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Abstract
We study a greedymappingmethodthat alwaysmoves the

robot from its currentlocation to the closestlocation that it has
notvisited(or observed)yet,until theterrainis mapped.Although
onedoesnot expectsucha simplemappingmethodto minimize
the travel distanceof the robot,we presentanalyticalresultsthat
show (perhapssurprisingly)thatthetravel distanceof therobotis
reasonablysmall. This is interestingbecausegreedymappinghas
anumberof desirableproperties.It is simpleto implementandin-
tegrateinto completerobotarchitectures.It doesnotneedto have
control of the robot at all times,takesadvantageof prior knowl-
edgeaboutpartsof the terrain(if available),andcanbe usedby
severalrobotscooperatively.

1 Introduction

Mapping is an importanttask for mobile robotsand a
largenumberof mappingmethodshave beendevelopedfor
them,both in roboticsandin theoreticalcomputerscience
[7, 18, 11,15, 3, 6, 10,19,20, 24, 2, 8, 9, 16,25, 23,4, 21,
22]. A goodoverview is given in [26]. In this paper, we
show that greedymappingmethodsareeasyto implement
andeasyto integrateinto completerobot architectures.At
thesametime,planningis efficientandresultsin shorttravel
distancesof therobot.WestudyGreedyMapping,asimple
sensor-basedplanningmethodthatalwaysmovestherobot
from its currentlocationto the closestlocationthat it has
not visited (or observed) yet, until the terrain is mapped.
GreedyMappingassumesthat the locationof the robot is
alwaysknown, for example,from GPSdata. It is greedy
becauseits plansquickly gain informationbut do not take
thelong-termconsequencesof themovementsinto account.
Yet, we will show that the travel distancesof therobotare
reasonablyshort.GreedyMappinghasthefollowing desir-
ableproperties:
�
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� Theoretical Foundation: GreedyMappinghasasolid
theoreticalfoundationthat allows oneto characterize
its behavior analytically. For example,it is guaranteed
to mapterrainunderrealisticassumptionsandits plan-
executiontime canbeanalyzedformally, aswe show
in thispaper.

� Simple Integration into Robot Architectures:
GreedyMappingis simpleto implementandintegrates
well into completerobotarchitectures.It is robustwith
respectto theinevitableinaccuraciesandmalfunctions
of otherarchitecturecomponents.For example,it does
not needto have controlof therobotat all times.This
is importantbecausesearchmethodsshouldonly pro-
vide adviceon how to act andwork robustly even if
thatadviceis ignoredfrom timeto time[1]. For exam-
ple, if a robothasto re-chargeits batteriesduringmap-
ping,thenit mighthaveto preemptmappingandmove
to a known power outlet. Oncerestarted,the robot
shouldbeableto resumemappingfrom thepowerout-
let, insteadof having to return to the locationwhere
mappingwasstopped(which could be far away) and
resumeits operationfrom there.GreedyMappingex-
hibits thisbehavior automatically.

� Prior Knowledge: GreedyMappingtakesadvantage
of prior knowledgeaboutpartsof the terrain(if avail-
able)sinceit usesall of its knowledgeabouttheterrain
whendeterminingwhichunvisited(or unobserved)lo-
cation is closestto the robot and how to get there
quickly. It doesnotmatterwhetherthisknowledgewas
previouslyacquiredby therobotor providedto it.

� Distributed Search: Mapping taskscan be solved
with several robots that each run GreedyMapping
andsharetheir maps,therebydecreasingthemapping
time. Cooperative mappingis a currentlyvery active
researcharea[5, 27].

Theseadvantagesexplain why GreedyMapping is an
interestingmappingmethodto study. GreedyMapping is
probablyone of the first mappingmethodsthat come to
mind whenempirical roboticsresearchersquickly needto
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Figure1: PossibleBehavior of GreedyMapping

implementa mappingmethod,andversionsof it have been
usedon robots. For example,it appearsthat a versionof
GreedyMappinghasbeenusedonanomad-classtour-guide
robotthatofferedtoursto museumvisitors[28].

Thecontributionof this paperis to provide a theoretical
foundationfor GreedyMappingin form of an analysisof
the travel distanceof the robot. Clearly, GreedyMapping
is too simplea mappingmethodto minimizethetravel dis-
tance.However, we derive boundson thetravel distancein
any terrainthat show that the travel distanceis reasonably
small. Thepurposeof this paperis to show thatevensim-
plemappingmethodscanperformwell andthusto provide
somerelief to empirical roboticsresearcherswho want to
keeptheir navigationsystemssimpleandthusdo not want
to implementcomplex mappingmethodson their robots.

2 Analysis of the Travel Distance

In thefollowing,weanalyzethetravel distanceof robots
that useGreedyMapping. To makethe mappingtaskas
hard as possible,we assumethat the robot hasno initial
knowledgeof the topologyof the mapandthat its sensors
provide information only aboutits closevicinity. We as-
sume,for clarity, that the robot is omni-directional,point-
sized,equippedwith onlyaradialshort-distancesensor, and
capableof error-freemotion andsensing.Thesensorson-
boardtherobotuniquelyidentify its locationandtheneigh-
boringunobstructedlocations.This assumptionis realistic,
for example,if thelocationslook sufficiently differentor if
therobothasGPSor asimilarlocalizationmethodavailable.

To analyzethemappingproblemformally, we formulate
it as a graphcoverageproblemsimilar to the onestudied
in [12]. The robothasto mapan initially unknown, finite,
undirectedgraph ���	��

����� . The robot begins at some

designatedstartvertex. Whentherobot is at a vertex � , it
learnsthe verticesadjacentto � (that is, the verticescon-
nectedto vertex � by anedge),andcanidentify thesever-
ticeswhenit observesthemagainat a later point in time.
GreedyMappingalwaysmovestherobotona shortestpath
from its currentvertex to aclosestunvisitedvertex. It termi-
nateswhenit knows of no unvisitedvertices.GreedyMap-
pingmustterminate,sinceeachtime it movesfrom thecur-
rentvertex to theclosestunvisitedvertex, it visitsonemore
vertex, andthereareonly a finite numberof them. At ter-
mination,GreedyMappinghasvisitedall verticesthatcan
bereachedfrom thestartlocationandthushasmappedthe
connectedcomponentof thegraphthatcontainsthestartlo-
cation.In thefollowing,weassumewithout lossof general-
ity thatthegraphis stronglyconnected.In thiscase,Greedy
Mappingmapsall of thegraph. Figure1 shows a possible
behavior of GreedyMappingon a subsetof a simplegrid.
NotethatGreedyMappingis notconstrainedto workingon
gridsbut canbeusedonarbitrarygraphs,includingVoronoi
diagrams[17].

In the following, we analyzethe worst-casetravel dis-
tanceof GreedyMappingasafunctionof thenumberof ver-
ticesof thegraphbecauseasmallworst-casetravel distance
providesa goodperformanceguaranteein all terrains.We
do not takethe planningtime into accountbecauserobots
move soslowly that thetotal problemsolvingtime is com-
pletelydominatedby thetravel distance.

2.1 Lower Bound on the Travel Distance

A lower bound on the worst-casetravel distanceof
GreedyMappingcanbeestablishedby example.In thissec-
tion, we presenta graph ������
������ for which the worst-
casetravel distanceof GreedyMappingis ����� ���
�  !�� ���"� ���#�  !�

$ 
 $ �
steps[13]. ThegraphmakesGreedyMappingtraversethe
samepathrepeatedlyforwardandbackward,andthis travel
distanceis largecomparedto thenumberof edgesthatare
necessaryto misleadGreedyMapping into this behavior.
Our examplegraphis planarsincemapsandotherkindsof
graphsusedin roboticsoftenhave this property.

Theorem 1 Theworst-casetraveldistanceof GreedyMap-
ping is ���%� ���&�  !�� ���'� ���
�  (�

$ 
 $ � stepson stronglyconnectedundi-
rectedgraphs ���)��
������ , evenif they are planar.

Proof: Considertheplanargraph *�+-,�.0/2143 shown in Figure2,
which is a variationof a graphin [14]. It consistsof a stemwith
severalbranches.Eachbranchconsistsof two parallelpathsof the
samelengththatconnectthestemto a singleedge.The leavesat
theendsof thesesingleedgesarecrucialto “fooling” GreedyMap-
ping. Whenthe robot traversesoneof theparallelpaths,Greedy
Mappingmight chooseto returnto the stemalongthe otherpath
without first exploring theleaf.

We saythat the lengthof a branchis the lengthof eachof its
two paths. The stemhaslength 5#6 for someinteger 5%798 and
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> travel distance ? @A? travel distanceB C�B
3 207 80 2.587500
4 2279 778 2.929306
5 31253 9612 3.251457
6 515085 144014 3.576631
7 9928271 2542528 3.904882
8 219130987 51744018 4.234905
9 5448100629 1193201300 4.565953

10 150617283953 30753086422 4.897631DED�D DED�D DFDED D�DFD

Table1: Travel Distanceof GreedyMapping

consistsof the verticesGIHJ/KGMLE/�N�NJN�/KG 6PO . For eachinteger Q withRTS Q S 5 thereare 5#6VU'W branchesof length WXU LYEZ L 5 Y each
(includingbranchesof lengthzero). Thesebranchesattachto the
stemat theverticesG Y 6�[ for integers\ ; if Q is even,then] S \ S5 6^U_W�` R , otherwise

RaS \ S 5 6VU'W . Thereis oneadditionalsingle
edgethatattachesto vertex GIH . Thestartvertex is G 6PO .

GreedyMappingcanchoosetobreaktiessoasto behaveasfol-
lows: startatvertex G 6 O , traversethewholestemandall branches,
but bypassall theleavesat their ends,andthentraversetheaddi-
tional edgeattachedto vertex G H , asshown in Figure2. At this
point, GreedyMappingagaintraversesthe whole stem,visiting
theleavesof thebranchesof length0. It thenswitchesdirections
and travels along the whole stemin the oppositedirection, this
time visiting theleavesof thebranchesof length 5 , andsoforth,
switchingdirectionsrepeatedly. It completesits explorationwhen
it finally visits theleafof thelongestbranch.

To summarize,the leavesat theendsof thebranchesaretried
out in theorderindicatedin Figure2. Thetotal travel distanceisb ,c5 6ed L 3 stepssincethestemof length5 6 is traversed5gf R times.
Tobeprecise,thetotaltravel distanceis ,c5#6ed_hJfi8E5#6ed"j `ak 5#6ed L fl 5 je` 5(f48�3�mn,c5 j�` l 5(f R 3 steps.It holdsthat op.qoI+srq,c5 6 3 sinceot.qou+s,�8E5 6Pd"j `!v 5 6ed L ` 5 6 fw5 6^U L f l 5 j ` l 5�f l 3�m�,c5 j ` l 5�f R 3 .
This impliesthat 5x+ b ,zy {�| B C�By {�|^y {�| B C�B 3 since,for all sufficiently large5 , it holdsthat

}t~�� ,c5 6 3}t~���}p~�� ,c5 6 3 +
5 }t~�� 5}p~�� 5�f }t~���}t~�� 5

S 5 }t~�� 5}t~�� 5 +�5
N

It follows that the total travel distance is
b ,c5 6Pd L 3�+b ,c5�op.Aot3&+ b , y {�| B C�By {�|uy {�| B C�B ot.qot3 steps.

Wealsoperformedasimulationthatconfirmedour theo-
reticalresultsfor :��-� . Table1 showshow theratio of the
travel distanceandthenumberof verticesincreasesas: in-
creases.Ourgraphscanbeadaptedto differentassumptions
aswell. For example,we have assumedthat therobot can
identify only theverticesadjacentto its currentvertex. The
graphcan easilybe adaptedto sensorswith larger looka-
heads,sayof � vertices,by replacingeachedgewith � con-
secutive edgesthat are connectedvia �T��� intermediate
vertices.

2.2 Discussion of the Lower Bound

Nomappingmethodcanbesureto omniscientlyfollow a
bestpossiblepathin hindsight.To judgehow goodits travel
distanceis, we thereforeneedto compareit to othermap-
ping methods.Depth-firstsearchis sucha method. It al-
waysmovestherobotfrom its currentvertex to anadjacent
unvisitedvertex. If suchavertex doesnotexist, it leavesthe
currentvertex alongtheedgewith which it wasenteredfor
the first time (backtracking). It terminateswhenit knows
of no unvisitedvertices.Its worst-casetravel distanceis at
mosttwicethenumberof verticessinceeachstepeithervis-
its a previouslyunvisitedvertex (whichcanhappenat most
oncefor eachvertex) or backtracksfromavertex (whichcan
alsohappenat mostoncefor eachvertex). In theprevious
section,we have shown that the worst-casetravel distance
of GreedyMappingis superlinearin thenumberof vertices.
Thus,it is nota worst-caseoptimalmappingmethod.How-
ever, it hasadvantagesoverdepth-firstsearch.For example,
depth-firstsearchdoesnot resumemappingfrom thepower
outlet after a robot hasmoved to recharge itself but rather
requiresthe robot to returnto the locationwheremapping
wasstopped.Second,depth-firstsearchcannotbeusedby
several robotscooperatively. Third, depth-firstsearchdoes
nottakeadvantageof prior knowledgeaboutthegraphto di-
rect thesearch,for example,if partof theterrainis already
known andthusdoesnot needto getmapped.While depth-
first searchcanbe modifiedto tacklesomeof theseprob-
lems[31], theseattemptshave sofar resultedin impractical
robotnavigationmethods.

2.3 Upper Bound on the Travel Distance

Even thoughthe travel distanceof GreedyMapping is
not optimal in theworstcase,it is our experiencethat it is
reasonablysmallin practice.In thefollowing,weshow that
thedisadvantageof GreedyMappingin termsof its worst-
casetravel distanceis smallcomparedto theoptimalworst-
casetravel distance,which is linear in the numberof ver-
tices.This justifiesits useonmobilerobots.

It is easyto seethat the worst-casetravel distanceof
GreedyMappingis atmost

$ 
 $ � stepsonstronglyconnected



undirectedgraphs������
������ . Sincetherobotalwaysfol-
lowsashortestpathto theclosestunvisitedvertex, it reaches
anotherpreviously unvisitedvertex afterat most

$ 
 $ steps.
Sincethereareonly

$ 
 $ vertices,it canrepeatthis stepat
most

$ 
 $ timesuntil it hasvisited all vertices,resultingin
the upperbound. However, this quadraticupperboundon
theworst-casetravel distanceof GreedyMappingleavesa
largegapwith thelinearoptimalworst-casetravel distance.
We now narrow the gapby proving a tighter upperbound
of only ��� $ 
 $ �J�E� � stepson stronglyconnectedundirected
graphs���)��
������ .
Theorem 2 Theworst-casetraveldistanceof GreedyMap-
ping is ��� $ 
 $ �J�E� � stepson strongly connectedundirected
graphs �-����

����� .
Proof: Let �PW (] S Q S ot.io ` R ) denotetheQ thpreviouslyunvisited
vertex that GreedyMappingvisits. � H is the start vertex of the
robot. OnceGreedyMappinghasvisited � B C�B U L , it hasvisitedall
verticesat leastonceandstops.Let � W (

R�S Q S ot.qo ` R ) denote
thenumberof stepswhentherobotmovedfrom � WXU L to � W afterit
visited � W�U L for thefirst time. Notethat ] S � W S op.Ao . Then,the
travel distanceof GreedyMappingis

B C�B U LW Z L � W steps.
Let �_W� (] S Q;��op.qo ` R /�G��). ) denotethe length of a

shortestpathfrom G to the closestunvisitedvertex directly after
the robotfirst visited � W . Note that ] S � W� S op.Ao andthat � W� is
nondecreasingin Q . Furthermore,�_W� [ +�� Wcd L for ] S Q
�-ot.Ao ` R .
Define � W + ��� C � W� (] S Q!��ot.io ` R ). Note that ] S � W S
ot.qotj andthat �'W is nondecreasingin Q . Themainideabehindour
proof is that the travel distanceof the robot is large only if many
of the � W arelarge. Eachlarge � W resultsin large increasesfrom�'W�UMj to �_W�U L . However, thereis a limit on how large the � W can
get,which forcesthetravel distanceof therobotto besmall.

For all ] S;��S � W�d L (
RiS Q �zot.Ao ` R ), thereis at leastone

vertex ¡&¢ at a distanceof
�

edgesfrom vertex �PW whenthe robot
visited �PW for thefirst time. This is so,sincetherobotthenmoved
on a shortestpathto ��Wcd L and the pathhad length � W�d L . Then,� W�d L Ss� fx� W£¥¤ becausean unvisitedvertex wasonly � W £¥¤ steps
awayfrom ¡&¢ whentherobotvisited ��W for thefirst time,and¡&¢ is�

stepsaway from �PW . Furthermore,�_W�U L£¥¤ S;�
because�PW wasstill

unvisitedwhentherobotvisited � W�U L for thefirst time,and � W is
�

stepsaway from ¡¦¢ (becausethegraphis undirected).Puttingthe
two inequalitiestogether, it holdsthat �_W£ ¤ ` �_W�U L£ ¤ 7;� W�d L ` lE� .

Sincethe�_W� arenondecreasingin Q , it holdsfor
RaS Q§�sot.io ` R

that

� W ` � W�U L 7
¨ [ ©«ª
¢ Z H ,c� W £¥¤ ` � W�U

L£�¤ 3

7
¨ [ ©«ª
¢ Z Hw¬�­�® ,c� W�d L `

lF� /c]_3
7 ,c� W�d L�3�j¯ N

Summingover Q resultsin
B C�B U"j
W Z L

,c� Wcd L°3 j¯ S � B C�B U"j ` � H S ot.io j ` ]�+Tot.Ao j N

We can now bound
B C�B U LW Z j � W . The values � W (

l-S Q S
ot.io ` R ) areconstrainedby � W 7�] and

B C�B U LW Z j ,c� W 3�j S ¯ ot.iotj .
Calculusshowsthatmaximizing

B C�B U LW Z j � W subjectto thesecon-

straintsisachievedby � W + l op.Aopm ot.qo ` laS�l ot.qoXf±8 for alllaS Q S ot.qo ` R . Thus,
B C�B U LW Z j � W S ,�op.Ao ` l 3�, l ot.qo�f²8�3 Sl ot.Ao hE³�j f²8Pot.Ao . Finally, thetravel distanceof GreedyMappingisB C�B U LW Z L � W +²� L f

B C�B U LW Z j � W S�l ot.io hE³Ej f ¯ ot.io .
2.4 Discussion of the Upper Bound

Our analysisin the previous sectionshowed that the
worst-casetravel distanceof GreedyMapping,althoughnot
optimal in the worstcase,is reasonablysmall. It might be
even smalleron graphswith restrictedtopologies.For ex-
ample,onourrobot,weusegreedymappingin conjunction
with regular grids. In this case,all verticeshave a small
(bounded)degree. We currentlydo not know whetherthis
decreasestheworst-casetravel distanceof GreedyMapping
and,if so,by how much. Furthermore,therobothassome
initial knowledgeof thetopologyof themapsinceit knows
that thegraphis a subsetof a regulargrid. This allows the
robotto move to theclosestunobservedcell ratherthanthe
closestunvisitedcell, whichdoesnot changeouranalytical
results.Assume,for example,the following scenario.The
robot operateson a graphwhoseverticescan be blocked.
The robot alwaysobserves the statusof its currentvertex
andall adjacentvertices,andcanthen move to any adja-
cent unblockedvertex. The robot knows which graphit
operateson but initially doesnot know which verticesare
blocked. It hasto determinethe statusof eachvertex (un-
lessthat is impossiblefrom the startvertex of the robot).
To do this, it usesa versionof GreedyMappingthatalways
moves towardsthe closestunobserved vertex, that is, the
closestvertex with unknown status.This is the versionof
GreedyMapping that we implementedon a robot except
thatwe useda sensorwith a muchlarger range.Now con-
sidergraphsof thetopologydescribedin Section2.1except
thateachleaf vertex (includingthevertex at theendof the
edgeattachedto vertex �V´ ) is replacedby anedge.All ver-
ticesareunblocked.If :¶µ·� , thenthe versionof Greedy
Mappingthatalwaysmovestowardstheclosestunobserved
vertex behavesexactly asdescribedin Section2.1.

3 A Simple Implementation

Wehave implementedGreedyMappinganaNomad150
robot using a Sick LMS200 laser scanner. The purpose
of the implementationwasnot to demonstratea complete
andrealisticmappingscenario.Rather, it wasto show that
GreedyMappingis easyto implementandeasyto integrate
into completerobotarchitectures.
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We usedGreedyMappingin conjunctionwith a simple
8-connectedgrid, the cells of which hada sizeof 10 cen-
timetersby 10 centimeters.All processingwasperformed
on-boardthe roboton a ToshibaPentiumMMX 233 MHz
laptop running Redhat6.2 Linux. The robot interleaved
sensing,planning,andmovement. Sensingconsistedof a
full 180degreescanwith thelaserscanner. Initially,all cells
of thegridweremarkedasunobserved.Thecellsthatcorre-
spondedto detectedobstaclesweremarkedasobservedand
untraversable. Obstacleswere surroundedby traversable
cells with a large cost, to biasthe robot away from them.
The other cells sweptby the sensorwere markedas ob-
served and traversable. Cells at distanceone from obsta-
cles had traversalcost ten, cells at distancestwo or three
from obstacleshad traversalcost five, and cells at larger
distancesfrom obstacleshad traversalcostone. Planning
founda shortestpathfrom thecurrentlocationof therobot
to theclosestunobservedcell, thefirst actionof which was
executed.Then,thecycle repeateduntil all cellshadbeen
observedor theshortestpathto theclosestunobservedcell
hadinfinite cost. The whole systemwas implementedby
onegraduatestudentfromscratchin acoupleof days,which
demonstratedthatGreedyMappingis really easyto imple-
mentandintegrateinto completerobotarchitectures.

We usedthe robot to mapa mazeof size28 by 20 feet
that we constructedout of polystyreneinsulation on the
groundfloor of ourbuilding. Welet therobotmapthemaze
five times. All five experimentsweresuccessful.Figure3
shows a top view of the maze. Figure4 shows a snapshot
of themapduringmapbuilding, togetherwith theshortest
pathfrom thecurrentlocationof therobotto aclosestunob-
servedcell. Thepartof themazethatcorrespondsto thepart
of themapshown in thescreenshotis outlinedin Figure3.

Thesimpleversionof GreedyMappinganalyzedin this
paperassumesthat thereis neitherpositionnor sensorun-
certainty. The assumptionthat thereis no positionuncer-
tainty makesGreedyMappingwell suitedfor outdoornav-
igation in conjunctionwith GPS.This assumptionwasnot
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obstacle
space close to obstacles
unknown
freespace

robot

start

Figure4: ScreenShotof Part of theMap

justified in our experimentssincethe locationof the robot
was estimatedusing a simple dead-reckoningtechnique.
The map shown in Figure 4 shows someof the resulting
inaccuracies.However, the runswerenot long enoughfor
this to becomea problem. Theassumptionthat thereis no
sensoruncertaintywasjustified. The Sick laserscanneris
highly accurateandhassufficient resolutionandrangeac-
curacy.

4 Conclusions

In thispaper, westudiedGreedyMapping,asimplemap-
pingmethodthatalwaysmovestherobotto theclosestloca-
tion thatit hasnotvisited(or observed)yet,until theterrain
is mapped.We analyzedthe worst-casetravel distanceof
GreedyMappingusing a graph-theoreticframework. We
showedthat theworst-casetravel distanceof GreedyMap-
ping is not optimalsinceit is superlinearin thenumberof
verticeswhile the worst-casetravel distanceof depth-first
searchis only linear in the numberof vertices

$ 
 $ . How-
ever, we alsoshowedthat theworst-casetravel distanceof
GreedyMappingis at moston theorderof

$ 
 $ �¥�F� stepsin
generalandthusthatits performancedisadvantageis small.
Thisupperboundprovidesa theoreticaljustificationfor us-
ing GreedyMappingin practiceespeciallysinceit hasava-
riety of advantagesover alternative mappingmethods.For
example,it is simpleto implementandintegrateinto com-
pleterobotarchitectures,resumesmappingfrom thepower
outletaftertherobothasmovedto rechargeitself insteadof
having to returnto thelocationwheremappingwasstopped
(whichcouldbefar away), takesadvantageof prior knowl-
edgeaboutpartsof theterrain(if available),andcanbeused
by several robotscooperatively. In futurework, we intend
to closethegapbetweentheupperandlowerboundsof the
worst-casetravel distancethat the resultspresentedin this
paperwereableto reducebut couldnot yet eliminate. We



alsointendto analyzemorecomplicatedmappingmethods
includingthosethatcandealwith sensoruncertaintyandthe
resultingpositionuncertainty[29, 30]. We believe that the
analysispresentedhereprovidesagoodstartfor thisvenue.
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