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Abstract

The ability to return to a base location is crucial for moving animals; so

it is for mobile robots. Insects like bees and ants achieve this task by a

combination of di�erent mechanisms: coarsegrained dead-reckoning, using

a global reference frame such as the sun, takes them back close to their

nest. Once near the desired location, either a search behaviour (ants) or

a navigation by local landmarks (bees) is initiated and takes the animal

home.

We present a navigation system for a mobile robot that shows similarities

to this solution. Using a distant light source (the sun, for example), the

robot is able to return back to base within about 10% of the total distance

travelled. The robot then switches to a �negrained local navigation, ex-

ploiting the structure of its environment and returns to its base by means

of local landmarks.

1Presented at the European Conference on Arti�cial Life, ECAL 1993, Brussels 24.-

26.5.1993.



1 Introduction

Animals move around their niche, and as a consequence of such locomotion create

a number of problems. The necessary competences can be arranged in a logical

hierarchy ([McGonigle 91]). Initially, the most immediate obligation of a moving
system is not to collide with rigid objects. These competences are achieved at a

very early stage in the ontogeny of all species including human primates.

Such competences are not, however, designed to solve a further problem which

arises from locomotion: that of relocating in a principled way , to a region of space

once occupied by the agent and out of range of its sensors. For animals, particular

locations within their niche may be important sites for food. Finding these places
directly, based on locative memory, for instance, materially reduces the costs of

foraging as compared with one controlled by some random search process.

The same problem exists in the case of an arti�cial agent. It is one thing to

avoid objects in the work space; another to recover a privileged location which
has some vital importance ( such as a fuel source). It is this problem which we

address speci�cally in this paper.

As in the case of biological systems we need �rst to consider the niche and

the operating conditions under which some form of navigation system can be
implemented. In open daylight conditions, for example, rather than in a sub-
terannean passageway with physical constraints on movement, a moving agent
is enabled to detect which aspects of the array change continuously with motion

from those aspects which do not. Distant cues, for instance, remain relatively

stable with locomotion and a�ord a relatively invariant reference system within
which the agent can reliably orientate. Under daylight conditions many species

use some aspects of sunlight as the basis for such orientation. Honey bees apis

melliferaa and desert ants cataglyphis bicolor, for example, can navigate as long
as there is some polarised light available ([Gould & Gould 88, Waterman 89] and
[Wehner & R�aber 79]). Other species can use the position of the sun (for example

starlings). Even rodents, well adapted for subterranean route learning, can use
distal visual clues as a basis for determining their general orientation in space.

A stable frame of reference is, of course, vital to help relocate to a position
in space outside the immediate sensor range of the agent. Whether it is ever

su�cient, however, in itself is unlikely, especially over large distances. Gallistel
([Gallistel 90, p39�]) reports the average human error of navigation as from 5-10

percent of the total distance travelled, and a similar error has been observed in

desert ants cataglyphis bicolor ([Wehner & Srinivasan 81]).

This suggests that the solution must be ultimately based on a shift in the gran-

ularity of the processes involved: One part is to provide a relatively coarsegrained

schema enabling the subject to return to the neighbourhood of the sought af-
ter location; another is to then search that neighbourhood for other sources of

information2.

2Putting a key in a door lock is a common place example for this. Finding the door with

respect to a general reference frame involves a much more global referencing system than is

required for the precision movements necessary to put the key accurately in the lock once the

appropriate door has been located.



This then is the basis for our approach here. The particular task looked at

here is that of exploration and subsequent return to the base. Leaving from
an arbitrary starting position (which is de�ned as the base) the robot moves

in its environment, avoiding obstacles it encounters. Upon command by the

experimenter3 the robot returns to its base by means of dead reckoning, based

on phototaxis.

In order to be able to achieve this task, a uniform light gradient is required.

Such a light gradient often exists in laboratory environments (window front at
one side of the room), if it doesn't, it can be created by arti�cial light. We also

have conducted experiments outdoors, which show that sunlight is suitable for

the type of navigation presented here.

2 Experiments with the Di�erential Light Com-

pass

2.1 The Edinburgh R2

The robot we used for the experiments described here is shown in �gure 1.

Figure 1: The Edinburgh R2.

It is a mobile robot of roughly quadratic shape (25cm x 25cm), called the
\Edinburgh R2". The robot is controlled by a distributed control architecture,

3It is conceivable that the decision to return is taken by the robot itself, for example upon

having grasped an object.
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Figure 2: Dead reckoning, not using reference landmarks.

using six 68HC11 microcontrollers (one master and �ve slaves, used to control

sensors and actuators). It has a gripper with two degrees of freedom. Eight
infrared proximity sensors are mounted around the robot at a height of 25 cm.
These detect white objects as far away as 40 cm, objects coated with re
ective
tape can be sensed from distances of up to 150 cm. Additionally, the robot has
six light sensors (�ve around the perimeter, one pointing upwards), as well as

two break beam sensors and one colour sensor in the gripper. The light sensors
are based on cadmium sulphide light dependent resistors; by means of a voltage
divider a light-dependent voltage is obtained and fed into the analog input of the

68HC11 microcontroller of the light-sensor slave.

Mounted at the front of the robot at a height of 5 cm are �ve tactile sensor

pads, two additional tactile sensor pads are �tted inside the gripper. Through
wheel encoders the robot can also sense the velocity of each of its two wheels.

The speed of the robot can be controlled by software and goes from �40 cms
�1

to +40 cms
�1.

2.2 Dead Reckoning

If current heading with respect to some reference direction and current speed (or

distance travelled) are known, the current position of an agent can be computed
as follows (see also �gure 2):

dx = cos(�i)v�t; dy = sin(�i)v�t (1)

x(t+ 1) = x(t) + dx; y(t+ 1) = y(t) + dy: (2)

�i is the current heading of the robot, �t is the time interval between mea-
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Figure 3: Arrangement of light sensors on the Edinburgh R2.

surements and v is the average speed of left and right motor, which is assumed

to be constant during �t.

The current heading can either be measured by referring to a reference di-
rection (through a magnetic sense, or, as in our case, through light sensors), or
it can be estimated. Both methods introduce errors. Estimating angles soon

becomes very unreliable as the robot performs several turns in a row (due to

the accumulation of error). Using an external reference, on the other hand,
removes the accumulative error in angle measurement completely and leaves only

a measurement error. It is therefore more robust.

On returning home, direction and distance are given by

tan(
) = y

x
;

l =
p
x2 + y2:

2.2.1 The Di�erential Light Compass in the Edinburgh R2

The dead reckoning mechanism used in the Edinburgh R2 follows the basic

principle outlined before: Position estimation is performed by dead reckoning,

using a distant light source (our laboratory window) as a reference direction. In
order to reduce computation, a constant speed is assumed. This assumption is

reasonable because the robot's speed is controlled by independent PD controllers.

The Edinburgh R2 is equipped with six light sensors. Sensors zero to four are
mounted on the robot as shown in �gure 3 (sensor �ve points upward and can be
used to determine the ambient light level or detect ceiling lights. It is not used

in the experiments described here).

Rather than measuring current heading and applying equation 1, we compute

dx and dy directly:



dx =
S1� S4

jS1� S4j+ jS2+S3
2

� S0j
; dy =

S2+S3
2

� S0

jS1� S4j+ jS2+S3
2

� S0j
(3)

where S0 : : :S4 denote the signal values of light sensors zero to four, dx

the heading in x-direction and dy the heading in y-direction (scalars). This

provides more accurate results at lower computational costs, as no trigonometric
computations at all have to be performed. Because dx and dy are dependent upon

the di�erence in light detected by opposite light sensors, we call this mechanism

di�erential light compass.

During the outward journey ( during which the robot avoids obstacles using

its infrared sensors), the current position of the robot is estimated in discrete
time steps according to equation 2.

To return back to base, the robot turns on the spot until both dx and dy

(see equation 3) are such that the robot is heading towards the starting location.

The robot then starts moving, again avoiding obstacles on the way, and again

updating its current position according to equation 2. Once x and y-coordinate
lie below a prede�ned threshold, the robot stops. Control is then handed over
to a �negrain navigation system that homes by means of a passive beacon which
marks the starting location.

3 Experimental Results

3.1 Experiments

Figure 4 shows typical outward and return paths of the robot (no beacon at base).

The points marked `S' denote the starting location of the robot, at points `R' the
robot was instructed to return to the starting location.

The top half of �gure 4 shows paths where an obstacle is encountered on the
outward journey, but not on the return trip. The bottom half shows the more
complicated case where the direct return path is blocked by an obstacle (the
indicated obstacle is not present during the outward journey). The �nal course

followed by the robot is the result of two competing behaviours, that of obstacle

avoidance and that of homing.

The positions shown in the diagrams denote the center of the robot. The

actual robot (and therefore its sensors) extends 25 cm to either side of the marked
points. This means that the starting location was within sensor range from all

return positions, i.e. a beacon placed there would have been detected.

The experiment shown in �gure 5 investigates the accuracy of navigation for

two cases: a) the current heading of the robot is estimated, and equation 1 is
used (return positions for this case are marked by letters), and b) the current

heading of the robot is measured by using the light sensors, and equation 3 is

applied (the return positions of the robot for this case are marked by numbers).
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Figure 4: Typical paths of the robot.
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Figure 5: Navigation with and without DLC.
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Figure 6: Course steered to measure navigational displacement.

x [cm] 70 0 20 -30 -10 0 -5 -25 -25 -25 -30 -5,5

y [cm] 30 60 35 0 25 75 -10 -10 0 60 -50 19,5

d [cm] 76 60 40 30 27 75 11 27 25 65 58 44,9
Error [%] 13 10,5 7 5,3 4,7 13,2 1,9 4,7 4,4 11,4 10,2 7,9

Table 1: Navigational displacement, using the DLC and dead reckoning.

The �gure shows that all four return positions (using the DLC) were within
sensor range of the starting location, whereas for the runs without DLC they were
not. This is due to the accumulated error when each turn angle of the robot is

only estimated.

3.2 Measuring the Navigational Displacement

Experiments with desert ants show that the typical navigational error is about
10% ([Wehner & Srinivasan 81]). Similarly, dead reckoning navigation in humans

is subject to an error in the range of 5 to 10% of the total distance travelled
([Gallistel 90]).

In order to estimate the precision at which the robot would be able to navigate
according to equation 3, the robot was made to follow a path as shown in �gure 6,

of about 570 cm length.

The return positions in eleven separate runs are shown in table 1. Also shown

is the displacement in per cent of total distance travelled.

To interpret table 1, it should be bourne in mind that the sensors of the robot

are 12 to 25 cm away from the center, and have a range of another 150 cm for
passive, re
ective beacons. In other words: the beacon was visible from all return

positions in the eleven runs of the experiment.

This data can be used to estimate the maximum trip length over which the



navigational system would still work. Given that the beacon is visible from dis-

tances of up to 150 cm, and a navigational displacement of about 8% occurs, the
maximumtravel distance that still allows homing must not exceed 18 m; however,

due to physical constraints the travel distances we used seldomly exceeded 6 m.

3.3 Local Fluctuations in Light Gradient

Local 
uctuations in light gradient occur for instance if the robot moves into

shadows, or approaches a window o�-center. As long as a gradient exists at all

this does not a�ect navigation, provided the robot returns along the exact same
path it used during the outward journey. However, as this is impossible, local


uctuations in light gradient do introduce an error. In our experiments we have

found that navigation based solely on the di�erential light compass is indeed

dependent on a constant light gradient, a requirement that is not always met

indoors. For trip lengths of about four to six sensor ranges (4-6 m) we have found,

however, that if the starting location is marked by a passive beacon, the robot
reliably returns to the starting location, despite the fact that local 
uctuations

in light gradient are encountered. A reliable navigational competence therefore
requires the use of both local landmarks and reference landmarks. This, in fact,

can be perceived in desert ants, who use dead reckoning until they are near
the nest, and then use local navigation to �nd the actual entrance([Gallistel 90,
p.61], [Wehner & Srinivasan 81]). The same is true for gerbils, who will even run
past their (displaced) nest if their dead reckoning navigation indicates they are

nowhere near the nest ([Gallistel 90]).

4 Discussion

We report our �rst attempts to solve an inevitable problem arising out of lo-

comotion: to return to a previous location without bene�t of direct sensing of

the location in the �rst instance. This solution we based on a two-fold task
decomposition: a global reference frame �rst enables the robot to return close
to its starting location; it then navigates by means of local landmarks (a passive
beacon in our case). In our particular case, the �nal search was made easy by

having only one object available. However, provided the di�erential light compass

can deliver the agent to the search area within which direct sensing is a plausible
strategy, then there is no reason why we cannot make the object selection criteria

more exclusive to cater for a multiple object scenario. Given the colour sensors

on the grippers, we can readily �ne tune the system to select only landmarks of

a particular colour. In this way, other distractor objects can be avoided, even

within the crucial search space.

It is also clear that there are many other ways of implementing solutions to

the navigation problem we pose. Location recognition whilst following canonical

paths is one way ([Nehmzow 92]). Route learning is another powerful yet low
level solution which many animals use4. There is no reason in principle why a

4Particularly those which occupy subterranean niches, such as rodents in burrows.



succession of landmarks could not be learnt by a robot in an invariant chain

in which each component is the trigger to search for its successor. In this
way, an extensive range of exploratory behaviours could be controlled avoiding

the cumulative error problems inherent in dead reckoning solutions. Indeed, as

humans do, we could and should incorporate both systems (dead reckoning and

route following) in the same robot!
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