compass to solve the problem
of self-orientation. While this method is robust in deal-
ing with minor variations in the magnetic field, severe
compass errors caused by ferrous building materials
could pose a problem in some environments. A more
reliable compass sense could be obtained by integrat-
ing perceptual information from the robot’s other sen-
sors, as in the self-orientation system described by Li
et al. [21], or by using correlation with a visual map
of the ceiling as in [26].

Without a compass, we would also need to consider
usingangle histograms[14,27]. A related idea can be
found in [19], where similar sensor scans were recog-
nised by a clustering algorithm, and a Kalman filter
was used to update the robot pose based on the known
coordinates of the clusters. Kurz used a technique for
pre-processing the scans, known as the most occu-
pied orientation (MOO), which finds the most likely
rotational alignment between a pair of scans. How-
ever, the MOO strategy would fail in complex envi-
ronments without a sufficiently accurate prior estimate
of the robot’s orientation, due to the problem of ro-
tational aliasing (perceptual aliasing inθ ). For global
localisation without prior orientation information, we
would therefore need to consider multiple hypothesis

tracking for the different possible orientations of the
robot.

The current system contains no mechanism for dis-
tinguishing “good” from “bad” sensor data, relying
on the robustness of its matching algorithms (due in
part to the large overlap between the local grids) to
deal with noise and transient variations in the sen-
sor readings. While the system has been tested suc-
cessfully in several populated environments, such a
mechanism might become necessary in highly dy-
namic environments. One alternative might be to use
the entropy-based novelty filter described in [10] to
detect any decrease in localisation quality. Such a
decrease would indicate some change to the robot’s
“expected” view of the environment, in which case
the robot could choose to ignore the current sonar
readings.

The work presented in this paper belongs to a grow-
ing family of techniques which integrate map repre-
sentations at different levels of abstraction and granu-
larity. In many of these, the environment is represented
as a patchwork of locally consistent metric spaces
connected to form a global topological map (e.g.
[9,11,18,24,29]). The new self-localisation system is
based on such a scheme. It has been tested successfully
as part of a complete navigation system which is able
to follow planned paths to user-chosen locations in the
robot’s map, where the places are spaced at 1 m inter-
vals [6]. For tasks requiring more precise positioning,
the local metric information attached to a particular
place could be used for small-scale navigation, as
in [11].
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