Hardware Solutions for Evolutionary Robotics

Dario Floreano' and Francesco Mondada':?
! Laboratory of Microcomputing

Swiss Federal Institute of Technology, CH-1015 Lausanne
2 K-Team SA, CH-1028 Préverenges, Switzerland

Abstract. Evolutionary robotics— as other adaptive methods, such as
reinforcement learning and learning classifier systems—can take consid-
erable time and resources which require a careful evaluation of the hard-
ware tools and methodologies employed. We outline a set of hardware
solutions and working methodologies that can be used for successfully im-
plementing and extending the evolutionary approach to complex environ-
ments, robots, and real-world applications. The issues discussed include
the integration of simulation and real robots, design issues of evolvable
robots, hardware requirements for incremental evolution, and hardware
and software tools for monitoring and analysis.

1 Introduction

Evolutionary techniques applied to robot control can generate efficient, smart,
and creative solutions which match the constraints imposed by the environment
and the selection criterion. The power, flexibility, and generality of artificial
evolution has often been exploited both for finding engineering solutions to dif-
ficult control problems of autonomous robots and for gaining new insights into
the biological mechanisms of adaptive behavior (see, e.g., [25, 5, 23, 29, 19, 3,
21, 14], for thematic collections of several relevant papers). However, evolution-
ary robotics— as other adaptive methods, such as reinforcement learning and
learning classifier systems—can take considerable time and resources [24] which
require a careful evaluation of the hardware tools and methodologies employed.

In this contribution, we shall outline a set of hardware methodologies jointly
developed and tested at our laboratory and at K-Team SA for reliable and
controlled evolutionary experiments with mobile robots. The design issues and
considerations described below can be used as a guideline for assessing the re-
quirements and feasibility of a planned experiment in evolutionary robotics, but
can also be generalized to experiments involving other types of learning methods.
Although most of the solutions proposed in this paper are applicable to mobile
robots only, the underlying methodological issues can be extended also to other
robotic platforms equipped with adaptive control systems.

The paper is articulated around four major issues. In the next section we
shall discuss a way to combine the advantages of simulations with those of real
robots, introducing the concept of miniature mobile robots. We shall then dis-
cuss basic design principles and methodologies of robots that can be used for



artificial evolution. Capitalizing on these principles, we shall also discuss hard-
ware solutions which can support incremental evolution, namely modularity and
cross-platform compatibility. Finally, we shall address the issue of monitoring
and analysis of evolved robotic controllers.

2 Between Simulation and Real World

Evolutionary robotics has its roots in simulations. The first explorations in evo-
lution of autonomous sensorimotor agents date back to the end of the Eighties,?
when all studies were still carried out in computer simulations. A few years
later, the appearance of more robust, flexible, and user-friendly robots, and a
general awareness of the limitations of simulation methods [2], created a strong
motivation for the first physical implementations of evolutionary robots [9, 17].

Despite the importance of keeping in mind the hard constraints of operating
with physical robots, simulations still play an important role in evolutionary
robotics for at least two sets of reasons:

— Why simulations: The practical reason. Researchers who actively con-
tribute to this field have very different backgrounds, including computer sci-
ence, robotics, psychology, biology, and philosophy. Only few of them have
the technical skills and/or local support to build a robot and program it.
Most of the commercial platforms available on the market have been devel-
oped by robot experts for robot experts, resort to very specific programming
languages, and thus are not accessible to outsiders. This situation is currently
improving, but a majority of robots still needs specific know-how. Finally,
in universities, where software writing is considered “without costs”, a real
robot seems often too expensive in comparison to simulations.

— Why simulations: The strategic reason. Evolution of complex behav-
iors from scratch on a physical robot, even where technically feasible, would
require an adaptive time which is too long to be practically exploited for
industrial applications. Simulations can be of great help when properly in-
tegrated with tests on the physical robot. Current simulative methods have
progressed from unrealistic grid-worlds to new methodologies that guaran-
tee an acceptable transfer to the target robot under well-understood con-
straints [31, 26, 20] and can speed up evolutionary search by several orders
of magnitude. One can develop initial behavioral skills in simulation and
then continue on the physical robot, or combine evaluations on simulated
and physical robots, or even build computationally efficient simulations that
allow a good transfer to the real robot. Furthermore, we think that simula-
tion is an important first step within an incremental evolutionary approach,
which will be discussed below in section 4.

The miniature mobile robot Khepera has been designed as a research tool
to fill the gap and allow a smooth transition between simulations and the real

3 But appeared in the scientific press only a couple of years later [6, 32, 8]



Fig. 1. The miniature mobile robot Khepera beside a ruler (in cm). Black pucks around
the body are active infrared sensors. Rechargeable batteries are sandwiched between the
motor base and the top structure; the latter hosts the microcontroller (black square),
EPROM, RAM, and communication ports.

world. Initially conceived in 1991 at our laboratory by E. Franzi, A. Guignard,
and F. Mondada, Khepera is currently employed in several hundred laboratories
around the world for research in traditional and new-wave robotics.* If on the
one hand its simplicity and interface make the Khepera as easy to work with
as a simulation environment, on the other hand this robot cannot reach the full
complexity of real-world applications. However, being a physical robot operating
in a physical environment, it displays most of the characteristics of robots used
for real-world applications. Therefore, it is well-suited for initial developments
when one still wishes to run its own evolutionary models on the computer, but
also wants to interface the program with a robot in a plug-and-play fashion in
order to include real-world features in the evaluation of the genetic strings.
One of these features is real-time operation. In robot simulations, time is
often a commodity that can be ignored or easily managed. All processes are
synchronized, sub-routines are sequentially executed, the speed of sensorimotor
loops is dictated by the number of intervening computations and by the power
of the workstation CPU, and energy resources are not an issue. On the other
hand, time constraints are ubiquitous in real robots and in biological organisms
and, in the latter case, are often exploited by natural selection (for example,
in several predator-prey scenarios). At the same time, several researchers have
acknowledged the importance of evolving neural networks with temporal dy-
namics [1, 10, 18]. Khepera is a robot that can be attached to the serial port
of a workstation and handled in the same way in which one would handle a
simulator, but it also offers all time constraints of real-world robots. Depending
on the working modality chosen by the user (see next section), the behavior of
the robot is affected by the time taken by routine computation, the length of

4 Here we will focus mainly on general design principles suitable for evolutionary
robotics; a technical description of the Khepera robot can be found elsewhere [28].



messages exchanged by individual sub-components, and the type of communi-
cation between the robot and the workstation (if any). Here evolution of neural
controllers with time dynamics has two advantages. Neurocontrollers can either
adapt their own internal dynamics to those imposed by the experimenter on the
robot (such as fixed action duration), or can exploit asynchrony and physical
time delays to better cope with the environment. Furthermore, if controllers are
evolved on a real robot, there is no need to include extra components in the
fitness function in order to penalize complex architectures: if fast-thinking is
important, sleek architectures and simple smart mechanisms will have higher
reproduction chances over architectures that require heavy computations and
complex memory handling.

Another feature that Khepera and real-world robots share is sensor and motor
imprecisions. This well-known difference between simulations and real robots is
of great importance in evolutionary robotics because artificial evolution often
generates controllers that rely on the sensorimotor characteristics of the agent [9]
more than control systems designed according to human logic. Interfacing one’s
own evolutionary software with a real robot not only generates more robust
controllers, but can also qualitatively affect the type of controllers which are
evolved.

3 Evolvable Robots

Building mobile platforms suitable for intensive learning mechanisms, such as
artificial evolution, requires specific solutions. Although most of those outlined
below have been incorporated in various stages of the realization of the Khep-
era robot, they are general enough to be used as guidelines for building other
platforms.

3.1 Miniaturization

During the initial generations of an evolutionary run, most of the individuals
display behaviors which might damage the robot shell, such as collisions against
obstacles, improper handling of manipulators, pushing walls at sustained speed,
etc. Whereas large robots have little chance of remaining operative for more
than a few generations under these conditions, fundamental laws of physics en-
dow miniature robots with higher mechanical robustness. In order to intuitively
understand this feature, compare a robot of 50 mm in diameter crashing against
a wall at 50 mm/s to a robot of 1 m in diameter crashing against the same wall
at 1 m/s. The miniature robot will resist the collision, the other robot will prob-
ably report serious damages. However, it is important to choose the appropriate
level of miniaturization. Although 1 cubic inch autonomous mobile robots are
technically feasible [30], it would be advisable to choose a level of miniaturiza-
tion where there is still a sufficient flexibility at the level of the development
tools available, the components used, the performances achieved and the effort



required by the development. Currently, the minimum attainable size for an au-
tonomous learning robot which can be assembled with off-the-shelf components
is around 2-3 cubic inches.

3.2 Interface granularity

Artificial evolution should be allowed to access sensors, motors, and other fea-
tures of the robot at several levels, including the lowest-possible level. By restrict-
ing user’s access to high-level commands and pre-processed sensory information,
one certainly reduces the degrees of freedom of the controller, but might also
hamper the adaptive power of the evolved solution. Evolution should be allowed
to manipulate and combine fine details of the sensorimotor interface in the the
most suitable way for the characteristics of the environment where the robot
operates.

Think, for example, about the speed of the wheels. Some of the possible com-
mand levels are: go forward (speed and action duration are fixed); set speeds of
wheels (action duration is fixed); set speeds and duration. One can go even
further down, by-passing any PID algorithm to control motor speed. High-level
commands are better suited for well-known and noise-free environments, whereas
low-level commands give more adaptive power in unknown situations with vari-
able levels of noise. These are typical situations where one wishes to use artificial
evolution, rather than pre-assembling a set of macro-behaviors.

A similar reasoning goes for the sensory input. Pre-processed information
is an efficient solution if one knows the features of the environment where the
robot will operate. In other cases, raw sensory data, opportunistically exploited
by evolutionary mechanisms, are likely to generate more robust controllers. For
example, the vision module K213 [27] for the Khepera, a linear array of 64
photoreceptors spanning a 36° visual field, offers both low-level and high-level
access to the data. Low-level access provides the gray-level image refreshed at a
variable rate, whereas high-level functionalities allow on-board extraction of the
pixel with the minimal or maximal activity, reading of only a part of the image,
trasmission of thresholded values, etc. Clearly, pre-processed information might
reduce the evolutionary search space and amount of computation required by
the evolutionary controller, but it is necessary to ponder accurately whether this
might a priori exclude the emergence of interesting solutions.

In contrast to robots employed for pre-programmed actions in well-known
environments, the sensorimotor interface of evolvable robots should be organized
in layers offering different levels of granularity, all directly accessible in parallel
by the evolutionary engine.

3.3 Interface quality

Scientists and engineers develop over the years a preference for a set of standard
computing and visualization tools. Just as biologists prefer to give public pre-
sentations with slides whereas computer scientists rather prefer transparencies,
different research communities have different ways of working with a computer.



Getting used to a new software or to a new machine is often perceived as a
nuisance and a waste of time.

Robots developed for an interdisciplinary research enterprise, such as ar-
tificial evolution, should be easily interfaceable to different platforms, include
libraries for major language compilers, and be easily integrated with popular
scientific packages. Plug-and-play feel is very important in this cross-disciplinary
field because it encourages an increasing number of people to move from simu-
lations to real robots. Flexibility, transportability, and an open architecture are
other basic qualities of the interface of a robot intended for several purposes and
user types.

3.4 Computation management

Artificial evolution requires three basic features: sustained electrical power for
long periods, data storage for analysis, and some computational power. In order
to meet these requirements, which are also shared by other learning mechanisms,
the Khepera robot has been designed so that it can be attached to any com-
puter through a serial connection and rotating contacts (figure 2). The serial
connection provides electrical power and supports fast data communication (up
to 57kBaud); it is simpler to implement and more reliable than infrared and/or
radio links. This setup allows the user to run the evolutionary algorithm and all
the control routines on the computer CPU which reads sensor activity and sends
motor commands several times a second through the cable. All data concerning
several generations can be conveniently stored on the computer hard disk for
later analysis.

Real-time sensorimotor communication between the robot and the worksta-
tion, however, shows its limitations when the amount of data to be transferred is
relevant, such as with vision, and when the environment requires fast responses
(dynamic environments). Furthermore, the user might wish to test or further
train an evolved controller on large environments without a cable connection.
Autonomous robots thus must have more computational power and memory re-
sources on-board than other types of robots, such as tele-operated robots or
pre-programmed machines. If sufficient memory and computational power is
available on-board, the evolved control system can be cross-compiled for the
processor on the robot and downloaded.

Alternatively, one can run the control system on the robot itself and the
evolutionary algorithm on the computer. This latter hybrid solution requires
only one data transmission per individual for sending the artificial chromosome
from the computer to the robot (and optionally reading the fitness value returned
by the previously tested individual). We have used this method for predator-prey
co-evolutionary experiments with two Khepera robots, where any delay in visual
processing and/or motor reaction due to transmission time would be readily
exploited by the opponent [11].



Fig. 2. The robot communicates with a computer via a thin suspended serial cable
which also supplies electrical power. Rotating contacts prevent cable twisting and en-
sure noise-free communication. This solution can be used to control the robot from the
computer, download the evolved controllers on the robot processor, or use a hybrid
approach (see text).

4 Incremental Evolution

The future and applicability of evolutionary robotics heavily relies on methods
of incremental evolution. Incremental evolution consists in gradually evolving a
controller on a series of tasks of increasing complexity. There are several reasons
why an incremental approach is important in evolutionary robotics.
Attempting to evolve a complex task from a limited collection of randomly
created strings is difficult because none of the individuals in the initial genera-
tion might display competences which can be credited by the fitness function.
Various approaches have been suggested, such as gradually increasing the com-
plexity of the environment and/or modifying the fitness function during evolu-
tion [7, 17, 13]. In some circumstances, changing the environment is equivalent
to modifying the morphology of the robot. For example, instead of attempt-
ing to evolve from scratch a complex behavior based on vision and appropriate
control of a gripper module, it can be more fruitful to proceed gradually from
a stripped-down version of the robot and add new components at later stages
[12]. Incremental solutions that can cope with extendable hardware architectures
are well-suited for open-ended evolution where the task under consideration can
change over time in unpredictable ways [16] depending on current requirements.
Another reason for pursuing an incremental approach is scalability to robots
suitable for real-world applications. Such robots are usually larger and more
fragile than miniature robots suitable for research. We think that a viable so-
lution consists in incrementally evolving behavioral competences starting from
simulations, then gradually move to simple robots, and eventually continue on



Extension module

. Processor: MC68331
RAM: 256kB \ v (~MC68020 16MHz)

Infra-red DC motor
proximity —]
Sensors Extension bus

connections

NiCd accumulators
making the robot

ieol_t‘-‘%uft{cwtm‘tor Wheels with incremental encoder
3 minutes EEPROM: 128kB (600 pulses/revolution)

Fig. 3. Khepera robot structure and extension possibilities.

more complex robots. Cross-platform evolution is a form of incremental evolution
where previously evolved blocks are gradually adapted, combined, and extended
to accomodate new morphologies, sensorimotor interfaces, and changing task
requirements.

Incremental evolution requires novel strategies capable of coping with vari-
able fitness landscapes, variable-length genotypes, ontogenetic adaptation mech-
anisms, variable genotype-phenotype mappings, and modularity. Interesting meth-
ods tackling some of these issues have already been suggested [15], but much
work remains to be done in the years ahead. In the next two sections we will
address some hardware solutions that can support investigations in incremental
evolution, namely modularity and cross-platform compatibility.

4.1 Modularity

Hardware modularity enables different possible configurations and experi-
ments using the same basic components. It also means the possibility of adding
extensions and, globally, cheaper equipment. Software modularity means flexi-
bility and possibilities for extensions as new modules modules become available
on the robot.

For example, at the hardware level the Khepera robot (figure 3) has an ex-
tension bus that makes it possible to add turrets on the top of the basic config-
uration, depending on the needs of the experiments to be done. This modularity
is based on a parallel and a serial bus. The parallel bus can be used for simple
extensions directly under control of the main Khepera processor. The serial bus
implements a local network for inter-processor communication. Using this sec-
ond bus, other processors can be connected to the main one in order to build
a multi-processor structure centred on the Khepera main processor. This kind
of structure has the advantage that one can employ additional computational
devices on extension modules, thus keeping the main processor free for global
management of the robot behavior.



Fig. 4. Some modules of the Khepera robot. From left: basic platform with motors
and batteries, microprocessor platform, linear vision, gripper, CCD camera, general
input-output, and infrared communication.

Some of the hardware modules currently co-developed in the lab and at K-
Team SA for the Khepera robot include a gripper with two degrees of freedom
(elevation and grasping), a linear vision module (64 photoreceptors with auto-
matic light sensitivity adjustement), a black-and-white or color CCD camera,
a general input-output module where one can add several new sensors and ac-
tuators, a miniature GPS system for localisation, a radio link module, and an
infrared communication module (figure 4).

At the software level, modularity is needed to support the multi-processor
structure of the robot. It consists of a flexible protocol that recognizes all added
extension modules when the robot is powered, informing the main processor
about all functionalities available in each extension as well as the procedures
for activating these functionalities. The BIOS of the Khepera, which includes
all basic procedures for robot management, is also based on a modular struc-
ture. Motors, sensors, and timing functions are grouped into distinct modules to
simplify management of the robot and improve software robustness. The main
software also supports remote control and down-loading of specific applications
through the serial cable. Such software structure simplifies the task of the user,
who can easily add her own software to the management modules already im-
plemented on Khepera.

4.2 Cross-platform compatibility

Cross-platform compatibility in mobile robotics is a very unusual feature, espe-
cially between robots of very different sizes. Software compatibility alone is not
sufficient to guarantee a good transfer of algorithms between different robots.



Fig. 5. The Koala robot, despite its look and size (31 x 32 x 18 cm), has operating
features similar to those of the Khepera robot.

Mechanical structure, sensor caracteristics, and many other aspects of the phys-
ical platform also play an important role in the feasibility of the transfer.

Koala (figure 5) is a medium-size very performant mobile robot that has
been designed to support transfers from the Khepera robot. Despite its better
performance, size, shape, and look, the Koala robot is very similar to the Khepera
in many essential aspects. The six wheels of Koala are driven by two motors,
as for Khepera, each controlling one side of the platform. The central wheels on
the two sides are lower than the others, so that rotation of the whole platform
is very similar to that of the Khepera. The proximity sensors of the Koala are
based on the same concept used for those of the Khepera, but the measurement
range is scaled up to the larger size of the Koala. Also, the number of sensors
has been changed from 8 on the Khepera to 16 on the Koala. The Khepera
hardware modularity described above has also been both supported and scaled
up in the Koala. In addition to the serial extension bus of the Khepera, the Koala
is equipped with a fast inter-processor parallel communication bus to support
larger amounts of data. At the software level, both robots are compatible, having
the same low-level BIOS software and the same comunication facilities.

All these caracteristics allow a smooth transfer from the Khepera to the
Koala, just like from simulations to the Khepera. The development and moni-
toring tools are the same for both robots and the code itself, even when down-
loaded (see section 3.4 above), is very similar. Preliminary screening of the evolv-
ing populations can start on simulations, than gradually move to the Khepera,
and eventually continue on the Koala. In such a framework, the incremental ap-
proach suggested by Harvey [15] seems very interesting because, after an initial
stage, evolving populations are almost always converged. That means that the



Fig. 6. The laser positioning device is composed of two elements; a portable laser
emitting device on the ceiling of the room and an additional module plugged on the
top of the robot which measures parameters of the laser beam and computes the exact
robot position. This information is used only for neuroethological analysis.

number of maladaptive individuals tested on the physical robots is very limited
with obvious benefits for the hardware platform.

5 Monitoring and Analysis

Artificial evolution requires tools for monitoring the evolutionary process and
analysing the evolved controllers. In engineering applications monitoring and
analysis are necessary for ensuring the stability of the learning process and of
the evolved machine; in artificial life, they are required to understand the course
of evolution and to establish relationships between evolved solutions and envi-
ronmental constraints.

When artificial evolution is run in simulation, all the variables are readily
available and analysis is technically straightforward. When it comes to evolving
real robots, experimental results are often displayed as hand-drawn trajectories,
photographs of the environment, or—at best—statistics on discrete events, such
as number of collisions, of collected objects, etc. These methods are not sufficient
to understand the tightly coupled dynamics between the evolved controllers and
the environment. In contrast to disembodied machine learning systems (e.g.,
neural networks trained on pre-assembled data sets), evolutionary controllers
develop mechanisms that depend on the type of interactions with the environ-
ment; the input distribution is determined both by the environment features and
by the motor actions of the agent, which—in turn—depend on the sensory input
[32]. This implies that one cannot hope to understand an evolved controller by
isolating it from the environment and looking at its structure.

Understanding the course of artificial evolution and the functioning of evolved



Fig. 7. Neural correlates of behavior. The evolved robot navigates in an environment
and periodically returns to a recharging station. The controller is a neural network
with five hidden neurons and fully recurrent connections. Each box plots the activity
of one neuron every 100 ms while the evolved robot freely moves in the environment.
Darker squares mean higher node activations. The robot starts in the lower portion
of the arena. The recharging area is visible in the top left corner of each box. The
bottom-right window plots only the trajectory. From [10]; ©1996 IEEE.

mechanisms requires a method to measure and correlate controller states with
behavioral patterns. This implies two efforts. On the hardware side, the robotic
setup must be designed so that physical displacements of the robot can be
recorded on a fine time scale. On the software side, it should be possible to visu-
alize, analyze, and correlate all the data (robot actions and controller states) at
several levels. This procedure is similar to that employed in neuroethology where
measurable sensory stimuli and motor actions are correlated with neural activity
in vivo while the organism freely interacts with a controlled environment.

Data acquisition and analysis can be achieved in different ways. For example,
a solution developed at the University of Edinburgh consists in placing LEDs on
the robot and using a camera connected to a frame grabber which provides posi-
tion data in real time [22]. However, this set up does not allow neuroethological
analysis, unless also controller data are integrated with the position acquisition
software. At our laboratory we have tested another approach, using the design
principles described above (figure 6). A device emitting laser beams at prede-
fined angles and frequencies was positioned in the environment and the Khepera



was equipped with an additional turret capabable of detecting laser beams and
computing in real-time the robot’s displacements. This computation was carried
out on a processor placed on the additional turret which did not interfere with
the main controller on the robot. Every 100 ms robot position and controller
variables where sent to a programmable acquisition software [4] which instanta-
neously processed and visualized data while the robot freely interacted with the
environment (figure 7).

6 Conclusion

It has been claimed elsewhere that evolutionary robotics might be limited to
simple experiments in highly controlled environments and might be applica-
ble only to few robotic platforms [24]. In this paper we have outlined a set of
hardware solutions and working methodologies that can be used for successfully
extending the evolutionary approach to complex environments, robots, and real-
world applications. The principles described in this paper are simple and general
enough to be implemented on a variety of different robotic setups, and have all
been exploited during various realization phases of the robots developed at our
laboratory.

Artificial evolution remains a very powerful and general technique for au-
tomatically developing autonomous robots expected to operate in partially un-
known environments and to investigate mechanisms of biological adaptive be-
havior. The time required to generate interesting solutions (which is comparable
or shorter than the time required by other learning techniques, such as reinforce-
ment learning) does not imply that the approach is not viable; it simply means
that one should use it only for problems where traditional AT methods fail to
produce interesting and useful controllers.

Acknowledgements

The authors wish to thank Edo Franzi and André Guignard for important con-
tributions in the design of the hardware components described above. Khepera
and Koala are trademarks of K-Team SA.

References

1. R. D. Beer and J. C. Gallagher. Evolving dynamical neural networks for adaptive
behavior. Adaptive Behavior, 1:91-122, 1992.

2. R. A. Brooks. Artificial Life and real robots. In F. J. Varela and P. Bourgine, edi-
tors, Toward a practice of autonomous systems: Proceedings of the First European
Conference on Artificial Life. The MIT Press/Bradford Books, Cambridge, MA,
1992.

3. R. A. Brooks and P. Maes, editors. Artificial Life IV. Proceedings of the Fourth
International Conference on Artificial Life, Cambridge, MA, 1994. MIT Press.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Y. Cheneval. Packlib, an interactive environment to develop modular software for
data processing. In J. Mira and F. Sandoval, editors, From Natural to Artificial
Neural Computation, IWANN-95, pages 673682, Malaga, 1995. Springer Verlag.
D. Cliff, P. Husbands, J. A. Meyer, and S. W. Wilson, editors. From Animals
to Animats: Proceedings of the Third International Conference on Simulation of
Adaptive Behavior, Cambridge, MA, 1994. MIT Press/Bradford Books.

D. T. Cliff. Computational neuroethology: a provisional manifesto. In J. A. Meyer
and S. W. Wilson, editors, From Animals to Animats: Proceedings of the First
International Conference on Simulation of Adaptive Behavior. MIT Press-Bradford
Books, Cambridge, MA, 1991.

D. Floreano. Emergence of Home-Based Foraging Strategies in Ecosystems of Neu-
ral Networks. In J. Meyer, H. L. Roitblat, and S. W. Wilson, editors, From Ani-
mals to Animats II: Proceedings of the Second International Conference on Simu-
lation of Adaptive Behavior. MIT Press-Bradford Books, Cambridge, MA, 1993.
D. Floreano, O. Miglino, and D. Parisi. Emergent complex behaviours in ecosys-
tems of neural networks. In E. Caianiello, editor, Parallel Architectures and Neural
Networks. World Scientific Press, Singapore, 1991.

D. Floreano and F. Mondada. Automatic Creation of an Autonomous Agent: Ge-
netic Evolution of a Neural-Network Driven Robot. In D. Cliff, P. Husbands,
J. Meyer, and S. W. Wilson, editors, From Animals to Animats III: Proceedings
of the Third International Conference on Simulation of Adaptive Behavior, pages
402-410. MIT Press-Bradford Books, Cambridge, MA, 1994.

D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile
robot. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26:396-407,
1996.

D. Floreano, S. Nolfi, and F. Mondada. Co-evolutionary Robotics: From Theory
to Practice. In preparation, 1997.

D. Floreano and J. I. Urzelai. Evolution and learning in autonomous robots. In
D. Mange and M. Tomassini, editors, Bio-Inspired Computing Systems. PPUR,
Lausanne, 1998.

F. Gomez and R. Miikkulainem. Incremental evolution of complex general behav-
ior. Adaptive Behavior, 5:317-342, 1997.

T. Gomi, editor. Ewolutionary Robotics. From intelligent robots to artificial life.
AAI Books, Kanata, Canada, 1997.

I. Harvey. Species Adaptation Genetic Algorithms: A basis for a continuing SAGA.
In F. J. Varela and P. Bourgine, editors, Toward a Practice of Autonomous Sys-
tems: Proceedings of the First European Conference on Artificial Life, pages 346—
354. MIT Press-Bradford Books, Cambridge, MA, 1992.

1. Harvey. Artificial evolution for real problems. In T. Gomi, editor, Evolutionary
Robotics, pages 187-220. AAI Books, Ontario, Canada, 1997.

1. Harvey, P. Husbands, and D. Cliff. Seeing The Light: Artificial Evolution, Real
Vision. In D. Cliff, P. Husbands, J. Meyer, and S. W. Wilson, editors, From Ani-
mals to Animats III: Proceedings of the Third International Conference on Simu-
lation of Adaptive Behavior. MIT Press-Bradford Books, Cambridge, MA, 1994.
1. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary
Robotics: The Sussex Approach. Robotics and Autonomous Systems, 20:205-224,
1997.

P. Husbands and I. Harvey, editors. Proceedings of the Fourth European Confer-
ence on Artificial Life, Cambridge, MA, 1997. MIT Press/Bradford Books.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

N. Jakobi. Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary
robotics. In P. Husbands and I. Harvey, editors, Proceedings of the 4th European
Conference on Artificial Life, Cambridge, MA, 1997. MIT Press.

C. G. Langton and K. Shimohara, editors. Artificial Life V. Proceedings of the
Fifth International Conference on Artificial Life, Cambridge, MA, 1997. MIT
Press.

H. H. Lund, E. de Ves Cuenca, and J. Hallam. A Simple Real-Time Mobile Robot
Tracking System. Technical Report 41, Dept. of Artificial Intelligence, University
of Edinburgh, 1996.

P. Maes, M. Matari¢, J-A. Meyer, J. Pollack, H. Roitblat, and S. Wilson, editors.
From Animals to Animats: Proceedings of the Fourth International Conference
on Simulation of Adaptive Behavior, Cambridge, MA, 1996. MIT Press/Bradford
Books.

M. Matari¢ and D. Cliff. Challenges in Evolving Controllers for Physical Robots.
Robotics and Autonomous Systems, 19(1):67-83, 1996.

J. A. Meyer, H. L. Roitblat, and S. W. Wilson, editors. From Animals to Animats:
Proceedings of the Second International Conference on Simulation of Adaptive Be-
havior, Cambridge, MA, 1993. MIT Press/Bradford Books.

O. Michel. Khepera simulator Package. LAMI, Swiss Federal Institute of Tech-
nology in Lausanne, Version 2.0 edition, 1996. Freeware mobile robot simulator
downloadable from http://diwww.epfl.ch/lami/team /michel/khep-sim/.

F. Mondada and E. Franzi. K218 Vision Turret User Manual. K-Team S.A., 1028
Prévérenges, Switzerland, Version 1.0 edition, 1995.

F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: A tool for
investigation in control algorithms. In T. Yoshikawa and F. Miyazaki, editors,
Proceedings of the Third International Symposium on Ezperimental Robotics, pages
501-513, Tokyo, 1993. Springer Verlag.

F. Moran, A. Moreno, J. J. Merelo, and Chacén P., editors. Proceedings of the
Third European Conference on Artificial Life, Berlin, 1995. Springer-Verlag.

J-D. Nicoud and O. Matthey. Developing intelligent micro-mechanisms. In Pro-
ceedings of the Conference on Micromechatronics and Human Science, Nagoya,
Japan, 1997. IEEE Press.

S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomous
robots: Different approaches in evolutionary robotics. In R. Brooks and P. Maes,
editors, Proceedings of the Fourth Workshop on Artificial Life, pages 190-197,
Boston, MA, 1994. MIT Press.

D. Parisi, F. Cecconi, and S. Nolfi. Econets: Neural networks that learn in an
environment. Network, 1:149-168, 1990.

This article was processed using the I*TEX macro package with LLNCS style



