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Abstract

We present a novel approach to mapbuilding and target area identification in mobile robotics – its emphasis being on the
efficiency of multiple resolution representations for mapping and goal-area identification (for example, for the purpose of
mobile robot self-localisation). After presenting and analysing the experimental results, we examine the scientific status of
the research carried out, and of the field of mobile robotics in general. We argue that there is an implicit theory of mobile
robotics, but that – for the future health of the discipline – it needs to be extended and made explicit through the development
of an appropriate theoretical language and formal models. After exploring the relationship between design, engineering, and
science, we argue that mobile robotics still lacksfalsifiable theoriesof robot–environment interaction. This leads us to propose
some desirable future directions for the discipline of mobile robotics as a maturing science. © 1998 Elsevier Science B.V. All
rights reserved.
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1. An experiment in mobile robotics

Below we describe and analyse a project which de-
velops a novel approach to topological mapping for
mobile robotics. The central idea is to develop a hier-
archical “multiple resolution” representation from the
robot’s perceptions of its environment, computing only
at a relevant level of detail for a given navigation task.
The robot may then perform the task ofefficientlyiden-
tifying a specified goal location. The resulting system
is efficient since computation occurs only over the sim-
plest representations necessary for each stage of the
navigation. “Zooming” to a higher resolution of repre-
sentation is map-driven, and the different resolutions
are achieved by a uniform method using very small ar-
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tificial neural networks of four nodes. Thus, as well as
allowing efficient navigation, the robot’s development
of its map also uses few computational resources.

1.1. Motivation for the project

In concert with the topological mapping commu-
nity in mobile robotics (e.g. [4,10]), we claim that a
strategy for mapping a robot’s environment should
not, in the first instance, rely on information about
odometry. Such dead reckoning navigation systems
rely on proprioception (perception of internal states),
and are subject to incorrigible errors due to wheel
slippage. Instead, we argue that representations must
be anchored in “perceptual landmarks”, obtained
through exteroception (perception of the external en-
vironment). Such perceptual landmarks will represent
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those features of the environment which are salient
with respect to the robot’s own perceptual apparatus.
The concept of “multiple resolution” in mapping an
environment seems a natural choice to us, and we
conjecture that it will result in increased efficiency of
navigation (both with regard to time and energy re-
sources). Multiple resolution mapping facilitates the
allocation ofminimumresources for the task at hand.
To increase resolution (and thus demands on compu-
tation and memory) is only required under specific
circumstances, such as the identification of a goal
location.

1.2. The mapping paradigm

Many researchers (most notably Lee [12]) have
asked what constitutes a “good” robot map of an
environment. This issue of map quality is, of course,
relative to particular tasks (see e.g. [15]). We claim that
details ofcomputational efficiencyof using topological
maps have largely been neglected in appraisals of their
suitability. Thus we argue for a modification, or en-
hancement, of the current research paradigm. We con-
sider the following criteria relevant to mapbuilding:
(1) Spatial consistency. The map should faithfully

represent the topology of some portion of the
robot’s environment (i.e. the description provided
by the map should be consistent with the actual
environment).

(2) Coverage. The map should represent as much of
the environment as is required for completion of
the task.

(3) Relevant detail. The map should only represent
the environment in as much detail as is required
for completion of the task.

(4) Perception-based ontology. The map should only
be constructed on the basis of primitives which
the robot is able to perceive reliably.

(5) Computational efficiency. The map-building pro-
cess should use minimal computational resources
for completion of the task.

Various proposals in the literature fail to meet at
least one of the above criteria. As far as we know, none
of them meet our requirement on relevant detail. For
instance, if a robot’s goal is to navigate to the end of
a long uniform corridor, it is not necessary to repre-
sent and compute over many separate locations along
that corridor. More efficient journeys can be made if

more detailed topology is only computed around target
locations. Thus we claim that a modification of the
existing research paradigm is in order here.

Some theoretical results on topological mapping
(e.g. [4]) fail to meet the last criterion, by relying on
the information that is difficult, if not impossible, to
obtain from a real robot (for example the assumption
that there is an enumeration of all path directions lead-
ing from each location). In contrast to this, the results
presented below are obtained from experimental data.

As far as we are aware, no other multiple-resolution
approach to topological mapping exists. However, “hi-
erarchical” representations of space have been pro-
posed before, although in a quite different sense to
that which we suggest. For instance Kuipers [9] advo-
cates the use of a hierarchy of spatial representations,
moving from topological to geometrical information,
but this hierarchy consists of different classes of rep-
resentation, rather than of different levels of resolution
within the same representation scheme.

Various proposals also exist with regard to the use
of self-organising feature maps (SOFMs) [5] in map-
ping strategies. Typically, sonar and infrared readings
are fed into (computationally costly) high-dimensional
(e.g. 10× 10) SOFMs in order to develop a single
representation of the environment. In contrast, our ap-
proach uses just three linear 4× 1 SOFMs to map
feature space at three levels of detail. Tree-structured
feature mappings are employed by Koikalainen and
Oja [6] (although they are not maps in our sense), and
are known to facilitate search algorithms of low com-
putational complexity.

1.3. Our hypothesis

Our hypothesis, then, is that a mobile robot can
identify a location specified by the user, within an
explored and mapped territory, by using a multi-
resolution, perception-based mapping algorithm based
on self-organisation.

The claim is that the robot’s perceptions alone, used
in the fashion described above, suffice to achieve target
area identification, and that no external frame of refer-
ence (Cartesian coordinate system) needs to be used.

Our approach thus has the following features:
• Topological mapping.
• Multiple resolution, determined by the requirements

of the task.
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• Computational efficiency of representation.
• Perception-based representation.
• Use of data from a real robot.

1.4. Specification

Having generated our hypothesis, we now proceed
to specify a particular task for the robot. It must:
(1) be able to develop a multiple-resolution perception-

based topological map over a canonical path in an
environment containing objects of different shapes
and sizes, and made of different materials, and

(2) use this ability to identify to a specified location on
the path, using higher resolution mapping only to
disambiguate locations or when the target location
might lie within its current region.

Now that we have specified the goal of our research,
the precise experimental details can be described.

2. Experimental set-up

2.1. Robot and environment

The robot used for these experiments was a Nomad
200 mobile robot (see Fig. 1), named (after its serial
number) “FortyTwo”.

Fig. 1. The Nomad 200 mobile robot “FortyTwo”.

This hexagonal robot is equipped with 16 ultrasonic
range-finding sensors (range up to 6.5 m), 16 infrared
(IR) sensors (range up to 60 cm), 20 tactile sensors and
a monochrome CCD camera. The robot is driven by
three independent AC motors for translation, steering
and turret rotation. A 486 PC is the main controller
with several slave processors (Motorola 68HC11) han-
dling the robot’s sensors.

As stated above, the robot’s task was to recognise
a user-specified target region within an environment
consisting of walls of varying texture and colour, and
a smooth, level floor.

2.2. Experimental procedure

First, “FortyTwo” was left to follow the wall of the
environment that was to be mapped, using a wall fol-
lowing behaviour which had been acquired through
unsupervised learning earlier, using an artificial neu-
ral network to associate perceptions and actions [18].
Sensor signals of all 16 sonar sensors, all 16 infrared
sensors and odometric information were logged dur-
ing this exploration. Sonar and infrared sensors were
later used to obtain the multi-resolution mapping, the
odometry information was used solely for manual
analysis of the results obtained. The robot there-
fore mapped its environment as perceived along one
canonical path, but it should be noted that multiple
resolution mapping is independent of canonical paths
or particular exploration strategies.

Data from two different environments (a lab and an
untreated corridor), for two independent experiments
was obtained in this manner, and subsequently used to
construct the multi-resolution mapping off line. This
experimental procedure can only be applied to inves-
tigate open-loop robotics tasks, i.e. tasks where the
system responses under consideration do not require
specific motor responses – that is the case here, where
the reactive wall following behaviour of the robot
and the mapbuilding system are independent from one
another.

In such cases, this method of processing “live” data
off-line has the advantage that it allows the precise
replication of experiments under identical circum-
stances, while using real robot sensor data, and there-
fore being suitable for subsequent implementation on
a mobile robot.
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In the case presented here, the experimental method
facilitated a comparison between the different levels of
resolution, because in each experiment all maps were
trained using identical data.

2.3. Preprocessing of data

It is well known that sonar sensor readings are sub-
ject to noise. For example, “specular reflections” occur
when the sonar pulse hits a smooth surface at too shal-
low an angle to be reflected directly. The reflection of
the sonar burst by some other object in the environ-
ment generates a reading that indicates a larger free
space than is actually available. Likewise, “crosstalk”
(receiving another sensor’s sonar burst) can indicate
shorter distances to the nearest object than actually
present. In Fig. 2 (top left) such freak signals are vis-
ible, for example at datapoints 700 and 1700, which
should exhibit identical sonar readings to datapoints
200 and 1200 (but don’t).

In order to remove this noise, we filtered the sonar
readings with a digital low pass filter before starting
the mapbuilding. The results for two arbitrary sensors
are shown in Fig. 2. As can be seen, the noise has
been successfully removed, without throwing away too
much of the information content of the signal. The
filtering operation causes an end-transient effect in the

Fig. 2. Row (top) and filtered (bottom) sonar data for two
different sonar sensors, before and after smoothing using a low
pass filter. Spurious sonar signals, for example at datapoints 700
and 1700 (left) or datapoints 900 and 1400 (right) are removed,
as is the high frequency content of the sensor signature.

signal (see Fig. 2, bottom right, datapoint 2000), which
can pose problems for the mapping mechanism. We
therefore removed the last 20 datapoints.

2.4. The mapping mechanism

The concepts of topological and multi-resolutional
maps, and their advantages, have been explained. We
now focus on our particular approach. Self-organising
feature maps (SOFMs) [5] have previously been used
for mapping strategies (e.g. [11,20]): sonar and in-
frared readings were fed into high-dimensional (e.g.
10 × 10) SOFMs, requiring a constant high level of
computation. Here, we propose three levels of resolu-
tion, on each level we use a linear 4×1 SOFM to map
feature space,1 thus providing a possible 43 = 64
different place signatures. (A comparable single reso-
lution mechanism would have to compare over 8× 8
nodes.) Each increase in resolution may multiply the
number of recognised regions by 4, so the size of a
complete high resolution map of an area is bounded by
that of the initial low resolution representation. When-
ever necessary, we can switch from a lower resolution
to a higher one, always increasing the information con-
tent of the input signal. The computational cost can
therefore be reduced a large amount in certain “un-
interesting” regions. Target regions, which the robot
is to explore to the highest resolution, are specified
externally to the system.

For the neural net training we used predefined
“Matlab” functions from the neural net toolbox.
The size of the linear (i.e. one-dimensional) self-
organising feature map was four units, a neighbour-
hood size decreased from 3 to 1 over the training
period. The learning rate decreased exponentially
from 1 to (almost) 0. The SOFMs were trained over
5000 epochs (although fewer would almost certainly
have sufficed), and each epoch consisted of an input
chosen randomly from the data set.

On the lowest level of resolution, thewhole of
the explored space is mapped into distinct regions
(see Fig. 3). As input to the lowest level SOFM
we use four infrared sensors only, spaced 90◦ apart.
The trained SOFM (training is completed after 5000

1 One-dimensional SOFMs were used to achieve computa-
tional efficiency, while the fact that four units were used bears
no particular significance.
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Fig. 3. Coarse resolution mapping of the entire experimental
area. The robot’s path through the environment is plotted “un-
derneath” the signature map, on thex–y axes. The eventual
goal region (specified in a later stage of the experiment) is near
location(0, 800), the perceptual signature obtained there is “2”.

learning steps) then responds with one of four re-
sponses to perceptual stimuli received anywhere along
the path.

A goal region is then specified externally by the
human operator, and at places that produce the same
(low-resolution) output as this goal place a second
network is trained at middle-resolution level (e.g. if
the specified goal produces node “2” as the winning
node at low resolution, sensor signals perceived at all
locations generating “2” at the low-resolution level
are used to train the middle-resolution network). At
the middle-resolution level, four sonar sensors, again
spaced 90◦ apart, are used to train the SOFM. Re-
gions that have been developed in this middle level
now each have a signature like for example “2/1” or
“2/4”.

To differentiate further within those regions, a third
4×1 SOFM is trained, now using all 16 infrared sensor
signals and all 16 sonar sensor signals of the robot.

The three levels of mapping resolution are thus
developed by:
• Low level: four infrared sensors.
• Medium level: four sonar sensors.
• High level: 16 sonar and 16 infrared sensors, i.e. all

range sensors available on a Nomad 200.
Through this process a tree-like topological map is
constructed, where each low- or medium-resolution
region can be subdivided into smaller regions at a
higher level of resolution.

Fig. 4. Medium resolution mapping of all regions giving re-
sponse “2” at the low resolution level. The goal region now
has a perceptual signature of “2/1” and is, in this case, already
uniquely identified by this signature.

3. Experimental results

3.1. Experiment 1

In the first experiment a circular path of 13.5 m
was traversed four times, and 2000 sensor readings
(sonar, infrared and odometry) obtained in a labora-
tory environment containing brick walls and cloth cov-
ered screens were used to produce the multi-resolution
mapping of the environment. Fig. 3 shows the mapping
of the entire environment at the lowest resolution level.

The “goal” location of the robot was externally
specified as a location near the coordinates (0, 800).
At the lowest resolution level, the perceptual signa-
ture is “2”, therefore all regions having this percep-
tual signature were subsequently mapped at medium
resolution level (see Fig. 4). The goal region then has
the perceptual signature “2/1”, and is, in this environ-
ment, already uniquely identified. However, a further
increase in resolution shows that the goal region can
be specified even more accurately (see Fig. 5). The
complete signature for the goal location is “2/1/3” in
this case.

3.1.1. Discussion of Experiment 1
Mobile robot self-localisation suffers from two

major problems:
(1) Perceptual aliasing, i.e. the fact that several lo-

cations in the robot’s environment give rise to
identical sensory perceptions.
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Fig. 5. A further increase in resolution shows that the region
“2/1” can be subdivided into four further distinct regions, pin-
pointing the goal location even more accurately.

(2) Noise, i.e. the fact that different sensor responses
can be perceived at the same physical location on
subsequent visits, due to effects such as specular
reflections or crosstalk. These effects are usually
exacerbated by slight changes in robot position or
orientation.

Regarding perceptual aliasing, Figs. 3–5 show that
locations can indeed be identified uniquely through
multi-resolution mapbuilding, even in the presence of
perceptual aliasing (that perceptual aliasingis present
can clearly be seen in Figs. 3 and 4).

Regarding the problem of noise, Figs. 3–5 show
that map responses differed slightly at the edges of
regions, for each of the four traversals of the route,
but that within the centres of regions map responses
were consistent.

3.2. Experiment 2

In a second experiment, “FortyTwo” was used to
explore an untreated environment outside the labora-
tory, consisting of corridors, open spaces, doors, and
irregularly distributed items of furniture. In total, a
path of 35 m was traversed once, and 2000 datapoints
were logged and used for subsequent multi-resolution
mapping.

Fig. 6 shows the perceptual signature at the lowest
resolution level, obtained along the robot’s path in this
environment. The goal region was specified to be at a
distance of 360 in. from the beginning of the path. The
perceptual signature at the lowest resolution level is

Fig. 6. Coarse resolution mapping of the second environment
in its entirety.

Fig. 7. Medium resolution mapping of all regions of the second
environment that have a perceptual signature of “4” at the lowest
level. The selected goal area now attains signature “4/3”.

“4”, so that all regions having that signature were sub-
sequently mapped at a medium resolution level (see
Fig. 7).

The perceptual signature of the goal location now
becomes “4/3”, so that all regions exhibiting that sig-
nature were then mapped at the highest resolution level
(see Fig. 8). As can be seen from Fig. 8, the goal loca-
tion is uniquely identified by the perceptual signature
“4/3/3”.
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Fig. 8. High resolution mapping of those regions of the second
environment that have a perceptual signature of “4/3” at the
preceding two levels. The goal area is identified by the signature
“4/3/3”.

4. Analysis of the experimental results

Various requirements on mapping mechanisms in
mobile robotics were presented in Section 1.2. We
raised the issue of minimal resource use in the de-
velopment of perception-based topological maps. Our
criterion of “relevant detail” and thus computational
efficiency of such a mapping strategy is one which,
to the best of our knowledge, has not been noted
before. The results presented above show that effec-
tive multiple resolution maps can be built from data
obtained from a real robot, using a uniform mapping
method. Efficiency arises not only in the development
of the multiple-resolution map, but also in map-based
navigation.

Thus we have, to some extent, satisfied our re-
quirements (Section 1.2) and confirmed our initial
hypothesis, in two experimental environments. This
confirmation serves to reinforce the paradigm in which
we are working.

As mentioned above, the computational cost of de-
veloping each level of representation is small (using
only 4-node SOFMs) in comparison to other ap-
proaches. Further, the computational cost of planning
routes over a small number of locations, in the low-
resolution representation, is clearly less than that of

the same problem over a more detailed representation.
One might expect that this benefit could be obscured
by the cost of developing a hierarchical representa-
tion, but since the more complex representations are
developed only when required in order to complete
the task (i.e. when the robot is in a target area), it
is only in quite “uninteresting” environments (where
perceptual aliasing is common, so that there are
many target areas to be explored and disambiguated
at higher resolutions) that computational costs might
outweigh benefits. Thus, navigation should be faster,
and more energy efficient, than in existing topological
navigation methods.

Secondly, all landmark-based mapping algorithms
suffer from perceptual ambiguities, largely due to
the limited resolution of robot sensors. Focussing
the high-resolution perceptions on areas of interest,
rather than the whole environment, will reduce the
impact of these perceptual ambiguities, leading to
more robust localisation systems. However, such com-
parative studies are for future research at the present
time.

4.1. Discussion of the experimental procedure

Our main concern in the experimental work
presented here was that ofrepresentation, rather
than robustness. Our goal was to develop an effi-
cient mapping paradigm that would meet the cri-
teria outlined in Section 1.2, but not, at this stage,
to test its robustness in the presence of sensor
noise.

Consequently, we did not divide our data into
training set and test set, but trained the SOFM using
all available data. Our experiments suggest that the
proposed multi-resolution mapping paradigm indeed
facilitates target area identification at low compu-
tational cost, and it is subject to future research to
establish how sensitive the method is to noise, by
using separate test data sets for evaluation.

Judging from Figs. 3–5, however, we expect the
results of such a study to be similar to the ones reported
here. From these figures it can be seen that sensory
perception at the boundaries of regions varies slightly,
but that it is robust in the centres of regions, therefore
resulting in consistent map responses.
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5. Analysis of the project

Our experimental results have demonstrated that a
multi-resolution mapbuilding process can achieve re-
liable target area detection. But how did we arrive at
this particular solution? Was it the result of good luck
and clever engineering, or was the final system the re-
sult of applied systematic, methodological principles?
In this project, as in current mobile robotics research
in general, much credit has to be given to the former,
but we argue that both our debt and our responsibility
to scientific theory must also be acknowledged.

In this final section of the paper we make two
claims:
(1) That every type of engineering (i.e. robot engi-

neering, too) benefits from scientific theory.
(2) That animplicit theory of robot–environment in-

teraction exists already, and that some research
effort in mobile robotics should be directed at
making this theoryexplicit.

5.1. The benefits of scientific theory

Readers may need to be persuaded as to the ad-
vantages of establishing a scientific theory of mobile
robotics. Designing robots that are capable of perform-
ing a specified task in a target environment is, in the
first instance, dependent upon competent engineering
– but engineering itself rests upon, and applies, scien-
tific knowledge. Science therefore lies at the heart of
good engineering, but there are other motivations. In
particular, having a good theory of some domain al-
lows us to make accurate predictions about behaviour
without having to go into the costly process of doing
experimental work. Thus, having a scientific theory
of some domain often dramatically reduces the search
space that must be explored for possible solutions to a
problem. Further, if we are interested in understanding
howandwhymobile robots function well, when they
do so, then we are in the business ofexplainingtheir
behaviour – and a scientific theory is an explanation
par excellence.

It is difficult to see how any major engineering
design ever accomplished could have been achieved
without some scientific knowledge – be it knowledge
of aerodynamics and mechanics in the case of aero-
nautical engineering, or of mechanics, physics, and
material science in the case of civil engineering, to

name but two examples. We claim that a similar situa-
tion exists in robotics – while it is certainly possible to
design working robots purely on an engineering basis,
it is a necessity for the progress of the field that deeper
general theories of robot–environment interaction are
developed. Such an understanding can only lead to the
better design and better engineering of better robots.
In our view, scientific theorising, of the most general
nature, is central to good engineering and design, not
separate from it. Good engineering is applied science.

5.2. Evaluation of the project as a scientific venture

This project, as well as research in robotics in gen-
eral, exhibits the following stages of development:
(1) Specification of the problem or question. That is

the environment, the robot, and the task, within a
body of background literature and common prac-
tice (see Section 1.2).

(2) Synthesis. Building a robot that is expected to suc-
ceed in the specified task (prediction!).

(3) Experiment. Conducting relevant empirical
studies.

(4) Analysis. Interpretation of the experimental
results.

(5) Conclusion. Judgement regarding success or fail-
ure of the synthesis, and its possible modification.

Synthesising a possible approach to a particular prob-
lem (step (2)) implies that some underlying theory
must exist, even if it cannot be expressed explicitly
(yet). The roboticist designs the robot with the expec-
tation (or prediction) that this particular robot, thus
designed, is able to solve the particular problem in the
target environment. We also observe that the project
took place within a research paradigm which has its
own vocabulary and methodology, and some care was
taken with respect to precision and repeatability of the
experiments. Note, however, that the following hall-
marks of a scientific theory were lacking:
(1) Explicit universal generalisations and general

predictions concerning robot-environment inter-
action.

(2) Explicit formal models of robot–environment
interaction.

Thus, it is worth asking what, precisely, we learned
about mobile robotics by way of the project? Did we
establish any general principles, or refute any theo-
retical claim? No. We showed how to build a robot
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conforming to a particular design specification. Thus
the status of the claim established by the project is ex-
istential, rather than universal. However, the results do
fit into some broadly theoretical context – the current
paradigm of mobile robotics research.

Similar research efforts can be observed in fields
such as cognitive science, where researchers will
specify a task which they find interesting for various
theoretical reasons, and then implement a computer
program or neural network, or whatever, such that it
produces the desired behaviour. But this functionalist
approach to explanation (that reproduction of input–
output behaviour counts as an explanation) is uncon-
vincing unless it takes place within a wider theoretical
context. No physicist would claim to have explained
motion by constructing a vehicle which moves in a
particular way. But if the observed motion can be
predicted precisely, and linked to other, well under-
stood theoretical concepts (friction, gravitation, and
thermodynamics, for example) then the physicist’s
experiment will be seen to have deeper theoretical
import. Theoretical isolation and lack of predictive
precision, we claim, is observable in experimental
mobile robotics, as well as in other new sciences.

6. Towards a science of mobile robotics

It is clear that robotics cannot be considered anat-
ural science – an inquiry into natural phenomena –
for robots are human-built artifacts, and the goal of
robotics research is to create functioning robots rather
than to understand some pre-existing system. How-
ever, in order to construct better machines in general,
we argue, one must understand them at some level of
generality and abstraction. Not only that, but in or-
der to create a working system, we have to be able to
predict, at least to some degree, how its various com-
ponents function and interact. Thus, while robotics is
certainly not a natural science, we can sensibly place
it amongst the sciences of the artificial, by which we
mean theories of artifacts and technologies. Like Lelas
[13], we believe that creating a functioning robot re-
quires more than the description and understanding of
the system provided by physics or engineering.

The research project presented and analysed here
illustrates each of these claims. We claim that the com-
munity of researchers knows how to ‘do robotics’ –

how to carry it out as a practice, but not how to artic-
ulate fully what it is they are achieving, or how their
experiments bear on general theoretical issues. Indeed,
it seems that there is currently little articulation of
what these “general theoretical issues” actually are.

Because of observable design methods within the
mobile robotics community (e.g. choice of sensors,
use of sensors, choice of actuators, choice of control
algorithm) we believe that animplicit theory of mo-
bile robotics already exists, influencing the way mo-
bile robots are built and experiments are conducted.
However, as yet the theory has not been madeexplicit,
such that specific predictions can be derived from a
theoretical framework. In other words, mobile robotics
still lacks falsifiable theoriesof robot–environment
interaction [22].

Firstly, science any falsifiable theory has to be ex-
pressed in some language, we believe that the next
step in a maturing science of mobile robotics has to
be the establishment of a formal language in which
to discuss different architectures, environments, and
theories of robot–environment interaction. Notable at-
tempts at establishing such a language and at pro-
viding design criteria and methodological principles
for mobile robotics can be found in [21,23,25], and
a theoretical foundation of “motor programming” in
terms of neural representations is discussed in [7]. A
more formal, information-theoretic approach to robot–
environment interaction can be found in the field of
“cognitive robotics” [24]. It seems that a future sci-
ence of mobile robotics may be founded on a general
theory which incorporates elements of each of these
approaches – the fundamental task being to develop
valid generalisations about robot–environment inter-
action from which specific details of the behaviour of
particular systems can be predicted. Finding the right
levels of abstraction and generalisation, and a sound
theoretical vocabulary for the discussion, are the cen-
tral issues here. Formalism, perhaps along the lines of
[24], is developing in this regard.

Secondly, following Popper’s notation that sig-
nificant advances in knowledge are achieved either
through the falsification of weak hypotheses, or the
confirmation of bold ones, we believe that mobile
robotics will advance as a science by careful anal-
ysis of our failures – judging from the number of
reported failures, current practice appears to be not
to report unsuccessful experiments at all – and by
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proposing (and evaluating) bold conjectures. Such a
bold conjecture would be a general theory of robot–
environment interaction.

7. Conclusion

By presenting and analysing an efficient multi-
resolution mapbuilding and goal-area identification
process, we argue that (a) successful robot controller
designs are not the result of luck, but that an impli-
citly and partially known theory of robot–environment
interaction guides the researcher, and that (b) future
advances in the science of mobile robotics, both in
terms of efficiency and general competence, require
a theoretical understanding of the processes that gov-
ern robot–environment interaction, in other words
a falsifiable, scientific theory of robot–environment
interaction.
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representations provided the gradual specification of
movement parameters, in: B. Kappen, S. Gielen (Eds.),
Neural Networks: Artificial Intelligence and Industrial
Applications, Proceeding of the SNN Symposium on
Neural Networks, Nijmegen, 1995.

[8] T. Kuhn, The Structure of Scientific Revolutions,
University of Chicago Press, Chicago, 1970.

[9] B. Kuipers, Modeling spatial knowledge, Cognitive
Science 2 (2) (1978).

[10] B. Kuipers, Y. Byun, A robot exploration and mapping
strategy based on a semantic hierarchy of spatial
representations, Robotics and Autonomous Systems 8
(1993) 47–63.

[11] A. Kurz, Constructing maps for mobile robot navigation
based on ultrasonic range data, IEEE Transactions on
Systems, Man, and Cybernetics – Part B: Cybernetics 26
(2) (1996) 233–242.

[12] D. Lee, The map-building and exploration strategies of
a simple, sonar-equipped, mobile robot: An experiments,
quantitative evaluation, Ph.D. Dissertation, UCL, 1995.

[13] S. Lelas, Science as technology, British Journal for the
Philosophy of Science 44 (1993) 423–442.

[14] O. Lemon, I. Pratt, Spatial logic and the complexity
of diagrammatic reasoning, in: Diagrammatic Reasoning
(special issue), Machine Graphics and Vision 6 (1) (1997)
89–108.

[15] O. Lemon, I. Pratt, Putting channels on the map:
A channel-theoretic semantics of maps, in: L. Moss
(Ed.), Logic, Language, and Computation, vol. 2, CSLI
Publications, Stanford, to appear.

[16] C. Malcolm, T. Smithers, J. Hallam, An emerging paradigm
in robot architecture, in: T. Kanade, F.C.A. Groen,
L.O. Hertzberger (Eds.), Intelligent Autonomous Systems,
vol. 2, Amsterdam, 1989.

[17] K. de Meyer, O. Lemon, U. Nehmzow, Multiple resolution
mapping for efficient mobile robot navigation, Proceedings
“Towards Intelligent Mobile Robots 97”, Technical Report
UMCS-97-9-1, University of Manchester, 1997.

[18] U. Nehmzow, Flexible control of mobile robots through
autonomous competence acquisition, Measurement and
Control 28 (2) (1995) 48–54.

[19] U. Nehmzow, Scientific methods in mobile robotics?!,
Proceedings “Towards Intelligent Mobile Robots 97”,
Technical Report UMCS-97-9-1, University of Manchester,
1997.

[20] U. Nehmzow, T. Smithers, Mapbuilding using self-
organising networks, in: J.-A. Meyer, S. Wilson (Eds.)
From Animals to Animats, MIT Press, Cambridge, MA,
1991, pp. 152–159.

[21] R. Pfeifer, Building “fungus eaters”: Design principles of
autonomous agents, in: From Animals to Animats 4, MIT
Press, Cambridge, MA, 1996, pp. 1–12.

[22] K. Popper, The Logic of Scientific Discovery, Hutchinson,
London, 1968.



O. Lemon, U. Nehmzow / Robotics and Autonomous Systems 24 (1998) 5–15 15
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