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Abstract

This paper describes the implementation and
modelling of a biologically-inspired collective be-
haviour. The experiments are concerned with the
gathering and clustering of randomly distributed
small cylinders. Each experiment has been re-
peated five times and carried out in a simulated
environment (parametric simulation) and with a
group of ten Khepera miniature mobile robots.
The simulated and experimental results are com-
pared, quantified and discussed showing the main
points of interest and the weaknesses of both ap-
proaches. Moreover, the paper points out simi-
larities and differences with the results previously

published in [10].

1 Introduction

Recently, we have observed a growing interest for the bio-
inspired approach in the field of collective robotics (see
for instance [5]). Bio-inspired collective robotics favours
decentralised solutions, i.e. solutions where coordina-
tion is not taken over by a special unit using private
information sources, or concentrating and redistribut-
ing most of the information gathered by the individual
robots. Inspired by the so-called collective intelligence
demonstrated by social insects [2], bio-inspired collective
robotics studies robot-robot and robot-environment in-
teractions leading to robust, goal-oriented, and perhaps
emergent group behaviours. The bio-inspired approach
in collective robotics seems to be a promising way to
solve problems which are hard to tackle using classical
control methods.

Unfortunately, because it is difficult to build an ad-
equate and reliable set-up for experiments with real
robots, many researchers in autonomous robotics are still
forced to carry out investigations with simulated robots
in simulated environments. This is especially true in
the context of collective robotics. This paper argues
for the necessity of both approaches, the simulation and
the experiments with real robots, in order to understand

the mechanisms which are involved in the collective be-
haviour, such as interference among robots, stigmergic
communication or behaviour emergence.

Let us now address the state of the research in a par-
ticular well-suited experiment in bio-inspired collective
robotics: the gathering and clustering of randomly dis-
tributed objects. First, we consider the biological inspi-
ration for this experiment. In some species, ant colonies
are able to collect objects (such as food or dead ants)
and place them in particular places. All ants of a given
colony place the food at the same place and the carcasses
in another place. In this way they can collect and store
food or carry dead ants to a “cemetery”: if a large num-
ber of ant corpses or food particles are scattered outside
of a nest, they will pick them up, carry them for a while,
and drop them. Within a short time we can observe that
the corpses are being arranged into small clusters and,
over time, the number of clusters decreases and their
size increases until eventually all the corpses will be in
one or two large clusters. The emergence of these clus-
ters has been studied with social insects by Deneubourg
[6], who showed that a simple mechanism involving the
modulation of the probability of dropping corpses as a
function of the local density, was sufficient to generate
the observed sequence of the clustering of corpses.

Gaussier and Zrehen [7] carried out an experiment
with a group of Khepera robots implementing similar
mechanisms with the same property: the probability
of dropping corpses was a function of the local density.
They mounted a hook behind the robot, which, given an
appropriate sequence of movements, enabled the robot
to grasp and shift small cylindrical objects. Precise rules
for the basic behaviours were defined: the perception
of the objects and obstacles (Winner-Takes-All neuronal
net) as well as dragging and placing objects were pre-
programmed in such a way that the global probability of
building a cluster was greater than that of destroying it.
Therefore, after a few minutes, the first clusters began to
appear on the arena. However, no quantitative analysis
of the experiments was reported by the authors.

Beckers and collaborators [1] did the same experiment
with robots of approximatively 25 cm in diameter. The



collective behaviour was analysed on the basis of the stig-
mergy principle. Essentially, it consists in the production
of a certain behaviour in agents as a consequence of the
effects produced in the environment by previous actions.
The experiment was carried out using 1 to 5 robots in an
arena where many pucks of 4 cm in diameter were scat-
tered. The robots were equipped with a frontal surface to
push the pucks. A microswitch was installed behind the
surface to control the maximal number of pucks which
can be pushed at the same time. The robot was able to
shift two pucks, but when three pucks were detected by
the microswitch, the robot stopped pushing and changed
direction. Three replications were carried out for each
experiment and the collective performance was evaluated
measuring the time needed by the robot group to gather
all the pucks in a single cluster (between 100 and 350
minutes). The results indicated that the optimal density
of robots on the arena surface, in order to accomplish
the given collective task in a minimal time lapse (rel-
ative to the number of robots), was three (superlinear
team performance). According to the authors, the rea-
sons for the presence of this optimum were attributed to
the geometry of the clusters and to the constructive and
destructive interferences among the agents.

In [8] similar experiments were carried out with a very
simple robot architecture based exclusively on a Braiten-
berg vehicle [3]. The authors used 1 to 5 robots of about
23 cm in length, an arena of 230 x 260 cm and cubic
objects. The experiments were reproduced three times
and lasted 20 minutes. The effect of factors such as the
number of the objects to be gathered and the number
of robots working together were also studied. A precise
statistical analysis was carried out but no modelling of
the experiment was presented.

In [10] we also presented a similar experiment, which
was conducted with a group of 1 to 5 Khepera robots
equipped with the gripper module and 20 scattered small
cylindrical objects (which will be referred to as “seeds”
from now on) in an arena of 80 x 80cm. Each experiment
was repeated 3 times. The measured performance was
the average size of the cluster created during about 30
minutes. However, due to the difficulty that the recog-
nition algorithm had to distinguish between a seed and
another robot, often a robot dropped a seed in front of
another robot and the latter grasped the seed (seed ex-
change) or a seed was dropped in an isolated position in
the middle of the arena or close to one of its walls. For
the same reason, the robots tried to grasp each other
and they often became entangled for a few seconds. As
a consequence, 1t was possible to analyse quantitatively
the data, but the high rate of destructive interferences
and of experimenter interventions prevented the creation
of a parametric model in simulation which could have
generated similar results.

The experiments presented in this paper are carried

out with a more reliable distinguishing algorithm. We
aim to show that the improvements in the control ar-
chitecture and a systematic measuring procedure of the
team performances will allow us to compare the exper-
imental results with those obtained in simulation with
a probabilistic finite state machine. It is worthwhile to
mention that the purpose of the simulated parametric
model 1s not to deliver data which fit as close as possible
to the experimental data. The simulations aim to outline
the parameters of the real set-up which play a crucial
role in the evolution of the collective performances. A
better comprehension of collective mechanisms, such as
interference among the robots or stigmergic communica-
tion, will help to evaluate the expected collective per-
formances of a given number of robots, a given amount
of work, a given work area and a pre-established control
architecture. We are convinced that questions like how
to program a single robot to get a desired emergent be-
haviour or how to obtain superlinear team performances
(which means that n robots work more efficiently than
one robot n times longer) are still open.

2 Materials and Methods
2.1 Ezperiments with Real Robots

2.1.1 Fzxperimental Set-Up

Khepera is a miniature mobile robot developed to per-
form ”desktop” experiments [11]. Tts distinguishing char-
acteristic is a diameter of 55 mm. Other basic features
are: a substantial processing power (32 bits processor at
16 MHz), energy autonomy of almost half an hour, pre-
cise odometry, light and proximity sensors. In its basic
configuration Khepera is equipped with 8 infrared (IR)
sensors, 6 on the front and 2 behind its cylindrical struc-
ture. On the front these sensors are distributed with a
gap of about 14 mm. The wheels are controlled by two
DC motors with an incremental encoder (12 pulses per
mm of advancement of the robot), and can rotate in both
directions. The simple geometrical shape and the motor
layout allow Khepera to negotiate any kind of obstacle
or corner. Each robot can be extended with a gripper
module, which can grasp and carry objects with a max-
imum diameter of 50 mm. Due to its size, Khepera is
a convenient platform for single-robot experiments, even
more so in collective robotics experiments: 20 Kheperas
can easily work on a 2 m? surface, this being equivalent
to a workspace of 10 x 20 m for robots with a 50 cm di-
ameter. The experiments are carried out with a group
of 1 to 10 Kheperas and 10 to 40 seeds (see fig. 1 as
an example ). The seeds have a cylindrical form, with
a diameter of 16 mm and a height of 25 mm. We use
two square arenas with different sizes, the largest hav-
ing double the surface of the smallest (80 x 80 cm and
113 x 113cm). The initial scattering of the seeds and the



Figure 1: a) Seed scattering at beginning of the experiment and b) after about 2 hours, at the end of the longer

experiment.

starting position of the robots are arbitrarily predefined
and differ from replication to replication. Several exper-
iments which differ in the number of scattered seeds, the
number of robots, and the working surface are performed
and the team performances are measured and compared.
As performance measurement we chose the same as in
[10], that is the mean cluster size expressed in number
of seeds at a given time. Measuring the team fitness in
such a way 1s easy and coherent with the probabilistic
modelling of the simulation. Furthermore, it allows us
to compare the present results with the previous ones.
The experiments terminate when a pre-established time
lapse is over, in our case approximatively 20 minutes,
and are repeated 5 times. A further experiment, which
lasted about 2 hours and was replicated 3 times, is also
presented as reference.

It is worth emphasising that in both experiments the
robots operate completely autonomously and indepen-
dently; all sensors, motors and controls are on-board, and
there is no explicit communication (IR or radio link) with
other robots or with the experimenters. The only pos-
sible interactions among robots are the reciprocal avoid-
ance of collisions and an indirect form of messages, which
arise from the modifications of the environment (i.e., for
instance the cluster geometry).

2.1.2  Control Algorithm

The control architecture is basically a subsumption ar-
chitecture [4] with two layer levels (layer 0 and layer 1)
and a more complex function to switch among the be-
haviours of the first layer.

There are seven basic behaviours: avoiding deadlock,
searching, discriminating, obstacle avoidance, moving
back, picking up the seed, and dropping the seed. The
only behaviour which can suppress the others is the
avoiding deadlock behaviour (layer 0): the robot reads
the proximity sensors and the odometry error and it
moves back or rotates in order to overcome the dead-
lock. This is very useful when the robots are entangled

Figure 2: Behaviour of the robot in front of a seed.

a) b) D) d

Figure 3: The detection lobes of the proximity sensors
of the Khepera. A dark lobe means that the sensor is
saturated, a light lobe means a low or zero activity.



Cluster Size [seed] 0|1 | 2 3

4 5 6 7 8 9 10

Construction Probability || 0 0.51

0.44

0.38 1034 1030|027 ]025]0.23]0.21

Table 1: Construction probabilities as a function of the cluster size once the cluster i1s found.

Cluster Size [seed] 0|1] 2 3

4 5 6 7 8 9 10

Destruction probability || 0 | 1 | 0.37 | 0.31

0.2710.24 | 0.22 | 0.20 | 0.18 | 0.17 | 0.15

Table 2: Destruction probabilities as a function of the cluster size once the cluster is found.

Figure 4: The robot discriminating behaviour is based on
a “wobble” movement, sampling continuously its prox-
imity sensors in front of the found object. The picture
shows this behaviour in front of a cluster of seeds: in case
a) the robots discriminates the cluster as an obstacle, in
case b) as a single seed.

a) b) ©) d)
Figure 5: Geometrical representation of the result of the
discriminating algorithm when a cluster is found. The ra-
tio between the detection perimeter and the total perime-
ter of the cluster represents the probability to increment
the cluster size of one seed.
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Figure 6: Geometrical representation of the destruction
probability of a cluster: the robot, in order to decrement
the size of the cluster of 1 seed has first to detect the
cluster as in figure 5 and then grasp a seed. Due to the
geometrical constraints of the gripper, the access perime-
ter for seed grasping is more limited than the detection
perimeter. The resulting probability is therefore repre-
sented by the minimum of the two mentioned perimeters.
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or when, after a timeout, the robots cannot discriminate
correctly the object noticed by its proximity sensors.

Let us briefly describe the switching among the basic
behaviours of layer 1. The searching behaviour consists
in moving straight forward until an object is noticed by
one of the 6 front proximity sensors. The obstacle avoid-
ance behaviour is obtained using a neural network with
a structure inspired from the Braitenberg vehicle 3¢ [3].
The last three behaviours, moving back, picking up and
dropping the seed, are illustrated in fig. 2. We can sum-
marise the resulting robot behaviour with the following
simple rules: the robot moves on the arena looking for
seeds. When its sensors are activated by an object, the
robot begins the discriminating procedure. Two cases
can occur: if the robot is in front of a large obstacle (a
wall, another robot or an array of seeds), the object is
considered as an obstacle and the robot must avoid it. In
the second case, the object is discriminated as a seed. If
the robot is not already carrying a seed, it moves slightly
backwards and grasps the seed with the gripper; if the
robot is carrying a seed, it moves further backwards and
drops the seed it is carrying close to the one it has found;
then, in both cases, it turns about 180 degrees and be-
gins searching again. It should be noted that when the
robot moves backwards it continuously checks its back
proximity sensors to be sure that there 1s no obstacle be-
hind it. This continuous test allows to grasp or drop the
seed at the right distance.

The discriminating behaviour is the most complex one.
The previous algorithm took advantage of the different
saturation of the four front proximity sensors: if the ac-
tivity of the two central sensors exceeds a given activity
threshold, the robot also checks the activity of the two
lateral ones. If they are also very active, this indicates
to the robot that there is an obstacle ahead; if the two
lateral sensors are not saturated, it indicates to the robot
that there is a seed in front of it. Basically, the actual al-
gorithm is similar to the previous one: the improvement
is based on an increased number of spatial and temporal
samples. Furthermore, in order to improve the discrimi-
nating ability, each robot is equipped with an IR reflect-
ing band (whose reflecting power is about one thousand
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Figure 7: The dynamics of the clustering experiment
represented as a probabilistic finite state machine.

times greater than white paper): the size of the robots
indicated by the proximity sensors is therefore increased
and at a distance of 4-5 cm a robot is already recognised
as an obstacle by the other robots. A test of reliability
reported in [13] has shown that this algorithm correctly
discriminates objects with a probability of 0.89.

Figure 3 and 4 illustrate the activity of the proximity
sensors of Khepera in front of different objects. With the
control algorithm mentioned above, the typical form of
a cluster will be more or less an array of objects.

Figure 5 and Figure 6 illustrate the geometrical situ-
ations considered in the calculations of the construction
and destruction probabilities of a cluster of a given size
when the robot has found it. The numerical results of
these considerations are reported in table 1 and table 2.

2.2 Simulation with a Probabilistic Finite State
Machine

In this section we describe a simple parametric model
of the clustering experiment. We take into account only
the building and destruction probabilities of a cluster
and its probability to be found by a robot (proportional
to its detection surface). The robot is represented by
a point. Its coordinates are randomly assigned at the
beginning of each program iteration (see the first random
process depicted in fig. 8a). There are four fundamental
simplifications in our simulation:

e the robot has no physical dimensions; as a conse-

ot

quence, there is no interference among the simulated
robots;

e the robot discrimination never fails when the robot
detects an object;

e the robot is not moving in the environment: the sim-
ulation calculates the global probability of finding
a cluster based on the total detection area and the
arena surface;

e in order to convert the number of iterations into time,
we assume that the clusters are scattered homoge-
neously on the arena and that we can calculate the
minimal mean distance between two of them (see
fig. 8a); using the mean distance and the experimen-
tal mean velocity of the robots (in these experiments
80 mm/s), we can compute the minimal time to move
from one cluster to another, which is set equal to two
simulation iterations (a simulated robot needs at least
two 1terations to pick up a seed from a cluster and to
drop it in the same or in another one);

e the arena boundary effects are not considered, which
means that the building-destruction probability for a
cluster is determined only by its size and not by its
location in the environment.

We define a Probabilistic Finite State Machine
(PFSM) as a finite state machine in which the transi-
tions from state to state are probabilistically determined
(see fig. 7). The machine has as many states as possible
clusters with different sizes, which actually corresponds
to the number of seeds scattered on the arena. The tran-
sition probabilities from state to state are calculated as
a function of the total construction and destruction area
represented by all the clusters with the same size. As a
consequence, the rules to calculate the transition proba-
bilities are pre-established by the geometrical constraints
of the set-up but their values are updated every time that
the number of clusters of a given size changes. Notice
that, for a cluster of size n, if there is no cluster of size
n-1, 1its building probability is zero.

Every robot can increment or decrement the size of a
cluster by one seed. The building and destruction proba-
bilities (Bi and Di of fig. 7, with i between 1 and the num-
ber of scattered seeds) are conditioned by two stochastic
processes which are explained in fig. 8. First, a random
position in the environment is assigned to the robot. If
this position is inside the detection area of a cluster, the
second random process is started. According to the state
of the robot (carrying or not carrying a seed) the size
of the found cluster is incremented or decremented by
one seed if the number delivered by the random process
is within the construction or destruction region (calcu-
lated with the values of tab. 1 and tab. 2). Both random
processes are repeated for each robot independently be-
fore the next iteration of the program is started. Notice
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Figure 8: a) The first random process: the clusters are represented with their detection area scaled with the total
surface of the environment; the probability that a robot encounters a cluster is proportional to the detection area of
the cluster. b) The second random process: the robot can modify the size of the cluster, incrementing or decrementing
it by 1 seed, only if the robot runs into the cluster from the positions described in fig. 5 or fig. 6. The two bars
represent the whole set of clusters scattered at a given moment on the arena: if the random cursor (set on the left
bar at 0.47) fails on a grey zone, the selected cluster will be decremented (left bar) or incremented (right bar) by 1

seed.

that both random processes always consider the whole
actual set of clusters and are very lightly coupled: the
former delivers only a boolean value “true” if a cluster
is found but neither its size nor its position in the arena.
As a consequence, the second process, if enabled by the
first one, also takes into account the whole actual set of
clusters, which is scalar represented by the building and
destruction probabilities of each cluster.

3 Results and Discussion

As mentioned in the previous section, we use the mean
size of the clusters as collective performance measure-
ment of the group of robots. Most of the following plots
are ordered with the team fitness of the real robots on the
left side and the team fitness of the simulated robots on
the right side. In all of the other figures, only the average
fitness of the 5 replications is plotted (3 replications for
the longer experiment, see fig. 13).

In order to estimate the repeatability of the experi-
ments and the reliability of the model we have calculated
the relative error on the basis of the data variance of each
experiment for all the time frames: the experimental re-
sults were affected by a relative error always smaller than
25% (35% with only 3 replications in the longer exper-
iment) and the simulated results by one smaller than
20%. Although the number of simulations for each ex-
periment can be very easily increased, it does not make
sense to do that because of the repeatability of the ex-
perimental results. The experimental relative error could
be decreased by a more extended set of replications for
a given experiment. However, this could drastically in-
crease the time spent for experimenting, if the same team

fitness 1s measured.

Figure 9 shows the team fitness for a group of 1 to 5
robots. Although the team fitness of the real group of
robots is slightly greater than that of the simulated ones,
the two plots shown are quite similar. The main differ-
ence is that the performances of the groups of 4 and 5
real robots is more rapidly saturated than those of the
smaller groups, which is not the case in the simulations.
This can be explained by considering the interference
among real robots, which is not taken into account in
the simulation. As time goes on, the cluster stability
is greater because of their size. As a consequence, the
amount of work to be done (destroying or constructing)
is less than at the beginning. Therefore, there are pro-
portionally more robots moving around the arena look-
ing for seeds: they interfere as mobile obstacles with the
robots which are engaged in constructing or destroying
operations. Do not forget that, as described above, the
control algorithm during picking up and dropping seeds
checks if there is any obstacle behind the robot. If there
is an obstacle (for instance another robot), the cluster
is missed and a new search begins. On the other hand,
the team fitness of the group of 3 real robots is sub-
stantially greater than the corresponding simulated one.
The robot-to-robot interactions could also lead to a bet-
ter territorial division, which can effectively increase the
team efficiency (time saving).

The interference among real robots arises even more
clearly in fig. 10: with ten seeds the fitness increases
rapidly but after about 300 s it becomes saturated and
there are too many robots for too few seeds. Consider-
ing only the parameters of the model (which means the
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Figure 9: Fitness of the group with increasing number of robots (1 to 5) on the arena of 80x80 cm and 20 seeds to
be gathered. (a) Results of the experiments with real robots. (b) Results of the simulations.
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Figure 10: Fitness of the group with 3 robots and an increasing number of seeds (10, 20 and 40) on the arena of
80x80 cm. (a) Results of the experiment with the real robots. (b) Results of the simulations.

construction and destruction probabilities), the number
of seeds does not play a crucial role. If the number of
scattered seeds is higher, it is easier to find a seed; on the
other hand, the mean size of the cluster increases more
slowly because of the large number of seeds to be gath-
ered. The former mechanism compensates the latter and
the result is that in the simulation there is only a slight
difference in the slope of the team fitness changing the
total number of seeds scattered on the arena. A further
difference between simulation and real robots is noticed
in the team fitness with 40 seeds: the limited efficiency of
the distinguish algorithm in the real robots decreases the
slope of the team fitness even if the probability to find
a seed is greater than in the other cases. As mentioned
before, this factor is not considered in the simulation.

Fig. 11 compares the team performances where the
number of robots, the surface, and the number of seeds
to gather is doubled. The purpose here is to demonstrate

that robot- and seed-density (meant as amount of work
to do) are two key parameters of the experiments and
that we can obtain the same results in the team fitness
with the same density of robots and seeds (this is very
important because of the rare availability of a greater
number of robots). If we compare fig. 11a with fig. 11c
we can conclude that, considering the repeatability of the
experiments, the differences between the two pictures are
negligible. This tendency is confirmed by the simulations

(compare fig. 11b with fig. 11d).

Fig. 12 shows that in both simulation and experiments
with real robots there is no superlinearity in the team
performances. On the contrary, in the experimental re-
sults with 4 and 5 robots there is a sublinearity because
of the destructive interferences.

Finally, fig. 13a shows the experimental results ob-
tained using a special tool developed at our laboratory
to extend the autonomy of the Khepera robots [9]. Al-
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Figure 11: Fitness of the group with increasing number of robots (1,3 and 5) on the arena of 80x80 cm and 20 seeds
to gather in a) and fitness of the group with the double of teammates (2,6 and 10), the double of seeds (40) and an
arena two times bigger (113x113 em) in ¢). The corresponding simulated fitnesses are depicted in figure b) and d).

though a single experiment replicated only three times
can not be representative, the figure shows that after
3000 seconds the team fitness becomes saturated due
to interferences. In comparison, we have performed the
same experiment but longer in simulation. The simula-
tion results are shown in fig. 13b. Since the probability
to build a cluster is consistently greater than that to de-
stroy it, the seeds can be gathered in a single cluster if
enough time is available. We guess that it is not possi-
ble to obtain this result with real robots and the set-up
described in this paper due to the crucial role played by
interferences. Remember also that the resulting building
probability (building probability minus destroying prob-
ability) is ever smaller. As a consequence, before all the
seeds can be gathered together, the average of the cluster
size could reach a saturation zone where interference and
building gradient contributions are in equilibrium. As a
final remark, it has to be pointed out that the improve-
ment of the discriminating algorithm has also changed
the building probability for single-seed clusters. Due to
the weak reliability of the previous algorithm, another
robot could be discriminated as a seed and, consequently,

single-seed clusters were often created in the middle of
the arena or beside the wall. Adding a probability for
building one seed clusters in the PFSM parametric model
has led to a radical change in the fitness tendency: after
about 40 minutes the team fitness did not increase and
the mean cluster size remained about 3.

4 Conclusion

The results of this paper have shown that it is helpful, in
collective robotics, to compare simulation results with
real robot experiments in order to better understand
mechanisms such as interference or stigmergic commu-
nications. The previous section has shown that the pa-
rameters chosen for the simulation (number of robots,
number of seed, geometry of the environment and of the
interaction seed-robot) play a crucial role in the evolution
of the team fitness. The influence of these key parame-
ters has also been verified in the experiments with real
robots, changing one parameter at a time.

Furthermore, this paper has pointed out that in or-
der to compare the results of the two approaches, it is
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Figure 12: Mean fitness of the single teammate within a group composed by an increasing number of robots (1 to 5)
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Figure 13: The evolution of cluster mean size during a) 2 hours with real robots and b) about 7 days in simulation
(the time needed for this simulation is about 5 minutes on a SUN Sparc Station 20).

necessary to choose a team fitness function which can
be easily quantified. In our opinion, the noise present in
the real world makes it necessary to repeat each exper-
iment at least five times to have an acceptable relative
error, whose upper limit was set in these experiments to
25%. The new discriminating algorithm has considerably
improved the reliability of the experimental fitness mea-
surement so that a comparison between the simulated
and the real world performance data is more significant.

Both approaches, simulation and experimentation,
have also shown their limitations in view of obtaining
interesting collective behaviour running on real robots.
It is very difficult to simulate robots considering all the
mechanisms and the noise of the real world: the opti-
mal key parameters found in simulation could be quite
different from those of the real environment. Therefore,
we advocate a parametric simulation of the robots, which

will not suppress the need to experiment with real robots
but will help to understand the mechanisms found in the
real world. On the other hand, the limited energy auton-
omy of the Khepera robot as well as the whole procedure
needed for preparing the set-up represent a great hand-
icap to perform many replications of the same experi-
ment. Not only do the robots have to be charged between
two successive experiments, but the battery discharging
process during the experiment may considerably change
the performances of the algorithm (we notice some dif-
ference in the discriminating algorithm, which is quite
sensitive, between the beginning and the end of the ex-
periment; we intentionally cut the last 3 minutes from
the processed data shown in the previous plots).

The results show that in this kind of experiments with
no explicit communication among robots and with no
adaptivity in the robot control, a greater number of



robots does not necessarily help to increase the fitness.
If we compare the performances of each teammate with
that of the single robot, we see that the robot working
alone always achieves the best performance (linearity or
sublinearity of the fitness).

The introduction of adaptivity could, for instance, al-
low the single robots to switch from an active phase to an
inactive one when the ratio between the amount of work
(in our case the seed finding rate) and the interference
(in our case the encounter rate with other teammates)
decreases under a given threshold. Similar mechanisms
are supposed to play a crucial role in ant colonies [12].
These are intriguing examples of adaptive collective be-
haviour which can be an important source of inspiration
for collective robotics, when the collective behaviour is
generated by a completely decentralised system.

The communication ability, although not needed to
solve non-cooperative collective tasks, could be a fur-
ther feature to improve the team fitness. In an exper-
iment similar to that described in this paper, explicit
communication would help to decrease the interference
rate if the robots could communicate their actual activ-
ity (destroying, building a cluster or looking for seeds) to
their fellows. In most cases, local communication would
be more efficient than global communication, because of
the greater available bandwidth (parallel communication
channels).
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