
Practical Mobile Robot Self-Localization

Jon Howell Bruce Randall Donald∗

Department of Computer Science Department of Computer Science
Dartmouth College Dartmouth College
Hanover, NH 03755 Hanover, NH 03755

jonh@cs.dartmouth.edu brd@cs.dartmouth.edu

Abstract

A mapmaking robot integrates accumulated sensor
data into a data structure that can be used for future
localization or planning operations. Localization is
the process of determining the robot’s location within
its environment. This paper describes experiments in
which a robot simultaneously makes a map and local-
izes to that map. The map is a collection of tangent
vectors constructed from stored sonar readings local-
ized to a series of estimated poses. The vectors retain
sensed surface normal information to improve accu-
racy. The localization scheme is a Hough transform
into a space described by the robot’s current sonar
scan. The Hough transform finds a best fit in the pres-
ence of both sporadic sensor noise and discretization
error.

1 Introduction

In their work on mapmaking and localization,
Brown and Donald describe a localization algorithm
based on feasible poses [3, 4]. A feasible pose is a pose
consistent with available sensor and map information.
For example, if the robot has a range sensor reading
indicating an obstacle two meters due North, then any
position two meters south of an obstacle edge in the
map is a feasible pose. By intersecting the feasible
poses for several sensor readings (for example, range
data at different angles), the set of feasible poses be-
comes small, leaving only those poses that cannot be
disambiguated by the available data. The availability
of a prior pose estimate (perhaps informed by odom-
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etry data) allows the robot to select the most likely
pose.

Sensor error may cause the intersection of feasible
poses to be empty. We can account for sensor inac-
curacy by constructing an error ball about the sensor
values, or equivalently, blurring the map. Gross er-
rors in sensor data can be absorbed by omitting some
sensor readings; the final intersection must account for
some threshold of the available sensor data, or perhaps
as many sensor readings as can be used (a maximum
vote) without producing an empty intersection of fea-
sible poses.

Brown and Donald’s paper describes a geometric
approach to computing feasible poses, and analyzes
its computational complexity. It also gives an ap-
proximate algorithm for the same problem using fast
rasterized operations on a statistical occupancy grid.
The work described herein extends upon the previous
approximate algorithm in the following ways: First,
we cast the feasible pose intersection operation as a
Hough transform into a space modulo the outline of
current range readings. This allows us to easily cap-
ture both the blurring and voting operations that ac-
count for different kinds of sensor error. Second, our
map data includes surface normal information avail-
able using sonar sensors, which tightens the set of fea-
sible poses induced by a given sensor reading. Third,
we integrate mapmaking and localization: the map
contributes to producing correct localization informa-
tion, and the localization is used to position new sensor
data on the map.

Our approach to mobile robot self-localization and
map making, based on the algorithmic framework for
self-localization in [4], contains no notion of explicit
landmarks. This contrasts with Extended Kalman Fil-
ter (EKF) approaches (e.g., [24]) employed in earlier
Simultaneous Localization and Map Making (SLAM)
techniques [7, 16].



2 The model

Many robots are either given a reliable map and
asked to localize themselves, or given reliable posi-
tion information and asked to construct a map. Our
goal was to program a robot to perform both opera-
tions simultaneously. In our system, the robot begins
by taking a sonar sounding, which produces a polar
distance map of the robot’s immediate neighborhood.
The robot is assumed to be at the origin (0, 0), and
these initial soundings are taken to be the robot’s ini-
tial map.

Then the robot moves in some direction, stops, and
takes another sounding. This sounding is localized
against the map, returning a most likely location of the
robot relative to the origin. The soundings are then
shifted to the robot’s now-known position, and con-
tributed to the map. This cycle repeats indefinitely as
the robot explores; at each step, the soundings point-
ing “behind” the robot’s path help it localize itself,
and the soundings pointing “ahead” contribute new
information to the map. Our current system does not
yet address goal planning; but one could imagine spec-
ifying a goal as a geometric landmark (‘pose’) on the
robot-made map.

3 Related Work

There is a large literature on localization and pose-
estimation. Guibas, Motwani and Raghavan present
an O(m + logn + A) algorithm for localization, where
m and n are the number of vertices in the visibility
polygon and the world polygon, respectively, and A is
the size of the output. The authors do not address
uncertainty [11]. Kleinberg provides an online search
algorithm by which a mobile robot moving within its
environment can uniquely determine its location with-
out access to an a priori map [13]. Localization work
using beacons or landmarks includes [18, 12, 15, 14].
Several attempts have been made to use computer vi-
sion to detect and locate beacons (see [5, 1, 22], for
example).

Drumheller [6] used the interpretation-tree-based
two-dimensional matching algorithm of Lozano-Pérez
and Grimson [10] and an a priori line-drawn map of
the environment to produce interpretations (lists of
possible (sonar segment/wall) pairings). This is simi-
lar to several matching algorithms based on the Hough
Transform. See, for example, [23]. Beveridge and
Riseman [2] use a 3D, perspective-based computer vi-
sion matching algorithm to track a robot’s progress
as it navigates in hallways. [17] present a sonar sen-

sor which is capable of tracking environment features.
Moravec and Elfes introduced the statistical occupancy
grid method of map-making in [8, 19, 20] as a way of
making detailed geometric maps using noisy sensors.
Takeda and Latombe [25] approach the problem of mo-
tion planning with uncertainty by computing a sensory
uncertainty field for each configuration in the robot’s
configuration space. Ratering and Gini [21] describe a
hybrid potential field, which combines a global, a priori
potential field, generated from the robot’s map with a
local potential field generated from instantaneous sen-
sory data. Thrun, Fox and co-workers have employed
Monte Carlo approximations for localization and map
making [9].

4 Experimental setup

The data used in these experiments were collected
from the RWI B14 robot named Bonnie that resides in
the Dartmouth Robotics Lab. The environment con-
sists of the assorted desks, chairs, robots, and card-
board boxes strewn about the lab. The robot has six-
teen sonar transducers evenly spaced 22.5◦ apart. By
rotating the robot’s body in small increments and tak-
ing soundings from every sensor, we simulated a ring
of 128 sensors at 2.8◦ spacing.

A sonar sensor measures the time-of-flight of a burst
of sound. Sonar can see a “cone” of about 22◦ arc, so
it blurs the boundaries of the objects it sees. The
return value is a single number representing the first
echo above some threshold amplitude, so the blur is a
box convolution in polar coordinates. If sonar hits a
surface at a wide angle from the surface normal, the
signal may not return, or it may bounce off a second
surface and return a measurement along some bent
path, useless for our purposes.

In a typical run, the robot collects a set of sonar
samples, estimates its pose, updates its map, plans its
next motion, moves, and the cycle repeats. Because
we did not address planning, a human simulates a soft-
ware planner by viewing the map and entering a new
destination into the control program. The online algo-
rithm lends itself to repeatable offline simulation since
we can replace real online input with input recorded
on a previous run. This property facilitates repeatable
experimental results and easy validation of proposed
improvements to the algorithm.

When the map exceeds a specified size (in our exper-
iments, 1500 samples), samples are randomly culled to
reduce the map size. Culling provides two benefits: it
bounds the computation time of the algorithm, and it
“ages” old information. If a chair moves in the world,



the representation of the chair on the robot’s map will
fade with time. Walls and other static features are
constantly reinforced by new measurements. By vary-
ing the parameters of this process we can trade off
between agility and stability in the map.

We calibrated the sonar by placing a box at known
distances from 1 m to 4 m from the robot, and reading
the sonar value. The returned values and the known
values had a very close to linear relationship, which is
not surprising: sound travels at a constant speed, and
time is one quantity we can “sense” with high preci-
sion. All of the sonar soundings were mapped through
the measured linear function to produce a distance
value in millimeters. We also produced a histogram
of the entire collection of 7,616 sonar readings, shown
in Figure 1. Low values (less than 200) are reflections
from the cables hanging off the robot; high values are
always 16384, a sentinel meaning “no echo received.”
These thresholds were used to remove useless values
from the input data.
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Figure 1: A histogram of 7168 sonar readings taken
around the room, showing low and high garbage val-
ues.

We performed three experiments. The first deter-
mined how well the localization part of the algorithm
performs given an accurate map. The second extended
the algorithm to include orientation localization, and
measured the accuracy of the orientation estimated
by the algorithm. The third evaluated the entire algo-
rithm, wherein the robot alternately localized its po-
sition using its existing map, then extended its map
using the newly-localized sonar samples.

5 Localization Experiment

The localization experiment was designed to deter-
mine how well the robot could find itself given an ex-
isting map, a set of sonar readings, and a known ori-
entation. To measure the positional accuracy of the
algorithm, we manually placed the robot at twenty-
eight different locations in the lab, and took soundings
of the sonar surface around the robot at each location.
In each case, we positioned the robot over the intersec-
tion of the steel floor tiles rather than using the robot’s
own locomotion, so that we could measure the robot’s
pose with some accuracy (position to within about a
centimeter, and orientation to within a few degrees).
See Figure 2.

Figure 2: A hand-drawn map of the environment. Cir-
cles at intersections of the two-foot tiles show the lo-
cations where soundings were taken.

The experiment consisted of 28 trials. In each trial,
the sonar readings from one of the 28 positions was
removed into a test set. The remaining readings were
combined with the known location of the robot when
each was taken to create the “known map” (see Fig-
ure 3). Some fraction (frequently 13/16) of all sonar
readings was discarded to make the algorithm run
more quickly.

The test set of sonar readings consists of angles and
distances from the robot’s center, but the robot’s lo-
cation relative to the map is unknown. Hence, we
compare each test sonar value with every map vec-
tor. The map vectors represent the position and
the very approximate normal of some observed sur-
face in the environment. Therefore, those pairs of
〈test vector , map vector〉 that did not agree to within
some threshold were discarded. (We chose a threshold
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Figure 3: The known map: all 6414 valid sonar read-
ings. Each vector points back at the position of the
robot when that reading was taken; the vector’s dis-
tance from the robot’s position is equal to the distance
value sensed by sonar.

of 30◦ experimentally.) The idea is that a map vec-
tor represents an “outside” surface of some object; it
is unlikely that a test vector “sees” that surface from
behind or from a shallow angle.

The remaining pairs “vote” for the most feasible
pose of the robot. The position of the map vector
is added to the negative of the test vector to locate
where the robot would have to have been for the test
vector to represent a reflection off of the same surface
responsible for the map vector. Each vote contributes
a small value to a raster image. The location with the
most votes is taken to be the most likely location of
the robot. See Figure 4.

This transformation is a specialized Hough trans-
form. A Hough transform maps points from a Carte-
sian space into a space representing the degrees of free-
dom of some geometric figure. For example, a linear
Hough space might have two axes, one representing the
angle of a line and the other representing the offset of
the line from the center of the Cartesian space. When
one transforms an image from Cartesian space, each
point in the image contributes a vote for every line
in the Hough space that passes through that point in
Cartesian space. Wherever a line appears in the orig-
inal image, votes for that line pile up in the Hough
transform. The highest votes can be read directly out
of the Hough space as equations for dominant lines in
the source image.

Our algorithm is very similar, but instead of trans-
forming to the Hough space of geometric lines or cir-
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Figure 4: A collection of votes. Darker spots received
more votes, and thus represent “more feasible” poses.

cles, we transform to a Hough space representing the
surface of range measurements formed by the test vec-
tors. The axes of our Hough space are simply the x
and y coordinates of the origin the test vectors. Just
as in the linear case, the voting process causes the
“dark spots” in the Hough space to represent equa-
tions (locations) of the dominant occurrences of the
test surface in the map.

The surface of votes is very spiky, due to the spo-
radic nature of sonar samples of the environment. In
fact, the map vectors can only be considered a guess
at the location of the reflecting surface, because of the
signal blur mentioned earlier. Therefore, we convolve
the vote raster with a two-dimensional Gaussian sur-
face to smooth it. Because of the choice of axes in
our Hough transform, this is equivalent to but faster
than blurring the sonar samples on the map directly.
Figure 5 shows the smoothed vote surface superim-
posed with the known map (short vectors) and the
star-shaped set of test vectors translated to the loca-
tion of the maximum value on the vote surface.

To quantify the reliability of this algorithm, we ran
it for all 28 test vectors, and repeated each run with
1/16, 2/16, and 3/16 of the map data. The results are
displayed in Table 1.

A “wild error” is defined as an error more than half
a meter away from the known location where the sam-
ple was originally taken. Generally, these occurred
when the sample was taken in a sparsely-populated
corner of the map (the lower-right leg in the L-shaped
region visible in Figure 3), and an approximate match
in a heavily-populated section was able to outvote the
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Figure 5: A successful localization. The star of vectors
represent the sensed range data, sprouting from the
computed pose of the robot on the map.

fraction raster wild tame
of sonar res. errors errors
samples mean σ

1/16 10.7% 91 mm 48 mm
2/16 47 mm 3.6% 54 mm 28 mm
3/16 7.1% 47 mm 20 mm

1/16 10.7% 86 mm 49 mm
2/16 24 mm 3.6% 46 mm 25 mm
3/16 3.6% 34 mm 19 mm

Table 1: Rate of erroneously localized test samples as
more sonar samples are made available.

correct position. These gross errors could be easily de-
tected and eliminated if an estimated pose were avail-
able, for with a prior localization plus the results of
odometry over a short distance, the robot could es-
timate its pose accurately enough to discard wildly
distant poses as infeasible.

The means of the remaining errors, denoted “tame
errors,” are far less than the odometry errors for this
robot system; we measured them at 50 to 90 millime-
ters, depending on how much sonar data was used
in the map. Increasing the resolution of the raster
gave a small improvement in the accuracy of the algo-
rithm. Doubling the resolution quadruples the size of
the raster, which slows the convolution and maximum-
finding phases of the algorithm; however, with the
parameters presented here, the vote-collecting phase
dominates the total run time.

6 Orientation Experiment

There is no reason the Hough transform described
in Section 5 should be constrained to two dimensions.
We extended it to include a third dimension, orienta-
tion. To reduce computation time, we exploited the
odometry system by assuming incremental orientation
errors were small, so that we needed search only a
small slice of the orientation dimension centered on
the commanded orientation. The computed pose is
again the pose with the most votes, now along the
three dimensions of x, y, and θ. When the sonar sam-
ples are inserted into the map, they are both shifted to
the computed position and rotated by the computed
orientation.

To test the accuracy of the orientation localization,
we built a baseline map by running the robot in online
mode and commanding it to move to six locations in a
1.5m square. By positioning the robot at an intersec-
tion of floor tiles and attaching a 60 cm steel bar, we
measured the orientation of the robot to 0.5◦ precision.
The angle of the bar relative to the axis of the sonar
array was known with somewhat lower accuracy. We
commanded the robot to rotate to a series of orienta-
tions in a 17◦ range, measured the robot’s orientation,
then instructed the robot to take a sonar sounding and
localize itself.

The result was a 1.27◦ mean error with a 0.72◦ stan-
dard deviation. The mean likely reflects the poor ac-
curacy to which we could measure the absolute ori-
entation of the robot; the low standard deviation is
much more interesting because it indicates that the
algorithm detected the robot’s position with high re-
peatability. The 0.72◦ standard deviation of the re-
sults compares favorably with the 2.8◦ resolution of
the sonar data and the 1.1◦ raster resolution used in
the experiment.

7 Combined Mapmaking and Localiza-
tion Experiment

The localization experiment in Section 5 introduced
the voting algorithm for localization, and demon-
strated that it is practical. It assumed, however, the
availability of a rich, accurate map. An online algo-
rithm would need to be able to construct a map from
successive localization/map-making cycles. To explore
this mode, we ran a combined mapmaking and local-
ization experiment. Only soundings from successive
positions of the robot are considered in the algorithm.
The computed position of the robot is used to locate
the robot in the map and contribute the new soundings
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Figure 6: Orientation localization results. The dotted
line is the measured orientation of the robot. The solid
line is the computed location using the localization al-
gorithm. The outer error bars depict the resolution
of the sonar samples (2.8◦), and the inner bars depict
the angular resolution of the raster used in the local-
ization computation (1.1◦). The dashed line shows the
commanded orientation, providing an idea of how the
localization error compares in magnitude to the me-
chanical accuracy of the robot.

to the map.

We ran this experiment first by simulating an on-
line path using our data from the first experiment that
included measurements. The robot’s path was formed
by sorting the sample locations into a a space-filling
order, simulating the path of a robot controlled by a
planner that grows its map slowly by pushing the en-
velope of the well-mapped area. Figure 7 shows snap-
shots of the map at various stages of growth. (An
animated version showing all of the steps is available
on the web; the reference is given below.)

We also ran the same experiment many times en-
tirely in online mode. After the robot localized itself
in both position and orientation, it updated its map
and presented the map to a human operator. The op-
erator selected a new nearby destination on the map,
then the robot drove to that destination using odome-
try and repeated the localization cycle. We had great
success in driving the robot around in this manner,
even outside the lab and out of sight. The online algo-
rithm does a satisfying job of accumulating a new map
that corresponds well with hand-drawn maps and our
knowledge of the environment.

8 Conclusions

By casting the localization problem as a Hough
transform for an environment-specific surface, we sim-
plified Brown and Donald’s rasterized localization al-
gorithm. An attractive feature of this approach to
localization is that it does not require landmarks: un-
filtered range data is sufficient to localize the robot
and build a map. Our algorithm also exploits approx-
imate knowledge of surface normals to prune unlikely
feasible poses. Finally, we integrated mapmaking with
localization, showing how the algorithm could be used
by an autonomous robot to dynamically generate and
maintain a map from sensor data.

Because it exploits the long reach of a ranging sen-
sor, the approach is less inclined to “drift” than odom-
etry, which is based on local, relative sensing. The al-
gorithm lets us trade off accuracy for speed, either by
reducing the number of map samples considered, or by
using a coarser grid to collect votes. The limitations
of the algorithm are its scalability to maps with many
samples and its “wild” errors. We discuss proposed
solutions to both problems in the next section.

9 Extensions

We are extending this work to enhance its perfor-
mance to scale to large maps. The algorithm slows
linearly in the number of vectors in the map. We men-
tioned in Section 4 how aging can reduce the number
of map vectors inspected. We propose two alternate
solutions: restricting our inspection of the map to the
immediate neighborhood of the robot and thinning the
map.

Neighborhood reduction. If the robot has not
traveled far from a previously localized position, there
is no need to consider map vectors that cannot be
reached by any of the test vectors. This pose estimate
can be even further refined using even gross informa-
tion from the robot’s odometry relative to the previous
localization. Odometry information can be incorpo-
rated by attenuating the Hough vote raster as a func-
tion of distance from the pose predicted by odometry.
Both steps reduce the opportunities for wild errors.
Attenuation based on odometry is likely to transfer
any bias in the odometry error into the localization
error.

Density reduction. In Section 5, our algorithm
discards a fraction of the map data to improve perfor-
mance. One might set a limit on the number of map
vectors to be inspected (the number needed to rea-
sonably represent the surfaces in a neighborhood as
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Figure 7: An online mapping sequence. The short dark vectors are the map vectors used in a round of the
localization algorithm; the long grey vectors are the test set, translated to reflect the result of localization. In the
next round of the algorithm, the test vectors join the map, the robot moves (simulated by selecting a new group
of test vectors sampled from a nearby location in the room), and the algorithm repeats.

described previously), and then select that many vec-
tors at random from the neighborhood to participate
in the voting.

Raster resolution reduction. The algorithm
also slows quadratically (or cubically when the orien-
tation axis is used) in the resolution of the Hough im-
age. One way to limit this problem would be to find a
best match at a low resolution, then increase the res-
olution while limiting the scope of the new search to
the neighborhood of the low-resolution match. Alter-
natively, we could use a gradient-ascent algorithm to
explore the Hough vote surface quickly from an initial
estimate; the votes are generally organized into ridges
that culminate in a peak at the estimated pose, form-
ing a structure quite amenable to hill-climbing.

Images

This paper is available on the web at
http://www.cs.dartmouth.edu/˜jonh/robots/. It is
accompanied by color graphics and animations which
complement the monochrome stills in the printed
version of the paper.
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