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Abstract

We study a greedy mapping methodthat always moves the
robot from its currentlocationto the closestlocationthatit has
notvisited(or obsened)yet, until theterrainis mapped Although
onedoesnot expectsucha simple mappingmethodto minimize
the travel distanceof the robot, we presentanalyticalresultsthat
shav (perhapssurprisingly)thatthe travel distanceof therobotis
reasonablymall. Thisis interestingbecausegreedymappinghas
anumberof desirablepropertieslt is simpleto implementandin-
tegrateinto completerobotarchitectureslt doesnotneedto have
control of the robot at all times,takesadvantageof prior knowl-
edgeaboutpartsof the terrain (if available),andcanbe usedby
severalrobotscooperatiely.

1 Introduction

Mapping is an importanttask for mobile robotsand a
large numberof mappingmethodshave beendevelopedfor
them,bothin roboticsandin theoreticalcomputerscience
[7,18 11,15, 3, 6,10,19,20, 24, 2, 8,9, 16, 25, 23,4, 21,
22]. A goodoverview is givenin [26]. In this paper we
shav that greedymappingmethodsare easyto implement
andeasyto integrateinto completerobot architectures At
thesamdime, planningis efficientandresultsn shorttravel
distance®f therobot. We studyGreedyMapping,asimple
sensotbasedplanningmethodthatalwaysmovestherobot
from its currentlocationto the closestlocationthatit has
not visited (or obsened) yet, until the terrainis mapped.
GreedyMapping assumeshat the location of the robotis
alwaysknown, for example,from GPSdata. It is greedy
becausats plansquickly gain informationbut do not take
thelong-termconsequencesf themovementsnto account.
Yet, we will shav thatthetravel distancef therobotare
reasonablghort. GreedyMappinghasthe following desir
ableproperties:
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e Theoretical Foundation: GreedyMappinghasasolid
theoreticalfoundationthat allows oneto characterize
its behaior analytically For example,it is guaranteed
to mapterrainunderrealisticassumptionandits plan-
executiontime canbe analyzedormally, aswe showv
in this paper

e Simple Integration into Robot Architectures:
GreedyMappingis simpleto implementandintegrates
well into completerobotarchitectureslt is robustwith
respecto theinevitableinaccuracieandmalfunctions
of otherarchitectur&eomponentskor example,it does
not needto have control of therobotatall times. This
is importantbecausesearchmethodsshouldonly pro-
vide adviceon how to act andwork robustly even if
thatadviceis ignoredfrom timeto time[1]. For exam-
ple,if arobothasto re-chageits batterieduringmap-
ping, thenit mighthave to preempimappingandmove
to a known power outlet. Oncerestarted the robot
shouldbeableto resumeamappingfrom the powerout-
let, insteadof having to returnto the locationwhere
mappingwas stopped(which could be far away) and
resumdts operationfrom there. GreedyMappingex-
hibits this behaior automatically

e Prior Knowledge: GreedyMappingtakesadwantage
of prior knowledgeaboutpartsof the terrain(if avail-
able)sinceit usesall of its knowledgeabouttheterrain
whendeterminingwhich urvisited (or unobsered)lo-
cation is closestto the robot and how to get there
quickly. It doesnotmatterwhetheithisknowledgewas
previously acquiredby therobotor providedto it.

e Distributed Search: Mapping taskscan be solved
with several robots that each run Greedy Mapping
andsharetheir maps,therebydecreasinghe mapping
time. Cooperatie mappingis a currentlyvery active
researctarea[5, 27].

Theseadwantagessxplain why GreedyMapping is an
interestingmappingmethodto study GreedyMappingis
probably one of the first mappingmethodsthat come to
mind whenempiricalroboticsresearcherguickly needto
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Figurel: PossibleBeharior of GreedyMapping

implementa mappingmethod,andversionsof it have been
usedon robots. For example,it appearghat a versionof
GreedyMappinghasbeenusedonanomad-clastour-guide
robotthatofferedtoursto museunvisitors[28].

The contribution of this paperis to provide a theoretical
foundationfor GreedyMappingin form of an analysisof
the travel distanceof the robot. Clearly, GreedyMapping
is too simplea mappingmethodto minimizethetravel dis-
tance.However, we derive boundson thetravel distancein
ary terrainthat shav thatthe travel distances reasonably
small. The purposeof this paperis to shav that even sim-
ple mappingmethodscanperformwell andthusto provide
somerelief to empirical roboticsresearchersvho wantto
keeptheir navigation systemssimpleandthusdo not want
to implementcomplex mappingmethodson theirrobots.

2 Analysisof the Travel Distance

In thefollowing, we analyzethe travel distanceof robots
that use GreedyMapping. To makethe mappingtask as
hard as possible,we assumethat the robot hasno initial
knowledgeof the topologyof the mapandthatits sensors
provide information only aboutits closevicinity. We as-
sume,for clarity, thatthe robotis omni-directional point-
sized,equippedvith only aradialshort-distanceensorand
capableof errorfree motion andsensing.The sensorson-
boardtherobotuniquelyidentify its locationandthe neigh-
boringunobstructedocations.This assumptions realistic,
for example,if the locationslook sufiiciently differentor if
therobothasGPSor asimilarlocalizationmethodavailable.

To analyzethe mappingproblemformally, we formulate
it asa graphcoverageproblemsimilar to the one studied
in [12]. Therobothasto mapaninitially unknown, finite,
undirectedgraphG = (V, E). Therobotbegins at some

designatedtartvertex. Whentherobotis ata vertex v, it

learnsthe verticesadjacentto v (thatis, the verticescon-
nectedto vertex v by an edge),andcanidentify thesever-

ticeswhenit obseresthemagainat a later point in time.

GreedyMappingalwaysmovestheroboton a shortespath
from its currentvertex to aclosesurvisitedverte. It termi-
nateswhenit knows of no urvisitedvertices.GreedyMap-

ping mustterminate sinceeachtime it movesfrom thecur-

rentverte to the closesurvisitedverte, it visits onemore
vertex, andthereareonly a finite numberof them. At ter

mination,GreedyMappinghasvisited all verticesthatcan
be reachedrom the startlocationandthushasmappedhe
connectedomponenbf thegraphthatcontainghe startlo-

cation.In thefollowing, we assumavithoutlossof general-
ity thatthegraphis stronglyconnectedin this case Greedy
Mappingmapsall of the graph. Figure1 showvs a possible
behaior of GreedyMappingon a subsetf a simplegrid.

NotethatGreedyMappingis not constrainedo working on

gridsbut canbeusedon arbitrarygraphsjncludingVoronoi
diagramd17].

In the following, we analyzethe worst-casdravel dis-
tanceof GreedyMappingasafunctionof thenumberof ver
ticesof thegraphbecaus@a smallworst-casdravel distance
providesa good performanceguaranteen all terrains. We
do not takethe planningtime into accountbecauseobots
move so slowly thatthetotal problemsolvingtime is com-
pletelydominatedoy thetravel distance.

2.1 Lower Bound on the Travel Distance

A lower bound on the worst-casetravel distanceof
GreedyMappingcanbeestablishethy example.In thissec-
tion, we presenia graphG = (V, E) for which the worst-

casetravel distanceof GreedyMappingis Q(% V)
stepg13]. ThegraphmakesGreedyMappingtraversethe
samepathrepeatedlforwardandbackward andthistravel
distanceis large comparedo the numberof edgeshatare
necessaryo misleadGreedyMapping into this behaior.
Our examplegraphis planarsincemapsandotherkinds of

graphsusedin roboticsoften have this property

Theorem 1 Theworst-caséraveldistanceof GreedyMap-

ping is Q(% |V|) stepson strongly connectedundi-

rectedgraphsG = (V, E), evenif they are planar.

Proof: ConsidertheplanargraphG = (V, E) showvnin Figure2,
which is avariationof a graphin [14]. It consistf a stemwith
severalbranchesEachbranchconsistof two parallelpathsof the
samelengththatconnectthe stemto a singleedge. Theleavesat
theendsof thesesingleedgesarecrucialto “fooling” GreedyMap-
ping. Whenthe robottraversesone of the parallelpaths,Greedy
Mappingmight chooseto returnto the stemalongthe otherpath
withoutfirst exploring theleaf.

We saythatthe lengthof a branchis thelengthof eachof its
two paths. The stemhaslengthn™ for someintegern > 3 and
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Figure2: PlanarGraphG forn = 3

n | traveldistance \4 travel‘d#e
3 207 80 2.587500

4 2279 778 2.929306

5 31253 9612 3.251457

6 515085 144014 3.576631

7 9928271 2542528 3.904882

8 21913099 51744018 4.234905

9 544810062 1193201300 4.565953
10 | 15061728353 | 3075308622 4.897631

Tablel: Travel Distanceof GreedyMapping

consistsof the verticesvo, v1, ..., vnn. FoOr eachinteqeri with
1 < i < n therearen™* branchesf length Z;;l n? each
(including brancheof lengthzero). Thesebranchesttachto the

stemattheverticesy; ,,; for integersy; if i is even,then0 < j <

n™ " —1, otherwisel < j < n™"*. Thereis oneadditionalsingle
edgethatattachedo vertex vo. Thestartvertex is v,,n .

GreedyMappingcanchooseo breaktiessoasto behae asfol-
lows: startatvertex v,,», traversethewholestemandall branches,
but bypassall the leavesat their ends,andthentraversethe addi-
tional edgeattachedo vertex vo, asshavn in Figure2. At this
point, GreedyMapping againtraversesthe whole stem, visiting
theleavesof thebrancheof lengthO. It thenswitchesdirections
andtravels alongthe whole stemin the oppositedirection, this
time visiting theleaves of the branchef lengthn, andsoforth,
switchingdirectionsrepeatedlylt completests explorationwhen
it finally visitstheleaf of thelongestbranch.

To summarizethe leavesat the endsof the branchesretried
outin the orderindicatedin Figure2. Thetotal travel distancds
Q(n™*1) stepssincethestemof lengthn™ is traversedn -+ 1 times.
To beprecisethetotaltravel distances (n" 3 4-3n" 2 —8n™ ' 4
2n? —n+3)/(n®—2n+1) stepslt holdsthat| V| = ©(n™) since
V] = (3n™ T2 —5n" ! —nn4nn 14202 —2n42) /(n®—2n+1).

Thisimpliesthatn = Q(26) since for all suficiently large
n, it holdsthat
log(n™) nlogn nlogn
loglog(n™) ~ logn +loglogn — logn

It follows that the total travel distanceis Q(n"*') =
Qn|V]) = (=2l |v|) steps. m

log log | V|

We alsoperformeda simulationthatconfirmedourtheo-
reticalresultsfor n < 6. Table1 shavs how theratio of the
travel distanceandthenumberof verticesincreasesisn in-
creasesOurgraphscanbe adaptedo differentassumptions
aswell. For example,we have assumedhattherobot can
identify only the verticesadjacento its currentvertex. The
graphcan easily be adaptedo sensorswith larger looka-
headssayof x vertices by replacingeachedgewith z con-
secutve edgesthat are connectedvia x — 1 intermediate
vertices.

2.2 Discussion of the Lower Bound

No mappingmnethodcanbe sureto omniscientlyfollow a
bestpossiblepathin hindsight.To judgehow goodits travel
distanceis, we thereforeneedto compareit to othermap-
ping methods. Depth-firstsearchis sucha method. It al-
waysmovesthe robotfrom its currentvertex to anadjacent
urvisitedvertex. If suchavertex doesnotexist, it leavesthe
currentvertex alongthe edgewith which it wasenteredor
the first time (backtracking). It terminatesvhenit knows
of no urvisited vertices. Its worst-casdravel distances at
mosttwice thenumberof verticessinceeachstepeithervis-
its a previously urvisited vertex (which canhapperat most
oncefor eachvertex) or backtrackgromavertex (whichcan
alsohappenat mostoncefor eachvertex). In the previous
section,we have shown that the worst-casdravel distance
of GreedyMappingis superlineam thenumberof vertices.
Thus,it is notaworst-cas®ptimalmappingmethod.How-
ever, it hasadvantage®ver depth-firstsearch For example,
depth-firstsearcldoesnot resumamappingfrom the power
outlet after a robothasmoved to rechage itself but rather
requiresthe robotto returnto the locationwheremapping
was stopped.Seconddepth-firstsearchcannotbe usedby
several robotscooperatiely. Third, depth-firstsearchdoes
nottakeadwantageof prior knowledgeaboutthegraphto di-
rectthe searchfor example,if partof theterrainis already
known andthusdoesnot needto getmappedWhile depth-
first searchcanbe modifiedto tackle someof theseprob-
lems[31], theseattemptshave sofar resultedn impractical
robotnavigation methods.

2.3 Upper Bound on the Travel Distance

Even thoughthe travel distanceof GreedyMappingis
not optimalin the worstcase,it is our experiencethatit is
reasonablgmallin practice.In thefollowing, we shav that
the disadwantageof GreedyMappingin termsof its worst-
casdravel distancds smallcomparedo the optimalworst-
casetravel distancewhich is linear in the numberof ver
tices. This justifiesits useon mobilerobots.

It is easyto seethat the worst-casdravel distanceof
GreedyMappingis atmost| V' |? stepsonstronglyconnected



undirectedgraphsG = (V, E). Sincetherobotalwaysfol-
lowsashortespathto theclosesurvisitedverte, it reaches
anothempreviously urvisited vertex after at most|V| steps.
Sincethereareonly |V| vertices,it canrepeatthis stepat
most|V| timesuntil it hasvisited all vertices,resultingin
the upperbound. However, this quadraticupperboundon
the worst-caseravel distanceof GreedyMappingleavesa
large gapwith thelinearoptimalworst-casédravel distance.
We now narrav the gap by proving a tighter upperbound
of only O(|V[>/2) stepson strongly connectedundirected
graphsG = (V, E).

Theorem 2 Theworst-caséraveldistanceof GreedyMap-
ping is O(|V|?/?) stepson strongly connectedundirected
graphsG = (V, E).

Proof: Letc® (0 < i < |V|—1) denotetheith previously urvisited
vertex that GreedyMapping visits. ° is the start vertex of the
robot. OnceGreedyMappinghasvisitedc V1=, it hasvisitedall
verticesat leastonceandstops.Let L; (1 < i < |V| — 1) denote
thenumberof stepswhenthe robotmaovedfrom ¢t~ 1 to ¢! afterit

visited¢* ! for thefirst ime. Notethat0 < L; < |V|. Then,the
travel disfcanca)f GreedyMappingis Z‘Z‘;‘fl L; steps.

Letd;, (0 < i < |V| — 1,v € V) denotethe length of a
shortestpathfrom v to the closesturvisited vertex directly after
the robotfirst visited ¢*. Notethat0 < d) < |V| andthatd;, is
nondecreasini ;. Furthermoredil- =Lipifor0<i< |V|-1.
Define¢’ = 3~ ., di, (0 <i < [V|—1). Notethat0 < ¢* <
|V|? andthat#® is nondecreasin@ i. The mainideabehindour
proofis thatthe travel distanceof the robotis large only if mary
of the L, arelarge. Eachlarge L; resultsin large increasesrom
"2 to ¢" 1. However, thereis a limit on how large the ¢; can
get,whichforcesthetravel distanceof therobotto be small.

Forall0 < z < Lit1 (1 < i < |V]| — 1), thereis atleastone
vertex =, at a distanceof z edgesfrom vertex ¢* whenthe robot
visited¢? for thefirst time. Thisis so, sincetherobotthenmoved
on a shortestpathto ¢! andthe pathhadlength L;.;. Then,
Lit1 < z + d., becausen unvisitedvertex wasonly dz, steps
awayfromz., whentherobotvisitedc® for thefirsttime,andz., is
= stepsaway from ¢’. Furthermored’_! < z because’ wasstill
unvisitedwhenthe robotvisited ¢: ! for thefirsttime, andct is z
stepsaway from z, (becauséhegraphis undirected).Puttingthe
two inequalitiegogetheyit holdsthatd’,, — di.' > L1 — 2z.

Sincethed’, arenondecreasinin 4, it holdsfor 1 < i < |[V|—1
that

Lita

> (d. —di)

z=0

ot —o"t >

Lita

Z max(L;+1 — 22,0) >
z=0

(Li+1)?
TR

Vv

Summingover i resultsin
‘V‘72 2
(Li+1)

T S ¢|V‘72 o ¢0 S ‘V‘Q _0= ‘V|2.

We can now bound Z‘Z‘;‘;l L;. ThevaluesL; 2 < i <
|V| — 1) areconstrainedy L; > 0 andZL‘;‘;l(Li)Q < 4|V A
Calculusshavsthatmaximizingy","') " L; subjectto thesecon-

straintss achievedby L; = 2|V|/+/|V| — 2 < 24/|V|+3 forall
2<i<|V|-1Thus, YV Lo < (v - 2)2/[V] +3) <

2|V [3/2 4 3|V|. Finally, thetravel distanceof GreedyMappingis
SV L =L+ Y L <224V m

2.4 Discussion of the Upper Bound

Our analysisin the previous sectionshaved that the
worst-caseravel distanceof GreedyMapping,althoughnot
optimalin the worstcase,is reasonablysmall. It might be
even smalleron graphswith restrictedtopologies. For ex-
ample,onourrobot,we usegreedymappingin conjunction
with regular grids. In this case,all verticeshave a small
(bounded)degree. We currentlydo not know whetherthis
decreasetheworst-caseravel distanceof GreedyMapping
and,if so,by how much. Furthermorethe robothassome
initial knowledgeof thetopologyof the mapsinceit knows
thatthe graphis a subsebf aregulargrid. This allows the
robotto move to the closestunobseredcell ratherthanthe
closesturvisitedcell, which doesnot changeour analytical
results. Assume for example,the following scenario.The
robot operateson a graphwhoseverticescan be blocked.
The robot alwaysobseres the statusof its currentvertex
and all adjacentvertices,and canthen move to ary adja-
centunblockedvertex. The robot knows which graphit
operateson but initially doesnot know which verticesare
blocked. It hasto determinethe statusof eachvertex (un-
lessthat is impossiblefrom the startvertex of the robot).
To dothis, it usesa versionof GreedyMappingthatalways
moves towardsthe closestunobsered verte, thatis, the
closestvertex with unknawn status. This is the versionof
GreedyMapping that we implementedon a robot except
thatwe useda sensowith a muchlargerrange.Now con-
sidergraphsof thetopologydescribedn Section2.1 except
thateachleaf vertex (includingthe vertex atthe endof the
edgeattachedo vertex vy) is replacedy anedge.All ver-
ticesareunblocked.If n > 6, thenthe versionof Greedy
Mappingthatalwaysmovestowardsthe closestunobsered
vertex behaesexactly asdescribedn Section2.1.

3 A SimplelImplementation

We have implementedsreedyMappinganaNomad150
robot using a Sick LMS200 laser scanner The purpose
of the implementationwas not to demonstratex complete
andrealisticmappingscenario.Rathey it wasto shawv that
GreedyMappingis easyto implementandeasyto integrate
into completerobotarchitectures.



Figure3: TheMaze

We usedGreedyMappingin conjunctionwith a simple
8-connectedyrid, the cells of which hada size of 10 cen-
timetersby 10 centimeters.All processingvasperformed
on-boardthe roboton a ToshibaPentiumMMX 233 MHz
laptop running Redhat6.2 Linux. The robot interleaved
sensing planning,and movement. Sensingconsistedof a
full 180degreescanwith thelaserscannerlinitially, all cells
of thegrid weremarkedasunobsered. Thecellsthatcorre-
spondedo detectedbstaclesveremarkedasobsernedand
untraversable. Obstacleswere surroundedby traversable
cellswith a large cost, to biasthe robot away from them.
The other cells sweptby the sensorwere markedas ob-
sened andtraversable. Cells at distanceone from obsta-
cles hadtraversalcostten, cells at distancegwo or three
from obstacleshad traversal cost five, and cells at larger
distancedrom obstacleshad traversalcostone. Planning
founda shortesipathfrom the currentlocationof the robot
to the closestunobseredcell, thefirst actionof which was
executed. Then,the cycle repeatedintil all cellshadbeen
obsened or the shortespathto the closestunobseredcell
hadinfinite cost. The whole systemwasimplementedoy
onegraduatestudenfrom scratchn acoupleof dayswhich
demonstratethat GreedyMappingis really easyto imple-
mentandintegrateinto completerobotarchitectures.

We usedthe robotto mapa mazeof size 28 by 20 feet
that we constructedout of polystyreneinsulationon the
groundfloor of our building. Welet therobotmapthemaze
five times. All five experimentswere successful.Figure3
shavs atop view of the maze. Figure4 shavs a snapshot
of the mapduring mapbuilding, togethemwith the shortest
pathfrom thecurrentocationof therobotto aclosesunob-
senedcell. Thepartof themazethatcorrespondto thepart
of themapshawn in the screershotis outlinedin Figure3.

The simpleversionof GreedyMappinganalyzedn this
paperassumeshatthereis neitherpositionnor sensomun-
certainty The assumptiorthat thereis no positionuncer
tainty makesGreedyMappingwell suitedfor outdoornav-
igationin conjunctionwith GPS.This assumptiorwasnot

Figure4: ScreerShotof Part of the Map

justified in our experimentssincethe locationof the robot
was estimatedusing a simple dead-reckoningechnique.
The map shawvn in Figure 4 shavs someof the resulting
inaccuracies However, the runswere not long enoughfor

this to becomea problem. The assumptiorthatthereis no

sensomncertaintywasjustified. The Sick laserscannelis

highly accurateandhassufficient resolutionandrangeac-

curag.

4 Conclusions

In thispapeywe studiedGreedyMapping,asimplemap-
ping methodthatalwaysmovestherobotto theclosestoca-
tion thatit hasnotvisited (or obsered)yet, until theterrain
is mapped. We analyzedthe worst-caseravel distanceof
GreedyMapping using a graph-theoretidramevork. We
shavedthattheworst-casédravel distanceof GreedyMap-
ping is not optimalsinceit is superlineain the numberof
verticeswhile the worst-casdravel distanceof depth-first
searchis only linearin the numberof vertices|V|. How-
ever, we alsoshovedthatthe worst-casdravel distanceof
GreedyMappingis at moston the orderof |V |3/2 stepsin
generabndthusthatits performancelisadwantages small.
This upperboundprovidesa theoreticajustificationfor us-
ing GreedyMappingin practiceespeciallysinceit hasava-
riety of advantageover alternatve mappingmethods.For
example,it is simpleto implementandintegrateinto com-
pleterobotarchitecturessesumesnappingfrom the power
outletaftertherobothasmovedto rechageitself insteadof
having to returnto thelocationwheremappingwasstopped
(which couldbefar avay), takesadvantageof prior knowl-
edgeaboutpartsof theterrain(if available),andcanbeused
by several robotscooperatiely. In future work, we intend
to closethe gapbetweerthe upperandlower boundsof the
worst-casdravel distancethat the resultspresentedn this
paperwereableto reducebut could not yet eliminate. We



alsointendto analyzemorecomplicatednappingmethods
includingthosethatcandealwith sensouncertaintyandthe
resultingpositionuncertainty{29, 30]. We believe thatthe
analysigresentedhereprovidesa goodstartfor this venue.
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