
Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR2000-364.ps.Z

Landmarks for absolute localization

Jon Howell
Keith Kotay

Technical Report TR2000-364
Department of Computer Science

Dartmouth College
Hanover, NH 03755-3510
jonh@cs.dartmouth.edu

Abstract

For certain experiments in mobile robotics, it is
convenient to eliminate positional estimation er-
ror in the interest of analyzing other parts of
the experiment. We designed and implemented
a simple, accurate scheme for encoding and re-
covering absolute position information. The en-
coding is a two-dimensional image printed on the
plane of the floor, and the absolute position in-
formation is recovered using a downward-looking
video camera mounted on a mobile robot.

1 Introduction

In any scientific undertaking, it is important to
hold control variables constant so that one can
examine the experimental variables carefully. In
our experiments with mobile robotics, we had
certain experiments that would have been facil-
itated if the variable of positional or odometry
error could have been eliminated. This inspired
us to design a laboratory tool that could do just
that: provide simple, inexpensive, and accurate
position information over the plane of the floor,
eliminating positional uncertainty from those ex-
periments where it intrudes as an irrelevant vari-
able. The tool might also be useful in a factory,
warehouse, or any other location that admits an
engineered environment.

The idea is to print a visual pattern on the
floor of the robots’ environment. We imagine

printing a pattern on large-format electrostatic
plotters and adhering the sheets to the floor
of our lab. On one of our mobile robots, we
mounted a low-resolution black and white video
camera pointed at the floor (see Figure 1). From
any position in the room, the robot should be
able to capture a single video frame and recover
its position and orientation.

Figure 1: Our mobile robot Clyde captures an
image from a sample region of the pattern.

We devised two solutions, described in the fol-
lowing two sections. The first solution requires
an environmental image with three levels of grey;
the second reduces the requirement to a binary
image. We discuss future directions in Section 4.

1



2 The ternary pattern

In the sample in Figure 2, the ternary cells are ar-
ranged into 5x5 super-cells. Three of the cells are
grey control bits, sixteen are black or white data
bits, and six are unused (always white). Eight
data bits convey information about the x dimen-
sion, and eight communicate the y dimension.

Figure 2: A sample of the 5× 5 ternary pattern.

2.1 Analyzing an image

Figure 3 shows a sample frame captured from
the robot’s camera. In this section, we describe
each of the steps required to recover the pose
(position and orientation) information from the
image.

First, artifacts from the capturing process are
removed. The black band at the top of the im-
age is cropped, and image is widened to correct
the aspect ratio (so that squares in the pattern
appear as squares in the image). Barrel distor-
tion is a common artifact of inexpensive wide-
angle lenses. It causes features at the edge of
the image to appear smaller than identical fea-
tures at the center [Tsa87]. This distortion is
removed, producing an image that appears flat
(Figure 4). The vector at the center of the image
is the optical center of the camera; it is the po-
sition for which we will determine absolute pose.
The robot’s pose is thus a constant offset from

Figure 3: A raw image captured by our mo-
bile robot Clyde with a downward-pointing video
camera The image is 256× 240 pixels.

that location determined by how the camera is
mounted to the robot.

Each pixel value in the image is thresholded
to one of the three possible values white, grey,
or black. The image is then convolved with
an edge-detection filter that highlights edges of
sharp contrast, as shown in Figure 5. The edge-
detected image is cropped to a circle so that no
orientation of line has a disproportionate contri-
bution in the next step.

A Hough transform maps the points in the
edge-detected image into a dual space in which
each point represents a line in the original image
[IK88]. The brightest points in the Hough map
correspond to the lines in the original image that
pass through the most edge-detected points.

The peaks in the Hough space represent a set
of equations for lines, rather than the pixels in
the raster image that appear as lines to the hu-
man eye. In Figure 6, we show the image from
Figure 4 with the recovered lines drawn in. The
slope of the lines tell us how far we are rotated
from one of the four axes (or compass points);
the line intersection nearest the origin (in robot
space) is used to recover the offset of the robot’s

2



Figure 4: The image with the barrel distortion
due to the camera lens removed.

origin from the ternary cell edges.
We apply both corrections to the image. We

rotate it between 0 and 90 degrees to make the
detected lines orthogonal to the robot (camera)
axes, and we translate it on the order of the size
one cell to put the corner of a cell at the ori-
gin (image center). The algorithm stores the ap-
plied corrections in a matrix that is used later to
recover the original fine-grained position of the
robot and camera.

The remaining task is to retrieve the coarse-
grained information: the four-way rotational
symmetry must be resolved, and we need to re-
cover the “address” of the cell at the origin of the
image. Figure 7 shows the aligned image. This
particular image was rotated 80 degrees counter-
clockwise from Figure 4.

The center of each cell is averaged and thresh-
olded to recover its ternary value (white, grey,
or black). At this point, we have found a 5 × 5
supercell in the image, and we know our position
accurately with respect to the supercell.

2.2 Control encoding

Each cell is black, white, or grey. Grey cells are
control cells, used to identify the offset and ori-
entation of a supercell in a field of cells. The
black and white bits encode the address of the
cell in binary.

Figure 5: The image after applying an edge-
detection filter.

The control cells uniquely identify the orien-
tation of the image. In a canonically oriented
supercell, control cells (C) are interleaved with
data cells (d) in this way:

d d d d d
C d d d d
d d d d d
d d d d d
C d d C d

The lower-left control cell is called the “base.”
The control bits are tiled uniformly across the

floor pattern, so we can pretend that the control
bits in the image wrap around the edges of the
image; that is, we can do cell math modulo 5. In
any orientation, the base control bit is the only
one with the property that two control bits ap-
pear at cell base + (3, 0) · T and base + (0, 3) · T ,
where T is one of the four 90-degree rotations.
This test identifies the lower-left grey cell in Fig-
ure 7 as the control cell, and further indicates
that the image is 180 degrees rotated from the
canonical orientation. This rotational correction
is applied (and stored for later recovery), giving
the following canonically-oriented supercell:

0 0 0 1 0
0 0 0 1 0
0 1 C 1 C
1 0 0 1 0
0 0 0 0 C

3



Figure 6: The image with the detected lines su-
perimposed. (The two orthogonal segments are
the axes in robot space, not spuriously detected
lines.)

Figure 7: The image aligned to the axes of the
camera. The centers of the cells are sampled for
their value; hash marks indicate the intermediate
regions where the pixel values are ignored.

We know that the upper-right Cis the base
control bit, so we are actually seeing the junction
of four supercells:

0 0 0 1 0
0 0 0 1 0
0 1 C 1 C
1 0 0 1 0
0 0 0 0 C

2.3 Data encoding

Now we explain how the data bits are laid out in
a supercell. The x bits occupy two rows of the
supercell, and the y bits occupy two columns.

The most significant bits of the x value run down
the center of a supercell, and the most significant
bits of the y value run across the center. The
least significant bits run across the top row and
down the right column.

y3 y2 x7 y1 y0

C x6 x2

y7 y6 x5 y5 y4

x4 x1

C x3 C x0

In any 5× 5 view of the floor pattern, we will
be able to see at least nine cells of some supercell.
Our image is represented again below with the
assignments of values to each variable according
to Figure 7; the upper-left supercell is the most
visible one, so we will extract its address using
information from all four of the visible supercells.

y6 = 0 x5 = 0 y5 = 0 y4 = 1 y7 = 0
x4 = 0 x1 = 1
x3 = 1 C x0 = 1 C

y2 = 1 x7 = 0 y1 = 0 y0 = 1 y3 = 0
x6 = 0 x2 = 0 C

Because x values run down columns, x7 and
x6 that we can see in the neighboring cell below
must be the same as those we cannot see in our
target cell because they appear above x5. Like-
wise, x2 from the cell below corresponds with x1

and x0. Since both columns of x bits run through
our target cell, we can simply concatenate them
together into an eight-bit value that gives the x-
coordinate of this supercell as 000010112 = 1110.

The y-coordinate is a bit trickier. Again,
y7 from the neighboring supercell to the right
can still be used, because that supercell has the
same y-coordinate. But the least-significant y
bits appear in the supercells in the row below.
Therefore, we extract y3, y2, y1, y0, add one, and
perform a bitwise-and with 11112 to figure out
what the least-significant y bits in our target
cell would be if they were visible. In this case,
y3, y2, y1, y0 = 01012 + 1 mod 11112 = 01102.
Combined with the most significant bits, we ar-
rive at a y-coordinate of 000101102 = 2210.

Cells in our implementation are 1 cm × 1 cm,
so the supercell at (11, 22) is (55, 110) centime-
ters from the world-space origin. We add (1,−2)

4



centimeters to account for the offset of the base
cell: the view was not centered over the super-
cell, but over a point 1 cell to the right and 2
cells below center.

2.4 Recovering world-space coordi-
nates

At each step of this process, we have recovered
a matrix which transforms the image from robot
coordinates toward world coordinates. The indi-
vidual transformations are listed here:

• A rotation orients the cells orthogonal to the
axes of the image.

• A translation usually less than one cell in
magnitude aligns the cell boundaries with
the center of the image.

• A 0, 90, 180, or 270 degree rotation orients
the control cells canonically.

• A translation of up to four cells accounts for
the base control cell not appearing in the
lower-left corner of the view.

• A translation by multiples of five cells (su-
percells) accounts for the address encoded
in the measured supercell.

The resulting transformation in SE(2) de-
scribes absolutely the robot’s position and orien-
tation in world coordinates. Notice that the res-
olution is indeed finer than one centimeter (cell
size); since the first two transformations encode
pixel-level details, the resolution of the algorithm
is limited only by the resolution of the camera
and the success of the hough transform in accu-
rately recovering lines in the edge-detected im-
age. The latter has proven to be very robust,
since our images are composed of features ori-
ented at two orthogonal angles.

2.5 Characteristics and limitations

The ternary supercell encoding given here sup-
ports eight bits of address in each dimension, giv-
ing it a scope of 256 × 256 supercells. Used with
our 1cm cells, it could cover a floor 12.80 meters

on a side. By extending the neighboring cell re-
covery argument used above to recover y3 . . . y0,
the six unused cells could be stuffed with data,
covering a space 102.4 meters on a side.

Clearly the supercells could be enlarged to
store more bits and address a larger space. En-
larging the supercells requires a tradeoff: either
the camera must have a larger view of the floor,
or a higher-resolution view, or the algorithm may
become less robust as the cells in the image are
represented with fewer pixels.

Although we have not performed quantitative
experiments with this algorithm, its performance
in our ad-hoc experimentation was quite robust.

3 The binary pattern

One of the unattractive features of the algorithm
above is that it requires ternary cells. Ternary
cells “waste” information, because only three of
the cells (the control cells) can possibly contain
the third value; the others are always binary.
Therefore as n grows, the information density
(as a fraction of bits) limits to log23.

The diagram in Figure 8 gives the binary pat-
tern we designed. The strip of black bits across
the top and left are a control channel to identify
the boundaries of the supercells. The diagonal
strip of white bits ensures that no other bit pat-
tern will result in the accidental formation of an
n-bit long sequence of black bits that could be
mistaken for the black boundary control chan-
nel. The black bit at upper right and the white
bit at lower right serve to disambiguate the four
rotational symmetries of the pattern. Once we
find the black control channels, the four control
bits at the corners will always be one black and
three white.

The remaining spaces can be filled with data
bits. In this example, the 6 × 6 grid provides
space for an 18-bit data channel, which can ad-
dress a 512×512-supercell grid. The formula for
the number of data bits in an n× n supercell is:

5



Figure 8: A supercell encoded in a binary (two-
level) image. The thick border delimits the su-
percell.

supercell width data bits (total)
n n2 − 3n
4 4
5 10
6 18
7 28
8 40

Have we been more careful with the informa-
tion density? A ternary supercell of size n × n
has the following information density, computed
in terms of binary bits:

(n2 − 3) + log2(4n2)
log23n2

The first term in the numerator reflects the
n2 − 3 available binary data cells, and the sec-
ond term accounts for the rotational and trans-
lational symmetries resolved by the control bits.
A binary supercell of size n× n, in contrast, has
the following information density:

(n2 − 3n) + log2(4n2)
n2

Both functions are plotted in Figure 9. Cases
where n ≤ 2 are degenerate. In cases 2 < n ≤ 6,

the ternary supercells are more efficient. Af-
ter n ≥ 7, however, the functions cross and
approach their separate asymptotes; the binary
function approaches 1 (efficient encoding), while
the ternary function limits to log23, since it
wastes one of three potential values in most of
its cells.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
information density

log
2
3

 6.1

ternary supercells
binary supercells 

Figure 9: The control channel used in binary su-
percells (solid line) is less wasteful of encoded
information density than that in ternary super-
cells.

4 Future directions

Although the photos above are genuine snap-
shots of the working system, we never built a
whole floor using our encoding for use in the lab
as a substrate for other experiments. We have,
however, considered some interesting extensions.

Error-check bits. It would be useful to al-
locate some of the data in a supercell to en-
code error-checking bits, to protect against mis-
takes in the long chain of image transformations.
Error-correcting may be less practical, since the
encoding is not generally robots against errors in
the control channel.

Discrete sensors. It would be nice to re-
duce the hardware requirements for this system.

6



One approach would be to use a strip of eleven
reflective optical sensors spaced 1/2 cell apart,
and sample them every 1/2-cell using the robot’s
shaft encoders to measure local forward motion.
The Nyquist limit suggests that this should be
enough samples to recover a usable image. How-
ever, we may need more clever tricks to recover
rotational information. Perhaps we could record
far more samples in the rolling dimension, in-
creasing our resolution enough in that dimension
to infer the slopes of lines the robot crosses at an
angle.

Spread spectrum. We do not know much
about it, but it seems like a way to achieve error
checking and correction using redundancy with-
out spatial control channels. It may enable us
to do so using two level bits, and perhaps even
allow us reduce the number of input sensors to
one by encoding information in both horizontal
and vertical frequency channels.

Imagine that (x, y)-tuples are encoded in rows
in one “image”, and in columns in another. A
third and fourth image each encode a strictly-
increasing signal along the x and y dimensions,
respectively. All four signals are encoded in sep-
arate spectral bands. The floor image is the sum
of all four channels. We are not sure whether
this sum can be done in a two-level image, but
it would seem so.

Now, a sufficiently-long line segment of any
orientation will read at least one (x, y)-tuple
channel, and at least one strictly-increasing
signal. The tuple directly communicates the
robot’s position. The arctangent of the relative
“lengths” of the two increasing signal channels
gives the angle of the line segment’s path. That
line-segment could be provided by an input de-
vice as simple as a single reflective optical sensor,
perhaps using the robots’ wheel shaft encoders to
more accurately normalize the signal to spatial
distance.

Less intrusive environment modifica-
tions. The previous item dealt with how to re-
duce the on-robot requirements. Here we con-
sider ways to reduce the environment require-
ments; that is, alternatives to printing a pattern
to cover the entire floor of the laboratory.

• Tileability. One complaint is that we cannot
just produce one kind of floor tile to install
repeatedly. We see no obvious way around
this problem, since any repeating tile nec-
essarily contains no locally-visible, globally-
unique information. One could imagine a
specific arrangement of a small set of tiles,
but in the limit this is simply our specific
arrangement of two or three very small tiles
(black, white, and perhaps grey).

• Projection. One possibility is to project the
pattern onto the floor, a wall, or the ceil-
ing using infrared light, and pick it up us-
ing a CCD camera with an infrared-pass fil-
ter. We would need to deal with shadows
(the robot’s own shadow could interfere with
a floor projection) and occlusion (the light
fixtures could interfere with a ceiling pro-
jection). With a discrete- or single-sensor
encoding, we could focus the image onto
a plane at some constant height above the
floor, and have an upward-pointing sensor
on the robot pick up the projected image as
the robot moves.

• Stochastic labels. Another approach would
be to supply the laboratory with a big stack
of labels, each with a spread-spectrum or
bar code tile. These labels would be stuck to
the floor at random intervals. A robot would
get an absolute fix whenever it happened
to pass over a label; it would use dead-
reckoning in between labels. If it became
disoriented, it would use a wall-following or
space-filling strategy to attempt to cover
ground until it passed over a label. An
initial calibration would be required to es-
tablish known positions and orientations for
each of the labels. Another advantage of
this approach is that damage to the floor is
trivially repaired: apply a new sticker, and
calibrate it.

5 History

This document describes work done in the Dart-
mouth Robotics Laboratory in April of 1997 and

7



August of 1999. It was previously “published” as
a web page, but we thought it would make sense
to document it more permanently.

Keith initially framed the problem around
April of 1997. We first approached it by trying
to generate fields of black and white cells with
the property that a given section of the image
would be unique with respect to any translation.
We initially attempted to generate the field in a
brute-force way, by generating new random bits
and checking each against every existing bit pat-
tern. Not surprisingly, brute force was too slow.
Perhaps it could have been improved with more
thoughtful data structures. Then we came up
with the deterministic ternary layout.

In August of 1999, we revisited the prob-
lem long enough to generate the binary layout.
Upon hearing about the problem, attendees at
the Workshop on Algorithmic Foundations of
Robotics in March 2000 gave us positive feed-
back, which led to our publishing this technical
report.

6 Summary

We have presented optical encodings that have
a specific property useful to localization: any
n×n region of the encoding contains enough in-
formation to unambiguously resolve the location
of the region in the three degrees of freedom of
the plane. We described both our initial ternary
encoding, and a revised two-value encoding that
is more information-frugal. We also detailed the
process used to extract the position information
from a sampled image. The encoding allows us
to recover positional information up to the reso-
lution of the sensed image, not just the resolution
of the encoded cells.

The encoding has practical applications in any
environment where an untethered agent roams
over a large, “paintable” surface, and benefits
from localization with only local sensing of the
painted surface. We described promising future
directions for our approach to landmarking.

Acknowledgements

Thanks to Daniela Rus for providing the great
infrastructure of the Dartmouth Robotics Labo-
ratory.

References

[IK88] J. Illingworth and J. Kittler. A survey of
the Hough transform. Computer Vision,
Graphics, and Image Processing,
44(1):87–116, October 1988.

[Tsa87] R.Y. Tsai. A versatile camera calibration
technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV
cameras and lenses. IEEE Journal of
Robotics and Automation,
RA-3(4):323–344, 1987.

8


