The Agent Pattern for Mobile Agent Systems

Alberto Silva, José Delgado
{Alberto.Silva, Jose.Delgado} @inesc.pt
INESC & IST Technicd University of Lisbon,
RuaAlves Redol, n°9, 1000 Li1SBOA, PORTUGAL

Copyright © 1998 ALBERTO SILVA and Jost DELGADO. All right reserved.

Abstract

This paper presents the Agent pattern, a cesign pdtern useful to devdop dynamic and
distributed apgications. The Agent pattern provides a clean andeasy way to develop
agent-based apgications, mainly in open andlarge-scale distributed environments sich
as the Internet and appication areas such as Eledronic Commerce. The Agent pattern
encapsulates a business pedfic dass (a spedalization d the Agent clasg, with some
user identification and aspedfic seaurity pdicy, providing dstribution, seaurity and
persistencetransparency. Furthermore, this paper presents a detail ed appication d this
pattern in the AgentSpace framework, as well as a krief apgication to the Telescript and
Aglets Wor kbench.

1 Intent

To define aitonamous active objedsto easily build dynamic and dstributed appli cations.
These active objeds are call ed agents becaise they are aitonamous and exeaute spedfic
tasks on kehalf of their users.

2 Scope and Motivation

Maybe one of the most understandable agent definition is due to Wodldridge and
Jennings [WJ95], which dscussed agents following two basic nations. a we&k and a
strong one. The strong nation involves Artificia Intelligent techniques and models to
characterize agents using mentali stics nations, such as knowledge, beliefs, intentions and
obligations, or even with emotional attributes. Based in that tentative agent definition,
the discussed agent pattern in this paper focuses on this weak notion where
autonomy, sociability, reactivity and even mobility are the most important
characteristics. Additiondly, it isimportant to state that the focus of the propased agent
pattern is more infrastructure-oriented than applicaion-oriented. This means that the
focus is based on low-level issues such as synchronization, thread management,
communicaion, seaurity handiing or persistence On the other hand, the focus of
application-oriented approaches, such as those found in the Al field, are mostly on
knowledge representation, cooperatior/collaboration definition models, and agent
communicaionin a heterogeneous and high level scde, etc.

Other aspect that shoud be darified is the relationship between agent suppat systems
(ASSs), and ohjed request brokers (ORB), such as CORBA implementations, RMI,
DCOM. Both systems present some simil ariti es because both of them intend to suppat
distributed applications. However, ASSs provide aframework to develop applications
based mainly on the agent paradigm, whereas ORBs on the object-oriented paradigm.
Nevertheless an agent is at some scde an adive objed. So, in ou opinion, the main
diff erence between bah types of systems is better discussed following two basic vedors:

n 3" European Conferenceon Pattern Languages of Programming and Computing, EuroPLoP’ 98

flexibility and specificity. ASSs are designed and implemented to suppat spedficdly a
restricted number of application-families. On the other hand, ORBs are more flexible,
application-family independent and consequently they present low-level suppat. We
exped that the development of the next generation ASSs would be developed ontop d
some kind d ORB, athough the contrary would na be true.

For motivation let us consider an eledronic commerce gplication in a vast and open
environment such as the Internet and with three basic antities: the buyer, the salesman
and the broker. In an agent-based approach, users interad with their own agents and
delegate their spedfic tasks. Agents interact between themselves in arder to perform
these respective tasks. Figure 1 shows a scheme with the interadion between agents and
between agents and their users.

)
PR Book buyer
human-machine Agent
[i -~ agent

interactions
Buyer interactions

Broker
Agent N
roker
manager

Figure 1: Globd view of an agent-based apgication.

For example, for a user to buy a book he shoud ony interad with his’/her agent in order
to give it some spedfic information. For instance the book related information (e.g.,
title, author names, etc.); the maximum suppated price the initial and minimum priceto
start eventual negotiation; the address of some publlic booksellers broker. All the
subsequent adions — such as: accessng and interacting with the broker; obtaining the
addresss of the relevant bookseller agents; accessng and eventually negotiating with
some bookseller agent; deciding whether to buy or not; buying the book etc. — are
exeauted indiredly by the respedive agent. Eventually, users will monitor the arrent
exeaution state of their agents. Figure 2 shows a UML [Rat97] scenario diagram
correspondng to the described operation.

buyBook()
bs=queryBooksellers()
askCondition()
{for each elementin bs}
Zded deWhereToBuy()
buyBook()
notifyOwner()
Buyer Buyer Broker Booksdller
User Agent Agent Agent

Figure 2: Buying ogerationin an agnt-based appication —scenario dagram.

As suggested in this example, agents may be viewed as a new interface paradigm to help
the end-user in aaessng this new class of Internet applications, including eledronic
commerce gplicdions. In thisworld, the end-users change the way they interad with the
computer, from direct manipulation (e.g., word procesors, Web browsers, and so on) to
indirect management (e.g., Web information search). Using agents, users can delegate a
set of tasks to be dore by agents instead of themselves. This new paradigm is espedaly
atradive to help the users in complex, tedious or repetitive tasks and in open, dynamic,
vast and urstructured information sources such as those foundin the Internet.

We define an agent-based apgication as a dynamic, paentially large-scale distributed
application in an open and heterogeneous context such as the Internet. The basic
conceptual unit for designing and bulding agent-based applicaions is the agent as
defined above.

The nation d agent-based applicationis quite novel. An agent-based applicaionisnot a
typicd applicaion that is owned and managed by some person a some organization.
Instead, an agent-based application is best understood as a web of agents, each owvned
and managed by a number of entities with dfferent (and pasbly conflicting) goals and
attitudes, hosted in dfferent computing platforms, such as workstations and mobhile
phores.

Agent-based applicaions have anumber of charaderistics and requirements that have
been dealt with independently in the past. It is their interaction that poses problems.
Agent-based applicaions $ioud be aitonamous, heterogeneous, open, dynamic, robust
and seaure. All these charaderistics make these gplications potentialy very difficult to
implement and wse. However, we believe that agent suppat systems will help developers
to buld and to manage them.

3 Applicability

Use the Agent pattern when someone wants:

= To define aitonamous active-objeds suppated by some framework.

= Clientsto be aleto ignore low-level details, such as distribution a seaurity aspeds,
for instanceto oltain references to agents or to interad with agents transparently.

= To develop and to manage dynamic, distributed, and agent-based applications in an
easy way.

4 Structure and Participants

Figure 3 shows the Agent pattern represented by a generic UML [Rat97] collaboration
diagram its main participants and involved coll aborations.

view

Client AgentView User

/\ 7
aN o
Agent e _Agent~ ::5:‘-8%9-“-{{/ ------------- > SecurityManager
oon;r-e;;:gg;e;w; — ’ p]ace
v h ExecutionPlace
ConcreteAgent

Figure 3: Generic structure of the Agent pattern —collabaration dagram.

Figure 4 shows the generic static structure @rrespondng to the previous depicted
collaboration dagram.

view
Client AgentView user User
view
owner
Agent security AgentSecurityManager
place
concretgAgent \
ConcreteAgent)
ExecutionPlace
Agent Component

Figure 4: Generic structure of the Agent pattern —classdiagram.

The main participants in the pattern are:

Client

— Manipulates agents throughthe AgentView reference

— Clients can be other agents or other objeds (for instance Java gplets).

AgentView

— The AgentView is an adaptation d the Proxy [GHJV95] and Remote Proxy

[BM+96] patterns. This pattern is very suitable to suppat transparent and seaure
aacessto these diff erent types of objeds.

The am of AgentView isto provide transparent accessto agents. This aacessis
dore indiredly through proxiesin order to protect them, and to hide transparently
their current locdi zation (this isimportant due to the mohili ty charaderistic).
Addtionally, AgentView avoids the need to crege aad manage remote/virtual
classes (e.g., stubs and skeletons in RMI and CORBA implementations). Usual
examples of operations provided/protected through agent proxies are
sendMessage , getCurrentPlace , start , moveTo, getClassName , etc.

= User
— Theuser isidentified by a unique identity, which may contains for instance: his/her
name; a pulic key; a set of certificaes, the organization and courtry he/she
belongs to; and hs/her email.. Moreover, the user can have different identifiers
depending on the @ntext he/she belongs to. This gpedfic identity, managed in
every Agent Server's context, is represented by the User class which may
contains, in addition to all fields mentioned abowe, the aithentication attributes
(e.g., login and passwvord).
— The agent’s owner has necessarily an associated user identity, represented aways
by an User instance
— Different users can accessthe same agent however, ony through the rrespondng
AgentView instance (see Figure 6). Depending on the agent’s security manager,
eat aacessisalowed or not (seeFigure 7).
= Agent
— TheAgent abstract classisthe visible and extensible part of the Agent pattern.
— Basicaly, programmers $oud derive the Agent abstrad classin order to buld
their own concrete dasses. The agent class has three main groups of methods as
depicted in Figure 5: (1) pubdic final; (2) cdlbacks; and (3) helper methods.

Agent Comporent
AgentView

Figure 5: Agent’s main groups of methodks.

final

ConcreteAgent Agent

final

helper
cdlbadks methods

methods

- Fina methods are pre-defined operations provided by al agent classes that
canna be danged by the programmer. Examples of these final methods are:
moveTo, save , die , backHome, clone , getld , sendMessage , €tc.

— On the other hand, callbacks are methods customized by spedfic agent classes,
and are usually invoked transparently as the result of some event. Events are
trigged by some adion started by the agent itself or by other related entity, such
as an aher agent, an end-user (via same gplet), a time service etc. The
cdlbadk mechanism provides the desired extensibility of the Agent pattern.
Usual examples of cdlbadks are: run, onCreation , beforeDie
handleMessage |, etc.

- Findly, agent clases aso have helper methods, generally with private or
proteded access modifiers, in order to suppat speafic functions of that
clasgobjed. These methods are used internally by cdlbadk methods. Examples
of helper methods are for instance (see Figure 2): atBookseller
decideWhereToBuy |, etc.

— The Agent instance provides transparently several services, such as. persistence,
communicaion, mohility, naming and access control. Additionaly, the Agent
instance may keep related information, such as: the arrent and retive place
identities, seaurity palicy object, a reference to the ancrete agent itself, its own
identity, its owner identity, a reference to the involved seaurity manager, and the
groupof threads invalved.

= ConcreteAgent
— Concrete agent classes are Agent subclasses.
— Basically they define helper methods and spedalized cdlbacks, that, as a whole,
implement the agent’s edfic functionality.
= SeaurityManager
— Thisclass pedfiesthe agent accessseaurity palicy.
— The agent’s SecurityManager instance ntrols al the operations made
avail able on the agent comporent through eat AgentView instance
= ExeautionPlace
— This class pedfies the agent’s computational environment, which corresponds to
the placewhere it was created as well aswhereit is currently resident.
— Thisclassoffers edfic functions provided by the involved agent suppat system.
— The nation d exeaution daces is a crucia comporent suppated by mobile agent
frameworks due to the need of handing conveniently agent's mohili ty operations.
Figure 6 shows an example of a UML object diagram of the Agent pattern at run-time.
There ae just one agent comporent (correspondng to the ca obed) and two client
comporents (i.e., c1 and c2 objects) interacting with it. The figure shows that al the
involved agent and client objects are associated with dff erent users, respedively owner ,
ul and u2. Additionaly, the locality of each comporent is not relevant, because this
asped is handed transparently by the Agent View class and of course by the involved
ASS

———————— = sm: SecurityManager

ca : ConcreteAgent |

\ place : ExecutionPlace

Agent Component "’

5 Collaborations

Clients cdl standard agent operations through an AgentView instance Depending on
the agent’s security palicy and onthe involved user, the operation is exeauted, a nat, on
the involved agent instance

Final methods are basicdly exeauted by the Agent instance On the other hand,
cdlbaks, resulting from the exeaution o fina methods (eg., moveTo, die ,
sendMessage), are exeauted by the @ncrete agent instance Lastly, some helper

methods may be invoked by the exeaution d some callbads, and this process might be
repeaed several times.

Figure 7 shows a UML collaboration scenario between an abstrad client (i.e., the c1
objea), located in some place, and an abstrad agent (i.e., the agent instance) located in
another place.

doOperation()
getSecurityManager() (D
chedAccesy) (CN
doOperation() [CR
{if had accesg
invokeCall back()
.) ﬂzokeHel perMethod()
invokeFinalMethod()
cl: avl: agent : . :
: ; cagent : sm:
Client AgentView Agent ConcreteAgent SeaurityM anager
PlaceA PlaceB

Figure 7: Generic interaction d the Agent pattern —scenario dagram.

6 Consequences

The Agent pattern introduces svera benefits in designing and bulding agent-based
applicaions, mainly in open, dynamic and dstributed contexts such as the Internet.
However, at the sametime, its adoption raises ome chall enges and dfficulties.

Benefits:
= Suitableto theindired computational (i.e., delegation) paradigm.
= Easy development of dynamic and dstributed appli cations
— Programmers dorit have to manipulate remote acesses to oljects/classes (such as
the stubs and skeletons in Sun's RMI or the virtual objeds in ObjedSpace s
Voyager). They just need to know, or to query dynamicdly, (1) the agent identity;
and (2) the agent’s classinterface (i.e., its st of messages/pullic methods).
= Simpleintegration with definition and management of users
— The user management is handed implicitly by the system: (1) each agent/placehas
necessrily, and at least, one identified owner; and (2) other users can acessand
interad with a given agent, directly (e.g., via aspedfic gplet) or indirectly (e.g.,
via other agent).
= FHexible definition d agent’s saurity palicy
— Theagent’s seaurity palicy (aswell asthe agent’s owner definition) is not staticdly
couped to the agent class definition. This assciation is just performed
dynamically at agent creaion time. This fact implies that instances of the same
agent classcan have diff erent security palicies (aswell as diff erent owners).

Problems/Chall enges:

= The inexperience of users with the indirect human-machine interaction (delegation)
paradigm.

= Seaurity and privacy, namely in open and dstributed contexts.

» Requires applications with nowel businessmodels.

= Reguiresthe eistenceof some agent suppat system or framework.
= Reguires the «istence of generic dients to monitor and to manage the airrent
exeaution and state of agents.

7 Implementation

7.1 Architectural Issues

The use of the Agent pattern requires an agent suppat system, which involves sveral

architedural iswues, such as:

= |dentifiers: How to identify the related resources, such as the agent suppat system,
places and even agents.

= Agent programming languages:. In what languages houd programmers develop
agent classes.

= Agent communication languages. In what languages shoud agents communicae:
open and independent/standard languages, such as KQML, IDL, XML, EDI; or in
appli cation-based structures and spedfications.

= Seaurity and accesscontrol: Namely in open and dstributed environments, and with
mobil e agents, thisisaie beames very important.

= Low-level distribution support medianism: What low-level mechanism shoud be
provided so those agents can communicae with eat ather and move themselves
from placeto pace

= Persistence: In order to provide persistence to agents, because they must recover
from fail ures and they must survive down periods of agent server where they may be
currently hosted.

= Mobility: Agents can navigate through a (static or dynamic) set of placesin order to
communicae locdly with ather agents/objeds or to med at some defined pubic
place There ae severa tednical issues raised due to mobility, such as: state
maintenance security; data and code dosure; etc.

= Mobility and communication: How to hande cmmunicaion ketween mobile
agents, i.e., hawv can an agent communicae with ancother one, if it doesn't know the
current placeof its partner.

These different issues would be better discussed and explained through a pattern
language, which will be asubjed to a future paper.

In the foll owing sedions we will show the mapping d the Agent pattern to threemobile
agent frameworks: AgentSpace Aglets Workbench, and Telescript.

7.3 The Agent Pattern in AgentSpace

Figure 8 shows the spedfic structure of the Agent pattern related to the AgentSpace
framework [SMD97, SMD98]. Due to the fad that AgentSpacehas been developed on
top d the Voyager infrastructure, the persistence and dstributed details of the Agent
pattern are transparently suppated by an interna class (i.e,, nd visible from the
programmer's perspective) which is called InternalAgent . (It isout of the scope of
this paper to describe the design of the internal structure of this and related classes.)

It isimportant to nae how suitable, to suppat dynamic and dstributed applicéions, the
processof creating agents (as well as places) can be. Firstly, there is no use or explicit
reference to network-enable dasss. Secondy, all agents are created through a fadory
method (i.e., the createAgent method) in atransparent, clean and easy way.

Thirdly, AgentSpace provides a very extensible and elegant way to handle security
palicies/strategies related to the access and interadions between agents and end-users,
and between agents themselves. Basicdly, one security palicy/strategy (i.e., a seaurity
manager clasy is attached to the agent objea at its creation. In AgentSpace the
SecurityManager is an abstraa class from which ather classes soud be derived.
By default, every agent is attatched to the DefaultAgentSM class However, other
classes — ather agent’s security palicies — can be defined and wsed by the system through
the dassloading and reflection medianisms of Java

view .
Client AgentView Internal User
N owner
Agent - agent .. Agent Securi tyM anager
concreteAgent
'--4.,9_!ace
Place
ConcreteAgent

Figure 8: Spedfic structure of the AgentSpace s Agent pattern —collabaration dagram.

Another novel asped of AgentSpaceis the well-integrated association ketween users and
agents/places. This mechanism, intrinsic by default in AgentSpace, provides an easy and
clean way to develop and manage this classof applications.

7.4 The Agent Pattern in Aglets WorkBench

Figure 9 shows the structure of the Agent pattern adapted to the Aglets Workbench
[IBM97 LO98]. There are some minor differences from the proposed pettern related to
some name particularities. (e.g., Aglet instead of Agent , or AgletProxy instead of
AgentView). In Aglets, an agent is exeauted in some computational environment,
which is addressed througha Context reference.

view

Client AgletProxy User

not currently
) owner..t" supported
view
. - .
Ag|et T agent ... Agent y SecurltyM anager
concreteAgent
Context
ConcreteAglet

Figure 9: Spedfic structure of the Aglets' Agent pattern —collabaration dagram.

Findly, it is important to nde the inexistence of the User and SecurityManager
references from the Aglets agent. Maybe in the future IBM will introdwce in a
integrated way, thiskind d information.

7.5 The Agent Pattern in Telescript

Figure 10 shows the structure of the Agent pattern adapted to the Telescript system
[Whi94, Whi96]. There ae some semantic differences from the proposed pettern, bu
nevertheless the similarities are evident. One important difference @ncerns the way
agents are accessed and managed in Telescript: client objeds usualy access agents
diredly (when they med themselves in the same place) or through conrections defined at
runtime (e.g., based onsocket instances). An ather basic difference between Telescript
and AgentSpace concerns the nation d place In Telescript a place is an adive objed
with awell-defined behavior and interface (like astationary agent). On the other hand, in
AgentSpace aplace isjust a static objed providing some cgabiliti es and an interfaceto
the computational environment (i.e., the AgentSpace' s context).

Not well mapped relatively to
the Agent pattern

view q
Client Conredion Telename
_ owner._,,--""'
ent e ""4;Ae.;urity

concreteAgent

Place

ConcreteAgent

Figure 10: Spedfic structure of the Telescript’ Agent pattern —collabaration dagram.

8 Sample Code

We present the sample ade based onJava dasss from the AgentSpace framework. We
just present some of the visible dasses invalved in the Agent pattern, namely the Agent ,
AgentView andConcreteAgent types.

The Agent is, as mentioned above, an abstrad class

public abstract class Agent Cloneable, Serializable

{

transient private InternalAgent iagent= null;

protected Agent() {}

/**
* public final methods
*
public final InternalUser getOwner() { return this.iagent.getOwner();}
public final Object clone() throws CloneNotSupportedException {
return this.iagent.clone();.
}

public final void moveTo(Placeld p, Ticket t, String cb) throws AgentSpaceException {
this.iagent.moveTo(pid, t, callback);
}

10

public final void moveTo(Placeld pid, Ticket t) throws AgentSpaceException {
this.iagent.moveTo(pid, t);
}

/**
* callback methods
*
public void onCreation(Object init) { }
public void run() {}
public void beforeMove() throws AgentAbortException {}

}

The AgentView is just an interface which is implemented by the AgentVie wimpl
class(which isnat visible from the programmer perspective).

public interface AgentView

public String getClassName() throws AgentSpaceException;

public Class getAgentClass() throws AgentSpaceException;

public InternalUser getOwner() throws AgentSpaceException;

public Object clone() throws /*AgentAbortException,*/ CloneNotSupportedException;
public void moveTo(Placeld pid, Ticket t) throws AgentSpaceException;

public void moveTo(Placeld pid, Ticket t, String callback) throws AgentSpaceException ;

The ConcreteAgent s just a subclass of the Agent class Let us consider in this
example two agent classs interading through the master-slave model. For the sake of
readability, we have purposely removed the exception handling code. This example
shows the dean and easy process to credae agents, and howv they interad through
AgentView obeds.

The MasterAgent instance aeates dynamically another agent, which is an instance of
the SlaveAgent class The operation createAgent creates a new agent (instance)
with the default seaurity palicy, and with the same user as its creaor. The AgentSpace
handes all these assciations implicitly and transparently.

The MasterAgent code:

public class MasterAgent extends Agent

{

public void run() {
PlaceView place= getCurrentPlace();
/I create slave agent
AgentView av= place.createAgent(this.getOwner(), "SlaveAgent");
av.start();
/I sleep for a while
try{ Thread.sleep(4000); } catch (InterruptedException e) {}
/I sleep for a while
av.sendMessage(new Message(getld().toString(), "doSomething"));

}

public void handleMessage(Message m) {
if ("dienow".equalslgnoreCase(m.getKey())) {
System.out.printin("MasterAgent: i'll keep alive :-)");
}
else
System.out.printin("MasterAgent: ecco " + m.getKey());

11

The SlaveAgent code:

public class SlaveAgent extends Agent

public void run() {
System.out.printin("SlaveAgent: i'm alive");

}

public void handleMessage(Message m) {
if ("doSomething ".equalsignoreCase(m.getKey())) {
System.out.printin("SlaveAgent: receive ‘doSomething’ msg");
ContextView cv= getCurrentContext();
AgentView av= cv.getAgentOf(m.getSender());
av.sendMessage(new Message(getld().toString(), "reply-doSomething™));

}

else
System.out.printin("SlaveAgent: ecco " + m.getKey());
}

.

9 Known Uses

The pattern described in this paper is as e abowve used in AgentSpace, Aglets and
Telescript frameworks. We exped that it will be probably used, eventually with minor
differences, in the eanerging mobhil e agent systems, mainly those based onthe Java virtual
maadine.

Aglets Workbench, for instance, has a simplified implementation d this pattern. It
doesn’'t provide the dynamic and flexible asciation between agent classes, users and
agents' seaurity managers provided by AgentSpace Nevertheless it provides the
AgentView functiondliti es, namely through the AgletProxy instance.

On the other hand, Telescript's connedions and permits have not the same behavior and
semantic than the eguivalent AgentView and SecurityManager proposed in the
Agent pattern.

10 Related Patterns and Frameworks

The Agent pattern uses some alapted versions of well-known design patterns. Namely:

= The AgentView class presents sme similarities with the Proxy [GHIV95] and
Remote Proxy [BM+96] patterns.

= The SecurityManager class and its subclass hierarchy (as was developed in
AgentSpace isinspired in the Strategy [GHIV 95| pattern.

= The ConcreteAgent dynamic creation is based onthe Factory Method [GHIV95]
pattern.

= The Agent classitself may be viewed as an adaptation d the Active Object pattern
[LS95].

The right design/applicaion d these different patterns is very important to suppat the

dynamicity of the agent-based appli cations as referred to above.

Kendall et al. developed ore interesting and preliminary work in agent patterns [KM 96,
Ken+97]. They discussed and proposed a set of well-known petterns (such as Active
Objed, Mediator, Proxy, Adaper, Negatiator, and so on) used to suppat basicaly the
“strong agent” vision [WJ95], i.e., the aent viewed by the atificial intelligent
community [DM90, Rie94].

12

Receantly, Aridor and Lange [AL98] presented some ayent design patterns, however with
a omplementary perspective related to the agent pattern described in this paper.
Namely, they presented the foll owing patterns from the agent application design pant of
view: traveling (Itinerary, Forwarding, and Ticke), task (Master-Save, and Plan) and
interadion petterns (Meeting, Locke, Messenger, Facilit ator, and Organzed Group).

Figure 11 shows the relationships between the different classes of frameworks involved
with the suppat and development of dynamic and dstributed agent-based appli caions.

Basically we identify three interrelated classes of frameworks each ore using/importing
feaures provided by the previous one.

ORB frameworks soud exist a the bottom level. They provide very powerful but
generic feaures based onthe objed-oriented approad, such as persistence, name service,
communicaion, locaion transparency, mobility, etc. Examples of this class of
frameworks are lona's OrbixWeb [lon9], Inprise’s VisiBroker [Inp9], Sun's RMI
[Sung7], and ObjedSpaces Voyager [Obj97].

A

Easy to <« | Strong agent
develop «Al agent-based framework>» | approach
agent-based
appli cations
E<<imports>>
«Agent-based (ASS framework» |V «— Wesk agent
approach
 <<imports>>
«ORB framework» 1\ «—— OO0 approach
genericity

Figure 11: Interr elated frameworks to suppat agent-based appi cations.

At the midde level and besed on the services provided by ORBs, agent-based
frameworks can be defined. These frameworks are less general than the eguivalent
ORBs, and shoud provide awell-integrated set of comporents in order to fadlit ate the
development of agent-based applicaions (basicaly following the “weak agent” vision
[WJ95]). The main issues handed by these frameworks are those referred to in Sedion
7.1. Examples of this classof frameworks are those mentioned in the Sedion 7 d this
paper (i.e., AgentSpace, Aglets and Telescript) and ahers such as AgentTcl [Gra9g],
Odyssey [GM97], ffMain [LDD95], Grasshopper [IKV9g].

Lastly, ontop d the previous frameworks there shoud exist (what we call by) “agent-
based applicationa” frameworks. These kinds of framework shoud provide yet more
spedfic goplication comporents sich as more agent spedalizations. One posshle
approach to these frameworks may be atificial intelligent frameworks — based on
knowledge representation, hgh-level communicaion protocols/languages, agent-based
models (e.g., the BDI moddl [RG95]), etc. RMIT [Ken+97] and Plangent [Ohs+97] are
examples of these last kind d (applicaional) frameworks.

The agent pattern propaosed in this paper is mainly focused on architectural aspeds
related to agent-based frameworks (the middle level) referred abowve. It is our conviction
that on the top d this low-level and application independent agent pattern, more work
shoud be developed, in perticular severa patterns described in Kendall work [Ken+97]
such asthe Adaper, Negatiator, Mediator and Reasoner patterns.

13

Acknowledgments

We would like to thank ou shepherd Doug Lea to help improve the pattern mainly in
content and structure. We dso wish to thank Danny Lange for his comments and

references.

References

[ALOS]

[BM+96]

[COS97]

[DM9O]

Y. Aridor, D. Lange. Agent Design Patterns: Elements of Agent Application Design.
In Procealings of Autonomous Agents98. ACM Press 1998.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented
Sdtware Architecture: A System of Patterns. JohnWiley and Sons. 1996.

Ponton, COGEFO/CEFRIEL, Hamburg University, INESC, Interzone Music
Publishing, Orade UK, and SIA. COSMOS — Comnon Open Sxvice Market for
SMEs. ESFRIT Reseach Project Proposal. 1997.Starting June 1998.

Y. Demazeau, J. Muller. Deceantralized Artificia Intelli gence Decentralized Artificial
Intelligence, Y. Demazeau, J. Muller (editores), Elsevier, 1990.

[GHIVI5] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns — Elements of

[GM97]
[Grags]

[IBM97]

[IKV 98]

[Inp%g]

[longg]

[Ken+97]

[KMO6]

[LDD95]

[LO9g]

[LS9Y]

[Obj97]
[Ohs+97]

Reusable Object-Oriented Software. Addison-Wesley Longman. 1995.

General Magic, Inc. Odyssey Product Information. 1997.
http://www.genmagic.com/agents/odyssey.html

R. Gray. AgentTcl: a Transportable Agent System. Proceedings of the CIKM
Workshop onintelligent Information Agents, (CIKM’95), 1995.

IBM Tokyo Reseach Laboratory. The Aglets Workbench: Programming Mobile
Agentsin Java, 1997.

IKV++ GmbH. Grasshoper, An Intelligent Mobile Agent Platform written in 100%

pure Java, 1998.
http://www.ikv.de/products/grasshoper/

Inprise Corp. VisiBroker — Distributed Object Conrectivity Sdtware. 1998.
http://www.inprise.com/visibroker/

IONA Tedhnologies. OrbixWeb 3 —The Internet ORB. 1998.
http://www.iona.com/products/internet/orbixweb/

E. Kendall et . The Layered Agent Pattern Language. Proceeadings of the Conference
on Pattern Languages of Programs (PLoP' 97), 1997.

E. Kendall , M. Makoun.The Layered Agent Patterns. Proceedings of the Conference
on Pattern Languages of Programs (PLoP’96), 1996.

A. Lingnau, O. Drobnik, P. Domel. An HTTP-Based Infrastructure for Mobile
Agents. WWWJournal (Fourth International WWW Conference), W3C, 1995.

D. Lange, M. Oshima. Programning andDeploying Java Mobile Agents with Aglets..
Addison Wedey Longman. 1998.

R. Lavender, D. Schmidt. Active Object: an Object Behavior Pattern for Concurrent
Proceadings of the Conference on Programning. Patterns Languages of
Programning, 1995.

ObjectSpace. ObjectSpace Voyager Core Package Tedhnical Overview. 1997.

A. Hshuga ¢ al. Plangent: An Approacd to Making Mobile Agents Intelligent. |IEEE
Internet Computing, 1(4), 1997.

14

[Rat97]
[RGY5]

[Rie94]

[RM98]

[SMD97]

[SMD9g]

[Sun97]

[Whi94]

[Whi9e]
[WJ95]

Rational Software Corp. UML — Unified Modeling Languagg, version 1.0. 1997.

A. Rao, P. Georgeff. BDI Agents. from Theory to Pradice Proceedings of the First
International Conference on Multi-Agent Systems, 1995.

D. Rieden (editor). Spedal Iswue: Intelligent Agents. Comnunications of the ACM,
37(7), Julho 1994.

A. Romdo, M. Mira da Silva. An Agent-Based Seaure Internet Payment System for
Mobile Computing. Proceedings of the International Conference on Electronic
Commrerce 98, (Hamburg, Germany) 1998.

A. Rodrigues da Silva, M. Mira da Silva, J. Delgado. Motivation and Requirements
for the AgentSpace: A Framework for Developing Agent Programming Systems.
Ledure Notes in Computer Science, 1238 Springer (Fourth International Conference
onIntelligence in Srvices and Networks - IS& N’ 97, Cernolbio, Italy) 1997.

A. Rodrigues da Silva, M. Mirada Silva, J. Delgado. AgentSpace: An Implementation
of a Next-Generation Mobile Agent System. Ledure Notes in Computer Science,
1477,Springer (Mobile Agents 98)19%8.

Sun Microsystems, Inc., JavaSoft. Java Remote Method Invocation (RMI). 1997.
http:// www.javasoft.com/products/jdk/rmi

J. White. Telescript Technology: The Foundation for the Electronic marketplace
Genera Magic. 194.

J. White. General Magic, Inc. Mobile Agents White Paper. 1996.

M. Wooldridge, N. Jennings. Intelligent Agents: Theory and Practice Knowledge
Engineering Review. 10(2), 115152. Cambridge University Press 1995.

15

