
A formalism for parallel composition of reactive and deliberative control
objectives for mobile robots

Joel M. Esposito Vijay Kumar

Mechanical Engineering
and Applied Mechanics

University of Pennsylvania
Philadelphia, PA 19104

Abstract

In this paper we introduce a methodology for closed loop
motion planning which is able to reactively accommodate
dynamic constraints, such as avoiding other robots, at run
time without nesecatate a global replanning. The method-
ology is complete in the sense that it is guaranteed to pro-
duce a successful motion plan that is (locally) consistent
with the constraints if one exists; and reports failure when
a feasible solution does not exist, in which case a global re-
planning is necessary. This is accomplished by noting that
given a particular robot and environment, and a Naviga-
tion Function, the most common control policy of follow-
ing the negated gradient is not the unique solution to the
planning problem. We construct a parameterized set of ac-
ceptable control laws, and use the extra degrees of freedom
in the parameter choice to satisfy the constraints by solv-
ing an optimization problem. Two example applications
solved here are avoiding moving obstacles and traveling
in formation; both while trying to reach a goal position.

1 Introduction

The most basic version of the motion planning problem can
be stated as:

Problem 1 Given a geometric descriptions of the work
space,W , and a finite number of obstaclesO1; O2; : : : ;
and a goal position,qg , for the point robot,R, with config-
urationq and the dynamics

_q = u(q; t) (1)

design a functionu(q; t) that drivesq ! qg and halts there
without colliding with the obstacles; or report failure if no
path exists.

In this paper we introduce a tractable method to solve the
a more sophisticated version of this problem, which is to
generate a input functionu(q; t) that fulfills all the above
criteriawhilesatisfying dynamic (in)equality constraints of
the formg(q; t) � 0. One important example of such a
constraint would be where the robot has an accurate map
of the static obstacles in the environment but an unmod-
eled moving obstacle, human, or other robot enters the
workspace and th robot must plan a path around it.

Unlike optimal control approaches, we do not assume that
the dynamic behavior of these constraints is knowna priori
(e.g. the human’s motion is unpredictable). In fact the goal
of our approach is to formulate a global “static solution”
to the unconstrained version of the planning problem upon
initialization; then, at run-time, locally modify the initial
plan as needed to accommodate the dynamic constraints,
without requiring a global replanning if possible, in such
a way as to preserve the completeness properties of the
global “static solution”. The motivation for this is: (1) we
assume a global replanning is expensive and would like to
rely on reactive solutions whenever possible; and (2) since
we have no prior knowledge of the time-dependence of the
constraints it would be impossible to account for them up
front.

Previous approaches to similar classes of problems in-
clude:

� game theoretic approaches treat the dynamic con-
straints as controlled by an adverserial agent and at-
tempt to find the worst case inputs for the system, [1]
and [2]. This approach yields a global solution to the
problem we are considering but is intractable for all
but the simplest applications;

� In [3] a method of altering a Navigation function to
account for unmodeled obstacles (topological alter-
ations) or poorly modeled obstacle geometries (geo-
metric alterations) is proposed but it is not applicable



−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

Goal

Figure 1: Level sets of a sample Navigation function. The
solid circles are obstacles. Note the unique minimum at the
goal.

to time dependent changes;

� A method termedreflexive collision avoidance, is de-
veloped [4] which is essentially an obstacle avoid-
ance controller that accounts for the robot’s dynam-
ics, however once the avoidance behavior is activated
a global replanning is required to reach the goal.

� In [5] homotopic deformations to preplanned trajecto-
ries are computed which enable the robot to circum-
vent unmodeled obstacles; however this approach is
not readily extensible to other types of online con-
straints

� A behavior-based or reactive control paradigm which
switches between several simple controllers based on
changes in the environment is advocated in [6] but this
approach does not guarantee completeness

Our approach differs from these in several ways. Most im-
portantly, it preserves the completeness properties of the
“static solution” by not introducing spurious equilibria and
reporting when no local solution exists. It can also account
for more general types of reactive requirements, other than
simple obstacle avoidance, such as formation control or co-
operative manipulation.

As a static solution to the planning problem we use Naviga-
tion Functions, a special class of potential fields. Naviga-
tion Functions, [7], are scalar fields,V (q), defined over the
free configuration-space which possess a unique minimum
value ofV = 0 at the goal configuration of the robot,qg;
and attain a maximum value ofV = 1 at the boundaries
of the free space. This concept is illustrated in Figure 1
which shows the level surfaces ofV (q) for an example en-
vironment. By employing a feedback control law of the

form

u(q) = �rV (q) (2)

which tracks the direction of steepest descent inV (q) the
planning problem is solved. The Navigation function,V ,
and the associated control law, eq.(2), are a desirable so-
lution to the planning problem for a variety of reasons in-
cluding: they can account for the Lagrangian dynamics of
the robot, the prescribed inputs are always bounded and
C2 smooth, they are free of local minima, and, perhaps
most importantly, they compute a closed loop solution to
the planning problem. In [7] recipes for constructing Nav-
igation Functions on increasingly complex spaces are pre-
sented, ultimately however there is a limit to how gen-
eral these environments are. However a variety of algo-
rithms for constructing “Numerical Navigation Functions”
are known (see [8]). These functions possess most of the
desirable properties of Navigation Functions and permit
the construction of Navigation-like functions on arbitrary
spaces (however since they are inherently discrete they
cannot beC2 smooth). From an implementation stand-
point they can be used on the raw output of a occupancy
map created by a robot mapping its environment.

In Section 2.1 a parameterized set of control laws is con-
structed which accomplish the same result as eq.(2) – ev-
ery member of this set is guaranteed to bring the robot to
the goal while avoiding obstacles. This implies there is
some freedom in selecting a control law from this set. In
Section 2.2, we formalize the “reactive requirements as in-
equality constraints. In Section 2.3, we use the freedom
in selecting the control law to satisfy the constraints by
formulating an optimization problem. Two applications of
this framework, obstacle avoidance and traveling in forma-
tion, are solved as example problems in Section 3. Finally
in Section 4, we comment on further applications of the
framework.

2 Approach

2.1 Families of navigation functions

As mentioned in Section 1, Navigation functions define
a scalar fieldV (q) with a unique minimum over the free
space, such that if the robot follows the negated gradient of
this field, eq.(2), it is guaranteed to reach the goal and halt
without hitting any obstacles. Navigation Functions can be
though of as Lyapunov functions for the system_q = u(q),
whereu(q) = �rV (q), becauseV (q) is positive definite
by construction and, by definition of the control policy, the
value ofV is always decreasing along system trajectories

_V = rV � u(q) = �rV � rV � 0: (3)



�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Perp(V)1

-Grad(V)

Perp(V)2

V=const

Figure 2: An illustration of the vectors�rV , and
[�rV ]? in R3. Any velocity vector in the same half plane
as�rV also decreasesV (q).

Using Lyapunov arguments, completeness of the naviga-
tion functions as motion planning tools can be shown, since
rV (q) = 0 only whenq = qg .

It is apparent however that this control policy is not
unique– any control policy which renders_V � 0 also
solves the planning problem. This fact is observed in [3]
and in [9]; the set of all input vectors which decrease some
cost-to-go function is termed the “cone of progress”. How-
ever in both of these contexts the fact is used passively to
address sensor uncertainty. Here however we wish to actu-
ally construct a parameterized family of control laws which
solve the static planning problem.

Proposition 1 If q 2 Rn, define mutually perpendicular
vector fields[rV (q)]?i , wherei = 1; : : : ; n� 1, which are
also everywhere perpendicular torV (q). Further assume
each of these vectors has been normalized and is of unit
length. See Figure 2. Then the control law

u�(q) = �(1�
n�1X

i=1

�2i )
1=2rV (q) +

n�1X

i=1

�i[rV (q)]?i

(4)

also solves the planning problem, provided
Pn�1

i=1 �2i < 1.

Proof 1 As proof that these control laws driveq ! qg ,
and do not introduce any local minima observe thatV (q)
serves as a common Lyapunov function for the equation
_q = u� regardless of the values of�i since

_V = rV � (�(1�
n�1X

i=1

�2i )
1=2rV (q) +

n�1X

i=1

�i[rV (q)]?i )

= �(1�
n�1X

i=1

�2i )
1=2rV (q) � rV (q) � 0 (5)

provided
Pn�1

i=1 �2i < 1. Hence the robot is guaranteed to
reach the goal and halt there. Note that the new control

law is free of local minima since the equality in eq.(5) is
only achieved atqg .

The second requirement for path planning is that the robot
never collide with the obstacles. If the obstacles are de-
fined by a simple closed curveC andn̂(C) is the unit nor-
mal pointing toward the interior of the free space; then if
�rV (q) is parallel to n̂(C) for all q 2 C, �rV (q) �
n̂(q) = 1 then it is trivial to show that the vector field
u�(q) also satisfies this requirement onC

(�(1�
n�1X

i=1

�2i )
1=2rV (q) +

n�1X

i=1

�i[rV (q)]?i ) � n̂(q) =

(1�
n�1X

i=1

�2i )
1=2 � 0 :

Since(1 �
Pn�1

i=1 �2i )
1=2 � 0 the new vector also points

away from the obstacle.

It is well know (see for example [10]) that if a set of stable
differential equations share a common Lyapunov function,
as the set of equations_q = u�, 8�i such that

Pn�1
i=1 �2i �

1, shareV (q) as a Lyapunov function, then a system whose
dynamics switches between the right hand sides of those
differential equations shares the same stability properties
as the original set of systems. This is true regardless of the
nature (sequence, frequency, etc.) of the switching. This
ensures thatany program for� results in a system which is
globally asymptotically stable to the origin, including one
where alpha time varying or possibly even discontinuously.

2.2 Constraints

The robot has a series of reactive requirements which can-
not be accommodated up front because they are based on
events we have noa priori knowledge of. These reactive
or low-level requirements are expressed as a series ofM

inequality constraints of the formgj(q; t) � 0. Certainly
the constraint is active wheng(q) = 0; but to be more
tolerent to sensor noise, we may want to consider the con-
straint in planning beforeg(q) = 0. As a rule for deciding
if a constraint should be considered active we introduce a
quantity�tj which is an estimate of the time to constraint
activation (gj(q(t); t) = 0 )

�tj =
�gj(q(t); t)

_gj(q(t); t)
=
�gj(q(t); t)

Lu�g +
@g
@t

(6)

whereLu�g is the Lie derivative of the constraint along
trajectories of the robot. Small positive values of�tj im-
ply that a constraint activation is impending; while nega-
tive values (moving away from the level surfacegj = 0) or



large positive values are not a cause for concern. Thus if
0 � �tj � �j , gj is added to the list of active constraints,
where�j is some predetermine constant termed thelook
ahead time.

Note that the time derivative ofgj is conveniently ex-
pressed as the sum of two quantities:

_gj(q(t); t) =
@gj

@q
� _q +

@gj

@t
: (7)

the first term represents the robot’s own influence ongj and
is assumed to be known; the second represents the dynamic
nature ofgj and must be either sensed online or some as-
sumptions must be placed on its value. We assume the
robot has an expression forgj and is equipped with sensor
enabling it to measure its value online. In this work we
only consider what are referred to in the optimal control
literature asfirst order constraints, that is constraints for
which @gj

@q 6= 0 8q; although the extension for higher order
constraints is straightforward.

These inequalities can model a wide variety of constraints
such as the proximity to a moving object or the deviation
from a desired position in a formation. It may be useful,
when there are many constraints, to place a partial ordering
on the constraints which indicate their relative priorities.
That is, in the event it is not possible to comply with all of
the constraints, one could designate which take precedent.

2.3 Computational issues

In the absence of additional constraints, the nominal input
is u� = �rV (i.e. �1 = 0; : : : �n�1 = 0). A constraint
gj is considered active if0 � �ti � �i; at any given time
P � M constraints are active. Obviously ifgj � 0 is
desired, when constraintgj is active it is imperative that
_gj � 0. Thus at each time step the problem can be phrased
as an optimization problem with a set of inequality con-
straints. LetG = [g1 : : : gP ]

T 2 RP be the constraint
vector andGq = @G

@q 2 RP�N andGt =
@G
@t 2 RP

Problem 2

min
�i2(�1;1)

1

2

n�1X

i=1

�2i (8)

such that

Gqu� � �Gt (9)

where the inequality is evaluated componentwise;u� is de-
fined in eq.(4) andV (q) is computed using one of the al-
gorithms mentioned in Sect. 1

Half Plane
Feasible

-Grad(V)

V=const

Figure 3: In the absence of constraints the set of feasible
directions is the half plane containing�rV

Feasible
Space

-Grad(V)

V=const

Grad(G1)

Figure 4: The addition of a constraint,g1, with no time
dependence further constrains the set of directions to the
union of the half spaces containing�rV andrg1

The jth inequality defines acone, cj (or the complement
of a cone) with its apex at the origin in the tangent space of
the body fixed frame; while the set of vectorsU = fu� :Pn�1

i=1 �2i � 1g defines a half space. Figures 3–5 illustrate
this inR2.

If U
S
c1
S
� � �
S
cj = ; there is no input that can simul-

taneously solve both the planning problem and the reac-
tive objectives objectives. This implies that a high level
replanning is required; or that some reactive constraints
must be discarded according to some predetermined pri-
ority rankings until a feasible solution exists. If the cone
is not empty, an infinite number of solutions exist and the
optimization problem can be solved at each step. Since
this need only be solved at points along the trajectory its
cheaper than a global replan however its not a global opti-
mal.



Feasible
Space

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������������
������������
������������
������������

������������
������������
������������
������������

-Grad(V)

V=const

Grad(G2)

Grad(G1)

Figure 5: A time dependent constraintg2 would reduce
the feasible directions to the union of the feasible space in
Figure 4 with the interior of a cone.

Since we are proposing to solve the problem online, at each
time-step, a discussion of the required computational effort
is warranted. First note that the objective function is con-
vex since it is quadratic. In the case ofGt � 0 the design
space is also convex, implying that the problem admits a
computationally efficient solution.

Although convexity is an important condition for compu-
tational feasibility, the dimension of the problem and the
constraints also plays a role in determining the complex-
ity of the problem. This a minimization problem inn � 1
variables andP + 1 constraints; this can be solved read-
ily using a sequential quadratic programming algorithm.
However it is well known in the optimization literature that
if P + 1 � n� 1 it is advantageous from a computational
point of view to convert to thedual problem.

The dual problem is anunconstrainedoptimization prob-
lem inP + 1 variables. This reduction may be important
for higher dimensional problems. It should also be noted
that, from our point of view, a sub-optimal solution is per-
fectly acceptable provided the constraints are not violated.
This fact further enables fast computation.

3 Sample Applications

Our framework is general enough that it can be used to
solve a fairly diverse group of applications such as:

� static/dynamic obstacle avoidance

� formation control

� cooperative manipulation using force closure

� synthesis of switching controllers

We give detailed examples of the first two applications later
in this section. The last two examples are mentioned briefly
in the next section as future work.

3.1 Obstacle avoidance

We consider a situation in which the robot has a perfect
map of the static obstacles in the environment; however
the presence moving obstacles (humans or other robots)
complicates the problem. We assume the robot can mea-
sure the position and velocity of these moving obstacles
but has noa priori knowledge of their trajectories. If
q̂1(t); : : : ; q̂M (t) are the position vectors of theM dynamic
obstacles, andrj are their radii. The dynamic constraints
for the robot are

gj = �(kq � q̂j(t)k
2 � (r + rj)) � 0 (10)

and

_gj = �(2kq � qj(t)k � u� � 2kq � qj(t)k � _qj) (11)

and if q 2 R2

_q = u�(q) = (�2 � 1)rV (x) + �[rV (x)]? (12)

whereV is some suitable navigation function which ac-
counts for the static obstacles in the scene.

Such an example is pictured in Figure 6, which appears on
the last page of this paper following the References. The
six frames are snapshots in time. In the upper left frame,
the robot,R, at the far right is attempting to reach the goal
(the small circle at the far left). However a convoy of four
moving robots (lower center of the frame) is proceeding
across its path. There are also stationary obstacles (large
solid discs) in the scene.R, begins by creating a static plan
which accounts for the stationary obstacles.R has noa
priori knowledge of the future positions of the convoy. At
this time the convoy is far away enough that the constraints
are not considered activeR’s objective is to reach its goal,
while avoiding the moving convoy, without having to re-
compute a static plan, if possible. If at anytime it is not
feasible to achieve both of these objectives than the algo-
rithm is to report failure; at which time a global replanning
could be initiated.

In the second and third frame (upper center/right),R now
considers the constraints active and attempts to circumvent
the convoy by veering to the right. By frame 4 (lower left)
however the presence of the static obstacle has preventedR

from passing on the right and it doubles back around to the
left (frame 5 lower center) to pass safely behind the convoy
and proceed to the goal (lower right).

Important things to note about this scenario are: (1)R has
no prior knowledge of the trajectory of the convoy; (2) the
avoidance is performed in an online, purely reactive fash-
ion without having to recompute the static plan; and (3) at
all times during the execution the completeness of the navi-
gation function is preserved, that is to say the robot is guar-
antee to reach the goal eventually without getting stuck in



local minima. Hence this represents a provably correct way
of composing “goal seeking” and “obstacle avoidance” be-
haviors in parallel. In a similar fashion the same frame-
work can be used to plan in situations where the convoy
are simply static obstacles which were not accounted for
up front, by simply setting@g@t = 0. We could also use this
approach in situations where the other robots are actively
chasingR.

3.2 Formation control

Consider a situation in which a group of robots must travel
from the respective starting configurations to their goal
configurations; however they are to do so in formation
whenever possible. By a formation we mean that the robots
must try to achieve and maintain some predetermined rela-
tive separation and bearing from each other. Such behavior
is desirable in many applications, for example in the case
of unmanned air vehicles, formation flight results in greater
fuel economy. In other cooperative tasks close proximity
of teammates is crucial.

In such situations we can assign one robot the role of leader
and assume the follower robots can measure the position
and velocity of the leader but have noa priori knowl-
edge of its motion plan. Consider robot-i and letqi(t)
be its position vector. Letql(t) be the position vector of
the leader robot. If robot-i is to follow the leader with a
separation distance ofdi and a bearing of�i then the de-
sired position of robot-i, such that the formation is kept is
q
f
i (t) = ql(t) + [di cos(�i); di sin(�i)]

T . This dynamic
constraint is expressed as

g = �kq � q
f
i (t)k

2 � 0 (13)

and

_g = �2kq � q
f
i (t)k � u� + 2kq � q

f
i (t)k � _q

f
i (14)

andu�(q) has the same form as in eq.(4).

The robots objective is to reach its goal, while maintaining
the formation whenever possible. If at anytime it is not fea-
sible to achieve both of these objectives than it should re-
port failure, break away from the formation and proceed to
its goal. Figure 7, which appear on the last page of this pa-
per, depicts snapshots of such a scenario. In the first frame
(left) the robots begin in some configuration which is not
the desired formation, in the second frame (center) each of
the robots has determined that it is feasible to get into a for-
mation and does so. The desired configuration is diamond
shaped. They continue to drive in the correct formation un-
til, one at a time, each of the robots gets to a point where
it is no longer feasible to stay in formation while getting
to their respective goals whereupon they break from the

formation (right). The then proceed independently to their
individual goals. Note that this is achieved in a completely
decentralized manner and the decision of when to get in
formation or break from it is done online.

4 Conclusion

In this paper, aprovably correct method for the parallel
composition reactive objectives, such as obstacle avoid-
ance or following a leader,with deliberative behaviors,
such as goal seeking, is presented. This is achieved by not-
ing that the traditional control law for solving static motion
planning problems, used in conjunction with a Navigation
function, is not unique. We derive a parameterized family
of control laws which all share a Navigation function as a
common Lyapunov function, and hence all represent solu-
tions to the static planning problem. The extra degrees of
freedom in the selection of the parameters are then used
to locally accommodate reactive requirements, modeled as
inequality constraints, online, by solving an optimization
problem at each time step.

The merit of our approach is that the algorithm represents
a way of locally modifying a motion plan online to accom-
modate these constraints, while preserving performance
guarantees (i.e. always reaching the goal), in such a way as
to avoid a global replanning whenever possible. If no such
solution exists the algorithm reports failure and can alert
the high level planner that a global replan is needed.

Future work focuses on modeling other types of applica-
tions such as cooperative manipulation and synthesizing
switched controllers. The idea behind the first extension
is that, in grasping applications, the constraint that the ap-
plied contact forces should lie within the friction cone is
quite naturally model as an inequality constraint, in the
framework of Section 2.2. In fact the notions of force
and form closure rely on the concept ofpositive spanning
which is very similar in spirit to the ideas behind this work.
For the second extension, the basis for switched control of
robotic systems, is that the robot has a suite of controllers
to choose from and one must design a rule for selecting the
appropriate controller at any given time to accomplish cer-
tain objectives. In such a situation one could replace our
parameterized set of control laws,fu� :

Pn�1
i=1 �2i � 1g

with the discrete set of control laws at the robot’s disposal
uj 2 fu1; u2; : : : g. Then, rather than solving the continu-
ous optimization problem to select the best value of� as in
Section 2.3, one must solve a discrete optimization prob-
lem to find the controlleruj which is closest to the nominal
direction�rV and satisfies the constraints in eq.(9).



Acknowledgments

We gratefully acknowledge support from DARPA grant
ITO/MARS 130-1303-4-534328-xxxx-2000-0000, and a
DoE GAANN grant.

References

[1] J. M. Esposito and V. Kumar, “Closed loop motion
planning for mobile robots,” inProc. IEEE Intl. Conf.
on Robotics and Automation (ICRA), (San Francisco,
CA), pp. 1020–1025, May 2000.

[2] S. Lavalle and S. Hutchinson, “Path selection and co-
ordination of multiple mobile robots via nash equilib-
ria,” Proceedings of 1994 International Conference
on Robotics and Automation, pp. 1847–1852, 1994.

[3] D. E. Koditschek, “The geometry of a robot program-
ming language,”Workshop on the Algorithmic Foun-
dations of Robotics, vol. 3, pp. 263–268, 1994.

[4] T. S. Wikman, M. S. Branicky, and W. S. Newman,
“Reflexive collision avoidance: A generalized ap-
proach,” inProc. IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 3:31–36, May 1993.

[5] O. Brock and O. Khatib, “Real time replanning
in high-dimensional configuration spaces using sets
of homotopic paths,” inProc. IEEE Intl. Conf. on
Robotics and Automation (ICRA), May 2000.

[6] R. Arkin, Behavior Based Robotics. Cambridge, MA:
The MIT Press, 1998.

[7] E. Rimon and D. E. Koditschek, “Exact robot naviga-
tion using artificial potential functions,”IEEE Trans-
actions on Robotics and Automation, vol. 8, no. 5,
pp. 501–518, 1992.

[8] J.-C. Latombe,Robot motion planning. Boston:
Kluwer Academic Publishers, 1991.

[9] M. Erdmann, “Understanding action and sensing by
designing action-based sensors,”International Jour-
nal of Robotics Research, vol. 14, no. 5, pp. 483–509,
1995.

[10] M. Branicky, Studies in Hybrid Systems: Modeling,
Analysis and Control. PhD thesis, MIT, Cambridge,
MA, 1995.



−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

Figure 6: Snap shots of the obstacle avoidance example. Beginning with the upper left hand frame time increases from left
to right/top to bottom. Frame 1: Robot (right) proceeds to the goal (left). Frame 2 and 3: The robot tries to steer to the right
around the moving convoy. Frame 4: The right pass is blocked by a static obstacle. Frame 5 and 6: the robot loops around
to pass the convoy safely on the left.

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

Goal 1 

Goal 2 
Goal 3 

Goal 4 

Figure 7: Snap shots of the formation control example. Time increases from left to right. Frame 1: the robots attempt to
assume formation. Figure 2: traveling in formation. Frame 3: breaking off from the group to pursue individual objectives.


