
Augmented Markov Models

(Continuing Draft)

Dani Goldberg and Maja J Matari�c
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781
fdani,mataricg@usc.edu

Abstract

This technical report presents augmented Markov models (AMMs), and provides

detailed descriptions of their structure and one model construction algorithm. Aug-

mented Markov models are essentially probabilistic transition networks similar to hid-

den Markov models (HMMs), except that the hidden state assumption is removed.

Additional statistics (augmentations) are maintained in the links and nodes of AMMs

and may be employed in model construction and utilization. The model construc-

tion algorithm we present is designed to have relatively low computational and space

overheads, and provide useful models on-line and in real-time.

1 Introduction

An augmented Markov model (AMM) is essentially a �nite state automaton with probabil-
ities associated with transitions from state to state, similar to a Markov chain. AMMs may
also be viewed as a degenerate form of hidden Markov model (HMM) (Rabiner 1989) in
which the observation symbol probability in each state is 1:0 for a particular symbol and 0:0

for all of the remaining symbols. In other words, each state in the AMM recognizes (or gen-

erates) exactly one symbol. The removal of the observation symbol probability distributions
e�ectively removes the hidden state assumption in HMMs. AMMs di�er from a degenerate

HMM in that they incorporate additional statistics in model links and nodes which may be

used for dynamic model construction, modi�cation, and exploitation.

In this paper, we present a discrete �rst-order form of AMMs that is able to model
processes that su�ciently adhere to the following Markov property:

1. the state qt at any point in time t is dependent only on the state at the previous time
step. Thus, given two states si and sj, the transition probability pij is given by:

pij = P [qt = sijqt�1 = sj] (1)

1



2. the value of P [qt = sijqt�1 = sj ] is independent of the time t.

In the next section we present the structural components of AMMs.

1.1 Structure of AMMs

An AMM model is de�ned by the following �ve elements:

1. S, a set of symbols fs1; s2; : : : ; sMg recognized by the network.

2. A, a set of states (or nodes) fa1; a2; : : : ; aNg. Each state ai has four attributes:

� a
s
i , the symbol that the state recognizes, i.e., an element of S;

� a

�

i , the average number of time steps that the system remains in ai whenever it
enters that state;

� a
�2

i , the variance associated with a

�

i ;

� and a

p

i , the probability of remaining in ai in the next time step.

A special state, a
;
, represents the initial state of the system and possesses none of the

four attributes above.

3. B, an N�M transition matrix, where bi(k) contains the value of the state to transition

to if the current state is ai and symbol sk is observed. If asi = sk, then bi(k) = ai,
i.e., if the observed symbol is identical to the last symbol observed, then the system
remains in the current state.

4. L, a set of directed links fl1; l2; : : : ; lPg, connecting the states. Each link li has the
following six attributes:

� l

f

i , indicates the state from which the link begins, lfi 2 A;

� l
t
i, indicates the state to which the link connects, l

t
i 2 A. The following constraints

apply: a link can not start and end at the same state, lfi 6= l
t
i; and two links from

the same state can not go to states that accept the same symbol, 8i; j s.t. lfi = l

f

j ,

a
s

lt
i

6� a
s

lt
j

;

� l
�
i , stores the number of times the link has been traversed;

� l
�
i , stores the total number of time steps that the system has been in l

t
i, after �rst

having traversing the link;

� l
�2

i , contains the sum of squares of all the durations that comprise l�i ;

� and l

p

i is the probability of using the link at each time step, given the system is

in state lfi .

2



Because no two links can have the same value for both their from and to attributes,

they can not represent the same directed transition. Thus, N �1 � P � N(N �1): at

least N �1 links are needed to connect the non-initial states, and for a fully connected

network there are N(N � 1) links between the non-initial states. The link from a
;
is a

special link designated by l
;
, with l

f

;
= a

;
. l

;
is traversed exactly one time, and thus

l
�
i = 1 and we may set lpi = 0.

5. T , a set of elements ft1; t2; : : : ; tQg, each storing information on a particular two-link

traversal sequence entering and leaving a state. Each element ti has �ve attributes:

� t
e
i , the link entering the state, where tei 2 L, except that there is exactly one t

with t
e = ;;

� t
l
i, the link leaving the state, where tli 2 L and t

e
i 6= t

l
i;

� t
�
i , the number of times the two-link combination has been traversed;

� t
�
i , the total number of time steps that the system has been in the state that link

t
l
i connects to, after �rst having traversed ti;

� t
�2

i , the sum of the squares of all the durations that comprise t�i .

The bounds of Q are given by:

0; if P < 2
P � 1; if P � 2

)
� Q � N(N � 1)2:

In order for a two-link transition to exist there must be at least two links. If more than
two links exist, the fewest two-link transitions (P � 1 of them) are created when an
Euler path exists and is followed through the network. In a fully connected network,
each of the P = N(N � 1) links has a transition to N � 1 other links, giving us the

upper bound. Additionally, there is one special two-link transition, designated t
;
, with

t
e
;
= l

;
and t

�
;
= 1.

Given this notation, a degenerate HMM of the type mentioned in the Introduction would
be represented by S, asi , a

p

i , B, and l

p

i . The other elements provide the augmentation

necessary for model construction and utilization.

1.2 Generation of AMMs: Overview

The data used for constructing an AMM consist of a stream of symbols belonging to S. The
structure of AMMs naturally lends itself to the low cost incremental construction algorithm
we present now.

� Initialize the system by creating the initial state, a
;
.

� If the current input symbol has never been seen before, add it to S and create a state

that recognizes this symbol. Create a link from the current state to the new state and

make the transition. Add this transition to B and create the corresponding new entry

for T .

3



� If the current input symbol is the same as the last input symbol, then remain in the

current state. Update the appropriate values in A, L, and T for mean values and length

of time in the state. Recalculate the transition probabilities associated with that state

and its links.

� If the current input symbol has been seen before, but is di�erent from the last symbol,

transition to a state that accepts the new symbol. If the link for this transition does

not exist, create it.

� When transitioning from one state to another, update the variance a�
2

i for the state

being transitioned from, and the appropriate sum of squares values in L and T .

� When about to transition from one state to another, calculate the binomial mean and

variance for transitions in T with the same in-link. If the mean falls outside c times

the standard deviation, where usually 2 � c � 3, then split the current state, and
attach the current in-link (with its associated out-links, as indicated in T ) to the new
state. Using T , make all appropriate changes to the two states and their related links,

in order to keep all global probabilities consistent. Update T appropriately.

The above rules do not provide the complete semantics, but capture the general 
avor
of the model construction process. The �nal rule of the algorithm describes node splitting

and deserves further explanation. Since an AMM is constructed incrementally as training

data become available, it is important that there be some mechanism for model modi�cation
when new data invalidate the current structure of the model. This mechanism is provided

by node splitting which utilizes data from T and many of the statistics maintained in the

AMM, ensuring that the model remains consistent with the training data.
Note that there is relatively little computation involved in model construction. The

computational complexity per input symbol is at most O(N2) (for a fully connected network)
when a state is being split, and at most O(N) otherwise. In addition, the space complexity

is O(N3) for N fully connected states. In practice, the space complexity would probably
tend to fall between O(N) and O(N2) for something less than a fully connected graph. In
the next section, we present the details of the model construction algorithm.

2 Generation of AMMs: Details

In the pseudo-code that follows, the �ve elements of the AMM being constructed (i.e.,
S;A;B;L; T ) are global variables. The three variables 'Alast,' 'Llast,' and 'Tlast' are also
global and function as indices to the last valid element of A, L, and T , respectively.

2.1 Main Loop

Below we present the pseudo-code for the main loop of the algorithm that is executed for

every input symbol. At the start of the code, the variable 'sym' already holds the current

input symbol, and 'oldsym' holds the last input symbol. In addition, 'numsym' contains the

number of symbols observed in the current state, 'oldnode' stores the index of the last state

4



the system was in, 'currnode' stores the index of the current state, 'inlink' holds the index

of the link traversed to enter the current state, and 'outlink' holds the index of the link to

be traversed in leaving the current state.

1. if (oldsym == sym)

2. numsym = numsym + 1;

3. l
�
inlink

= l
�
inlink

+ 1;

4. t
�
Told

= t
�
Told

+ 1;

5. traversal prob(currnode);

6. else

7. l
�2

inlink = l
�2

inlink+ numsym2;

8. node prob(currnode);

9. t
�2

Told = t
�2

Told + numsym2;

10. if (sym 62 S)
11. S = S [ fsymg;
12. Alast = Alast + 1;

13. a
s
Alast = sym;

14. for i = 1 to Alast
15. b

s
i (sym) = Alast;

16. end
17. 8i j i 2 S; bAlast(i) = b1(i);

18. end
19. oldnode = currnode;
20. currnode = boldnode(sym);

21. outlink = i j (lfi == oldnode & l
t
i == currnode);

22. if (:9 outlink)

23. Llast = Llast + 1;

24. l

f

Llast = oldnode;

25. l
t
Llast = currnode;

26. outlink = Llast;
27. end

28. numsym = 1;

29. l
�
outlink = l

�
outlink + 1;

30. l
�
outlink = l

�
outlink + 1;

31. traversal prob(oldnode);
32. x1 = i j (tei == inlink & t

l
i == outlink);

33. if (:9 x1)

34. Tlast = Tlast + 1;
35. t

e
Tlast = inlink;

36. t
l
Tlast = outlink;

37. x1 = Tlast;
38. end

39. t
�
x1
= t

�
x1
+ 1;

40. Told = x1;

5



41. t
�
Told

= t
�
Told

+ 1;

42. outlink = do node split(oldnode, inlink, sym, outlink);

43. inlink = outlink;

44. end

2.2 Calculating Traversal Probabilities

The following pseudo-code function calculates the traversal probabilities associated with a
particular node and updates the appropriate statistics in the node and its links.

function ans = traversal prob(node)

1. x1 = fi j lti == nodeg;

2. n1 =
X

all i2x1

(l�i � l
�
i );

3. x2 = fi j lfi == nodeg;

4. n2 =
X

all i2x2

l
�
i ;

5. if (n1 + n2 6= 0)
6. a

p

node =
n1

n1+n2
;

7. l
p
x2
=

l�x2

n1+n2
;

8. end

2.3 Calculating Node Probabilities

The following function updates the mean and variance for the particular node passed as a
parameter.

function ans = node prob(currnode)

1. x1 = fi j lti == currnodeg;

2. n1 =
X

all i2x1

l
�

i ;

3. n2 =
X

all i2x1

l
�

i ;

4. mean = n2=n1;
5. a

�

currnode
= mean;

6. n3 =
X

all i2x1

l
�2

i ;

7. if (n1 > 1)

8. a
�2

currnode
= (n3 � 2 �mean � n2 + n1 �mean2)=(n1 � 1);

9. end

6



2.4 Node Splitting

This function determines whether node splitting is necessary, and if it it, splits the nodes
and creates new links and two-link transitions as appropriate.

function ol = do node split(oldnode,inlink,sym,outlink)

1. x = fi j lfi == oldnodeg;
2. 8i j i 2 x, pi = l

p

i ;

3. 8i j i 2 x, pi = pi=

0
@ X

all i2x

pi

1
A;

4. y = fi j te
�
== inlinkg;

5. 
ag = 0;

6. for j = 1 to jyj
7. m = ptlyj

� l�
inlink

;

8. s =
q
m � (1� ptlyj

);

9. if ((jt�yj j �m) > 2 � s)

10. 
ag = 1;
11. end
12. end
13. if (
ag == 1)
14. Alast = Alast + 1;

15. a
s
Alast = a

s

lt
inlink

;

16. 8i j si 2 S, bAlast(i) = blt
inlink

(i);

17. l
t
inlink = Alast;

18. b
l
f

inlink

(asAlast) = Alast;

19. bAlast(a
s
Alast) = Alast;

20. for j = 1 to jyj
21. Llast = Llast + 1;

22. l

f

Llast
= Alast;

23. n = t
l
yj
;

24. l
t
Llast = l

t
n;

25. l
�
Llast = t

�
yj
;

26. l
�
n = l

�
n � l

�
Llast

;

27. l
�
Llast = t

�
yj
;

28. l
�
n = l

�
n � l

�
Llast;

29. l
�2

Llast = t
�2

yj
;

30. l
�2

n = l
�2

n � l
�2

Llast;

31. x = fi j tei == ng;
32. z = fi j tli == ng;

33. r = t
�
yj
=

0
@ X

all i2z

t
�

i

1
A;

34. t
l
yj
= Llast;

7



35. for k = 1 to jxj
36. Tlast = Tlast + 1;

37. t
e
Tlast = Llast;

38. t
l
Tlast = t

l
xk
;

39. t
�
Tlast

= round(t�xk � r);
40. t

�
xk

= t
�
xk
� t

�
Tlast;

41. t
�
Tlast = round(t�xk � r);

42. t
�
xk

= t
�
xk
� t

�
Tlast;

43. t
�2

Tlast = round(t�
2

xk
� r);

44. t
�2

xk
= t

�2

xk
� t

�2

Tlast
;

45. end

46. end
47. node prob(Alast);

48. traversal prob(Alast);
49. node prob(oldnode);
50. traversal prob(oldnode);

51. outlink = i j (lfi == Alast & l
t
i == bAlast(sym));

52. end

53. ol = outlink;

2.5 Operations on AMMs

Aside from construction, there are two general operations that may be performed on a given
AMM: generating data, and calculating the probability of a symbol sequence.

2.5.1 Data Generation

Data generation using a given AMM is analogous to simulating the data generating process
that the AMM is modeling. If the AMM is a good model of that process, the original data

and the generated data will \look" alike. The algorithm for data generation is as follows:

1. Begin at some initial state.

2. Generate the symbol that the current state accepts.

3. Select a transition to the next state according the probability distribution for the

current state and all links leading from that state. Make the transition.

4. Return to step 2.

2.5.2 Probability of a Symbol Sequence

Given an AMM M and a sequence of symbols O = fO1; O2; : : : ; Okg, where Oi 2 S, we wish

to calculate P (OjM). This may be done in a straightforward manner using the following

algorithm:

8



1. Repeat the following for each state ai 2 A that accepts the symbol O1, considering it

the initial state:

(a) Initialize the probability pi = 1.

(b) For each symbol from O2; :::; Ok in turn: make a transition from the current state

to the state that accepts that symbol, multiply pi by the probability of that
transition, and set the current state to be the new state. If no such transition

exists, then set pi = 0.

2. P (OjM) = max
i

pi.

3 Continuing Work

This technical report is a work in progress. As such, there are several sections yet to be added
as well as possible elaborations of sections already present. Most of the issues that we are

currently exploring involve the theoretical properties of our model construction algorithm.
We are in the process of characterizing the subset of AMMs that the algorithm captures. This
involves understanding the e�ects of maintaining statistics solely on two-link transitions, as
opposed to, or in addition to, higher order transitions. There is also the issue of whether

two AMMs generated using data from the same underlying process will converge to be

functionally equivalent, and if so, under what conditions they will also be topologically
equivalent. Updates of this technical report will periodically become available.

Acknowledgments The research reported here was conducted at the Interaction Lab, part
of the Robotics Research Lab at the University of Southern California Computer Science
Department. The work is supported by the O�ce of Naval Research Grant N00014-95-1-

0759 and the National Science Foundation Infrastructure Grant CDA-9512448.

References

Gat, E. (1998), On Three-Layer Architectures, in D. Kortenkamp, R. P. Bonnasso & R. Mur-

phy, eds, `Arti�cial Intelligence and Mobile Robotics', AAAI Press.

Matari�c, M. J. (1997), `Behavior-Based Control: Examples from Navigation, Learning, and

Group Behavior', Journal of Experimental and Theoretical Arti�cial Intelligence 9(2{

3), 323{336.

Rabiner, L. R. (1989), `A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition', Proceedings of the IEEE 77(2), 257{285.

9


