
Abstract
Localization is one of the most important capa-
bilities for autonomous mobile agents.  Markov
Localization (ML), applied to dense range im-
ages, has proven to be an effective technique.
But its computational and storage requirements
put a large burden on robot systems, and make it
difficult to update the map dynamically.  In this
paper we introduce a new technique, based on
correlation of a sensor scan with the map, that is
several orders of magnitude more efficient than
ML.  CBML (correlation-based ML) permits
video-rate localization using dense range scans,
dynamic map updates, and a more precise error
model than ML.  In this paper we present the ba-
sic method of CBML, and validate its efficiency
and correctness in a series of experiments on an
implemented mobile robot base.

1 Introduction
Localization is the process by which a mobile robot or
other physical agent keeps track of its position as it
moves around an environment.  It is an essential capabil-
ity for autonomous mobile robots if they are to perform
tasks in an efficient way: a robot that gets lost in per-
forming a delivery is useless.

The problem of localization is made difficult because,
in general, we are trying to construct robots that can act
intelligently in environments that are imperfectly known,
and for which their sensors give only uncertain informa-
tion.  This naturally leads to the consideration of prob-
abilistic methods, in which the spatial state of the robot
is represented as a probability distribution over the space
of possible robot poses (location and direction).  The
problem of localization is then the problem of updating
the distribution, based on robot motion and sensing,
given a map of the environment that may be imperfect.

A recent approach to this problem called Markov lo-
calization (ML) has proven to be both robust and accu-
rate. ML makes the choice of an explicit, discreet repre-
sentation for the prior probability, using a grid or topo-
logical graph to cover the space of robot poses, and

keeping a probability for each element of this space.  The
key idea of ML is to compute a discrete approximation
of a probability distribution over all possible poses.

Different variants of ML have been developed [Bur-
gard et al. 1998, Kaelbling et al. 1996; they can be dis-
tinguished according to the type of sensor readings they
work with.  Here we are concerned with dense methods,
in which a all the information in a range scan is used to
match against a model of the environment [Burgard et al.
1997].

Dense methods have proven particularly successful in
robot localization tasks, including several real-world
robot installations as tour-guides in museums [Burgard et
al. 1998, Thrun et al. 1998].  Still, dense methods are
subject to several daunting representational and compu-
tational challenges that make them difficult to use.  The
basic problem is that the probability update step of ML
involves comparing actual sensor readings to readings
that would have resulted from having the robot at every
possible pose in a given map.  This update can be enor-
mously expensive, generating billions of sensor compari-
sons for even moderately sized maps, if done in a
straightforward way.  But through clever approximations,
and especially by pre-computing expected sensor read-
ings from all map poses, researchers have made it possi-
ble to apply dense ML in practical systems [Burgard et
al. 1998].  Yet there remain significant problems, some
brought on by the approximations.
• Dense ML remains computationally difficult.  For

example, globalization in moderately-sized environ-
ments (50x50 m2) can take many minutes for integra-
tion of a set of sensor readings.

• Environment maps are fixed and cannot be easily
updated to account for dynamic objects or structural
changes such as open doorways, because the expected
sensor readings must be re-computed.

• Precise localization with fine spatial grids is diffi-
cult, because it presents increased computational and
storage demands, especially for the pre-computed ex-
pected readings.

• Error models for objects in the map are poor ap-
proximations to actual errors, because they must be
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represented by a single number for each pose, the ex-
pected distance to the object.

In this paper we present a new method for computing
Markov localization, which we call correlation-based
Markov localization (CBML), that addresses these
problems.  Instead of pre-computing expected distances
to map objects, we use techniques from image processing
to correlate a sensor scan with an existing map.  Because
these methods are regular, that is, they are applied uni-
formly over the map, we can take advantage of SIMD
(single-instruction, multiple data) instructions in modern
processors to yield extremely efficient implementations.
In comparisons with the best existing ML methods on
similar processors, CBML is two orders of magnitude
faster.

Besides being efficient, CBML does not have to pre-
compute expected object distances in the map.  Thus, it
tolerates changes to the map on-the-fly, allowing dy-
namic objects or structural information to be incorpo-
rated.  An additional benefit is that the grid size of the
map need not be fixed ahead of time, so that the grid
resolution can be increased or decreased as necessary: a
coarse grid for initial globalization, and a fine grid for
precise maneuvering.  A more realistic uncertainty model
can be introduced into the map, increasing the fidelity of
the probabilistic updating process.  Finally, correlation
opens the door for some techniques that are not possible
with standard ML, for example, the use of fused sensor
readings for extended matching.

In the rest of this paper, we develop the mathematics
of CBML, and show how it corresponds to the equations
of ML.  Then, we explore some of the performance is-
sues associated with CBML, and show how it can be im-
plemented in an efficient way.  We present experimental
results of the method using a Pioneer II platform
equipped with a laser range finder.  Finally, we discuss
some implications of correlation on future capabilities of
ML.

2 Markov Localization as a Correlation
Operation

2.1  Markov Localization
ML, like other filtering operations designed to esti-

mate the state of a system, consists of two steps: pre-
dicting the next state of the system based on state-space
motion, and updating the predicated state based on sen-
sor readings.  For mobile robots, the prediction step uses
dead-reckoning from internal encoders, and we won’t
consider it further in this paper.  The update step changes
the predicted probabilities according to the formula:

∫= ,)()(),|()|( dmmplpmlspkslp (1a)

where l is the robot pose, s is the sensor reading, m is the
probability that a particular map location is occupied by
a surface seen by the sensor, and k is a normalization
factor.  Given a new sensor reading s, the probability that

the robot is at location l is a function of the sensor model
),|( mlsp , the prior probability of the robot being at

pose l, and the prior probability of the map location m
being occupied.  The sensor model represents the prob-
ability of getting a reading s, given the robot is at pose l
and the nearest map object is at m.  Note that (1) explic-
itly takes into account both sensor error and map error.
The Markov assumption is that the updated probability
depends only on the robot’s expected position and cur-
rent sensor readings, and not their history.

Multiple sensor readings taken at different angles
from the same location are assumed to be independent,
and the update function is:
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In practical systems, uncertainty in the map position
is eliminated by adding more noise into the sensor
model, so (1) becomes

)(),|()|( lpmlspkslp ⋅= . (2)

Here it is assumed that the location of the map object is
fixed and known.  The evaluation of (2) involves com-
puting the distance to the nearest map object in the di-
rection of the sensor, which is expensive.  To compute

),|( mlsp  quickly, the distance is pre-computed and
stored for every possible sensor angle and position,
leading to a very large data structure for the map.  Any
changes to the map mean that the expensive pre-
computation must be repeated.

2.2  Correlation and ML
To obviate the need for pre-computation of object

distances, we introduce a new method for determining
the probability ),|( mlsp .  This method is based on the
concept of correlation between the map and the sensor
scan.  In correlation, a sensor scan is converted to a
small discretized area patch, and matched against the
larger discretized map.  A high value for correlation in-
dicates a good match between sensor readings and the
map.  Figure 1 shows the basic idea:  a sensor indicates
an uncertain range to an object, as shown by the discre-
tized sensor patch on the left.  A discretized map con-
tains uncertain information about the location of objects.
The correlation operation places the sensor patch on the
map, multiplies the corresponding values, and sums them
to give the response of the sensor at the origin of the sen-
sor.  Moving the sensor patch over the whole map com-
putes the complete sensor response.

Given a sensor patch P and a map M, we must define a
correlation operation that computes (1).  For each cell ci

in P, let
),|( ii mlspc ′= , (3)

where ),|(' imlsp  is the probability of getting a sensor
reading s, given the robot is at location l and there is a
map object at the cell location.  Then, the correlation is
computed as
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and the updated probability is
)(),()|( lplsCorrkslp ⋅= . (5)

Equation (5) is only an approximation to (1), since we
are using an approximate sensor model ),|(' imlsp .  The
difference is that ),|(' imlsp  does not take into account
visibility constraints, that is, objects closer than mi are
not considered to interfere with the sensor.  For example,
in Figure 2 correlation shows a strong response, but ML
would not, because the closest object is not at the sensor
range.  Correlation violates the visibility constraint of the
range sensor.  In the next section we present experimen-
tal evidence that correlation is still a good approximation
to ML updating.

Note that (4) deals with uncertainty in both the map
and the sensor.  In a manner similar to ML, we can fold
the sensor error back into the map error, so that the sum
in (4) reduces to a single value per sensor reading.  This
idea is the key to implementing an efficient version of
correlation, since it allows many sensor readings to be
processed using the same correlation patch.  Let ci be the
cell where a sensor reading si falls.  Then the sensor
patch is defined as being 1 at all such cells ci, and 0
elsewhere.  Now multiple-sensor correlation becomes:
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Using Mcorr in place of Corr in Equation (5) gives an
approximation to Equation (2).  It does not take into ac-
count visibility constraints, and assumes the sensor error
has been accounted for in the map error.

The advantage of correlation is that it uses the map as
is, without any additional pre-computed information.
Storage requirements for the map are reduced by two
orders of magnitude, and it is possible to dynamically
update the map as new information is made available.
Correlation using (6) is also computationally efficient, as
we show in Section 3.

2.3  Experimental Validation
In this section we report results of numerical experi-

ments to compare the performance of the CBML and ML
methods. The focus of these experiments is to evaluate
the effects resulting from conceptual and implementation
differences between the two methods. For CBML, we use
the variance of the sensor probability p(s|l,m) as the ba-
sis for an isotropic kernel to blur the map.  This gives
roughly equal error models for the two methods.

The numerical experiments were performed using a
100 by 100 position grid.  Figure 1 displays the results of
the ML (top) and CBML (bottom) methods applied to
data corresponding to a 360 degree span, where range
measurements are taken every 1 degree. The sensor patch
was taken from the middle of the figure.  The variance,
as explained above, is set to 0 for the left figures, 4 pix-
els for the middle, and 8 for the right.  The color images
represent the values of log(p(l|s)) in pseudo-color, with
yellow and then red being the highest values.  We use a
log scale for the intensities in order to highlight the dif-
ferences in the fine structure of the densities. Note that
the CBML result shows additional lines not found in the
ML case. These lines result from the violation of visibil-
ity constraints. These spurious features, however, are
extremely low in probability; if plotted on a linear rather
than a log scale, the results of the two methods are virtu-
ally identical.

For the nonzero variance cases, the results show a
much greater spread in probability values, as expected.
The CBML results, however, differ from those of the ML
method in at least two ways in the vicinity of the peak: 1)
the spreading seems larger for CBML, given identical
sigma and 2) the spreading is less symmetrical in the
case of CBML vs. ML. The first point indicates that dif-
ferences in the implementation of the uncertainty models
results in greater spreading of the map uncertainty for
CBML.  The second point provides evidence of the fact
that the uncertainty model for CBML more faithfully
reflects map uncertainty than ML does.

In order to characterize these differences on average,
an experiment was performed using 10 different robot
positions. In order to compare the posterior density p(l|s)
for the two different methods the following difference
measures were used.

Sensor patch

Map grid

Figure 1   A sensor patch correlated with a map grid.
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Figure 2  Correlation violating a visibility constraint
for the sensor.



• The divergence is an information-theoretic measure
for the closeness of two distributions.  It is defined as
the difference in expected values of the log-likelihood
ratio with respect to two densities: E1[L] – E2[L],
where L = log(p(l|s)) / log(p(l|s)) and E1 is expecta-
tion with respect to p(l|s) using ML, while E2 is the
expected value taken using CBML.

• max(p(l|s)) gives a measure of the peakedness of the
density. This measure provides a way of comparing
the performance of the two methods in that a) the lo-
cation of the peak indicates the estimated position
and b) the value of p(s|l,m) at the peak is the prob-
ability that the position corresponds to the pose l.

The average statistics for the divergence measure and
peak p(l|s) values are shown in Figure 4,  The top graph
shows the divergence of CBML and ML, divided by the
divergence of ML and a uniform distribution. A value
close to zero indicates that CBML tracks ML much bet-
ter than chance.  In fact, the divergence measure statis-
tics show that p(l|s) for the two methods is virtually
identical for small variance. As variance increases, the
CBML results spread more than ML, and CBML at
smaller spreads tracks ML more closely.  As before, this
effect is probably due to the difference in error models
between the map and the sensor.

The peak value graph (bottom) shows the ratio of peak
values for CBML and ML.  Here, a result near 1 indi-
cates they are similar; lower than this, CBML is less spe-
cific at localization than ML.  Again, CBML tracks ML
well at lower sensor/map variance, then tends to spread
more (and have a lower peak) at higher variance.  In part,
this difference may be accounted for by the fact that at
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Figure 3  ML vs. CBML on a typical map, with different sensor variances.  Top figures are ML, bottom CBML.
Dark red lines are map segments; color indicates increasing probability from blue, white, yellow, and red.

Figure 4  Divergence (top) and peak value measures.
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higher variances, CBML has increased sensitivity to
visibility constraint artifacts; in part, it arises because the
map error model is different from sensor error model,
and probably more appropriate (see below).

2.4  Sensor and Map Error Models
We return briefly to the subject of error models, to

point out the differences between ML and CBML as-
sumptions.  In general, the sensor response to a map,

),|( mlsp , is a complicated function of the sensor char-
acteristics and the environment.  This is especially true
for wide-angle, active sensors such as sonars or radars,
which are subject to specular reflection, corner reflec-
tion, and similar phenomenon [Leonard et al. 1990].
Simplifying assumptions are needed to evaluate (1a) ef-
ficiently.

ML implementations typically assume that the distance
to the nearest object, given a particular sensor pose, is
the only map information that is needed in (1a).  If the
map is uncertain, then the sensor model is broadened by
an appropriate amount, e.g., if the sensor variance is σ1

2,
and the map variance is σ2

2, then the sensor variance is
reset to σ1

2+σ2
2.  This assumption fails badly, however,

when there are depth discontinuities in the map.  Con-
sider Figure 5, in which two walls are offset in depth.

Wall variance is indicated by the dotted lines; sensor
variance is along the sensor line of sight.  I n this situa-
tion, we would expect a sensor reading at the depth of
wall A or B.  Relying on sensor variance alone, the best
we can do is to pick a point midway between  the walls,
and extend the sensor variance to include both walls.
This is not a very accurate approximation of the actual
situation.  On the other hand, folding the sensor variance
into the map, by extending the wall variance slightly,
gives a much more realistic error model.

2.5  Other Sensor Grid Matching Schemes
Techniques for matching evidence grids [Moravec and

Elfes 1985] are similar to the sensor correlation method
proposed here [Schiele and Crowley 1994].  Recent im-
plementations of the method [Schultz and Adams 1998]
have shown impressive results, and do allow the simulta-
neous integration of new information with the map.  Our
work is distinguished by being more efficient (by many

order of magnitude; see below) and having a Bayesian
theoretical justification.

3 Implementation and Results
To test the efficiency and practicality of the method,

we integrated it into a robot localization system on our
Pioneer II robot, equipped with a laser range finder
(LRF) for sensing [ref omitted].  An LRF scan returns a
hemicircle of 180 readings at 1 degree increments; the
range error is 1 cm, and the maximum range is 8 m.
Several techniques were used to make CBML efficient;
we describe these methods, some experiments in global
localization, and extensions to the method.

3.1  Log Grid Update
To implement (6) and (5), we use a log representation

of the probabilities.  Log probabilities have some ad-
vantages for computation:
• Multiplication of probabilities is addition of loga-

rithms, so the correlation operation (6) uses addition.
• Normalization is accomplished by addition of a con-

stant to all values; in practice we don’t worry about
normalization, just relative log probabilities.

• Small probabilities are represented more precisely.
• Small integers can be used for efficient storage.
Mcorr is implemented as a series of additions on small
integers.  If the robot poses are represented by a regular
grid, we can take advantage of parallel instructions
(SIMD) available on most processors to generate several
results simultaneously.

To describe the computational properties of the CBML
algorithm, or any other dense ML update process, we
propose the following measure.  In general, the amount
of time taken by any method is proportional to the num-
ber of poses that must be updated, and the number of
sensor readings that must be integrated.  So the measure
of power of an implementation is the amount of time
spent per pose-reading.  For our CBML implementation,
on a 400 MHz PII we achieve a power rating of less than
1 ns per pose-reading.  This compares with 75 ns per
pose-reading using an optimized ML algorithm [D. Fox,
personal communication].

The efficiency of CBML makes it possible to run local
tracking, using a small grid, at video rates, even for the
relatively large number of sensor readings in an LRF
scan.  Typically it takes only a few milliseconds to inte-
grate these readings and update the pose.

Globalization is also efficient.  Figure 6 shows an ex-
ample in our office environment.  The map is 38 by 30
meters, and the grid resolution is 10 cm and 2 degrees,
for a total of 20x106 poses.  Each sensor scan has 180
readings, yielding a total of 3.6x109 update operations
per scan.  The time for one scan update is less than a
second on a 400 MHz PII (the lower than expected time
is a result of the sensor patch discretization, which col-
lapses several LRF readings into one grid space).

Wall A

Wall B

sensor
variance

Figure 5  Sensor vs. map variance.



Figure 6 shows a sample run of the robot.  After sev-
eral scans, its position is ambiguous (left).  After 4 scans,
the robot has seen enough of the environment to become
uniquely localized (middle).  Finally, its position is
tracked through subsequent motion (right).

3.2  Structural Uncertainty in Maps
Because CBML does not adhere to the visibility con-
straint, it can represent map objects at different possible
locations; we call this a disjunctive map.  An example is
the state of a door.  Figure 7 shows a disjunctive map
used to anticipate three possible door positions: closed,
open by 30 degrees, and open by 90 degrees.  The actual
door position is in black, and the robot position is the
cross.  The ML response (middle) uses the default close-
door position, while the CBML response (right) uses the
disjunctive map.  Note how much better localized the
CBML response is.

4 Conclusion
Localization based on correlation operations is an effi-
cient alternative to standard ML updating.  It is several
orders of magnitude faster, and uses corresponding less
storage in representing map objects.  This efficiency
opens CBML to applications that have been too expen-
sive: realtime updates of robot position at video rates.  It
has other advantages over ML.  Because it doesn’t re-
quire any special pre-computations in the map, changes
can be incorporated dynamically.  The error model for
CBML violates visibility constraints, but does allow un-
certainty in the map, which is a more realistic model than
typically used for ML.  Finally, CBML can deal with

structural uncertainty in the map, allowing disjunctive
information about map objects.

CBML is a method for updating robot pose.  Although
our experiments have used a pose grid for representing
robot locations, other more compact representations are
also possible, e.g., a gaussian [Gutmann 1998, Leonard
et al. 1990].  In this case, the probability is discretized
for update, and then translated back to the gaussian form.
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Figure 6  Global localization of the robot using simulated scans.  See text for details.

 

Figure 7  Map of doorway in several positions (left), and
corresponding ML (middle) and CBML (right) response.
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