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Abstract

In order to localize itself, a mobile robot tries to
match its sensory information at any instant against
a prior environment model, the map. A probabilistic
map can be regarded as a model that stores at each
robot configuration q the probability density function
of the sensor readings at q. By combining the knowl-
edge of its current position, the new-coming sensory
information, and the probabilistic map the robot is ca-
pable of improving its prior position estimate. In this
paper we propose a novel sensor model and a method
for maintaining a probabilistic map in cases of dy-
namic environments. When the environment struc-
ture changes, the map must adapt to this change by
modifying the sensor densities at the respective config-
urations. We propose a combined algorithm for map
update and robot localization.

1 Introduction

Recently, there has been an increasing interest in
the mobile robots community in probabilistic mod-
els for robot localization and navigation in metric
maps [7, 1, 4, 11, 8]. The key issue in most of these
approaches is a probabilistic map, i.e., an assignment
to each robot’s configuration q of a probability den-
sity function that models the uncertainty of the sen-
sor readings when observing an environment landmark
from q.

At any instant, the robot combines the current
knowledge of its position together with the external
sensory information and updates its position estimate
by reasoning on the probabilistic map. The probabilis-
tic approach becomes a convenient framework for mo-
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bile robot perception and navigation because it com-
bines neatly the inherent uncertainty in both the robot
motion and the sensor devices.

In most applications, the probabilistic map is built
off-line from a CAD model of the environment [7, 1, §].
A probabilistic model of the sensor device is applied at
each possible robot configuration and it is simulated
the density of the sensor readings at that particular
point. This is the approach followed by [7], while in [1]
the sensor uncertainties are additionally mapped onto
an occupancy grid [2].

In [8] the density estimation is performed only at
specific landmarks of the environment and an on-line
procedure is proposed which combines map generation
with on-line robot localization based on the Baum-
Welch method for Maximum Likelihood estimation of
the parameters of a hidden Markov model. Finally,
in [4, 11] neural-network models based on probabilistic
maps are proposed for position estimation and path
planning.

In this paper we propose a method for building
and maintaining sensory probabilistic maps based on
proximity sensor information that can be changing
with time. As in [1], we assume a proximity sen-
sor s that measures at each robot configuration q a
distance value r modeled as a random variable with
density p(r|s,q), conditioned on s and q. To allow
for non-Gaussian noise in the sensor devices due to,
e.g., unreturned echoes, cross-talk, etc., we choose for
the density p(r|s,q) a particular parametric model,
namely, the finite Gaussian mizture model [9]. In or-
der to build and maintain a probabilistic map, the pa-
rameters of the kernels of the Gaussian mixture, the
mixing weights, and the number of Gaussian kernels
must be estimated from all the sensor readings at each
robot configuration.

In the following we describe the proposed sensor
model and also an estimation procedure that is based
on the Maximum Likelihood technique for density es-
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Figure 1: A non-Gaussian density p(r|s,q) for a sen-
sor s firing from configuration q modeled as a finite
mixture of Gaussian kernels.

timation, combined with statistical tests to make it ca-
pable of handling nonstationary sensor distributions.
This way, dynamic environments, i.e., environments
where the sensor distributions over the robot’s con-
figuration space change with time, can be effectively
modeled.

2 The sensor model

Consider a proximity sensor s measuring a dis-
tance r between a robot configuration q and a nearby
obstacle, as shown in Fig. 1. To allow non-Gaussian
noise in the sensor readings we decide to approximate
the density of the measurements with a finite weighted
sum of Gaussian densities, or kernels, as

p(r|s,q) Zﬂ—squj r|s,q), (1)

where f;i(r|s,q) denotes the Gaussian density
N (sgj; 0sq;)

1 1 9
fj("'|S,Q) = Usqj\/ﬂ exp[ 202 ( _quj) ]7 (2)

parametrized on the mean p44; and the variance oqu,
while K, denotes the number of kernels, all param-
eters conditioned on s and . To ensure that the in-
tegral of p(r|s,q) over the measurements space equals

1, we set the additional constraints
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Tsqj Z 0. (3)

2.1 Maximum Likelihood estimation

During robot navigation the map must be contin-
uously updated to conform with the new sensory in-

formation, and for a sensor s and a robot configura-
tion q this corresponds directly to updating p(r|s, q)
based on the incoming sensor readings. Let us assume
that while robot is at q, a series of contiguous sen-
sor readings {rl,...,r"} arrive.! To estimate p(r|s, q)
from these readings we use the Maximum Likelihood
method. Dropping temporarily the dependence on s
and q of (1) we aim at maximizing the likelihood or
equivalently the logarithm

logp(rl, LTt = Z logp(ri). (4)

Differentiating with respect to a parameter 6;, with
0; = p; or 6; = o7, and using (1) and (4) we get
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Using the continuous version of Bayes’ theorem [5]
we can estimate the probability P{j|r'} that a sen-
sor reading r* originated from kernel j as

Plilrty = LD, ©

Eq. (5) then reads
ZP{JLT}afJ ZP{| —0.
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Substituting from (2) yields the Maximum Likelihood
(ML) estimates of the mean p; and variance 012. of each
kernel j as
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The ML estimates for the weights 7; are obtained by
introducing a Lagrange multiplier A for the condition

Zle m; = 1 and finding the roots of the first partial
derivative with respect to 7; of the quantity

Zlogp(r’) — /\(Z m — 1), (10)

which after simple derivations yields
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1We have made here the implicit assumption that sensing has
a higher rate than control. Cf. [8] where sensing and motion are
alternated.



After some algebraic manipulation on (8), (9), and
(11) one arrives at iterative approximate formulas for
the quantities p;, 0']2-, and 7; of a kernel j as
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R D
my =5+ (P{jlr} — ). (14)

Although the above formulas (12)-(14) approxi-
mate well the ML estimates of the weights m; and
the parameters p; and o; of a kernel j, they provide
no means for deriving the proper number of kernels for
the sensor distribution. For this, we form a test statis-
tic on a weighted formula of the kurtosis, or fourth
moment, of a kernel j as

(T ;j"j>4—kj —3] . (15)

with p; and o; the current ML estimates for the pa-
rameters of the kernel. On the hypothesis of normality
we expect that the random variable

kj\/mm; /96 (16)

approximately follows Gaussian distribution N(0, 1),
and thus we can split a kernel j if the absolute of
this value becomes higher than a specific threshold,
e.g., 3 [10]. After splitting a kernel we create two
kernels with means p; + o; and p; — o; and variances
and weights both equal to the original variance and
weight, respectively. The weights of all kernels are
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renormalized to sum one.

Similarly, we maintain that two kernels j and k can
join in one if the ratio of the larger to the smaller
variance, e.g., 012 /o2, and the random variable

i~ Pk
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are below some thresholds, e.g., 1.5 and 3, respec-
tively. Also we delete a kernel j if its weight m; falls
below 1/n, a threshold which ensures that the terms in
(12) and (13) remain bounded. After join or deletion
all kernels update their weights to unity. For more
detailed derivations the reader may refer to [10].

We should note here that the number n in the above
formulas is constant, e.g., n = 100. This has two
effects: first, even nonstationary sensor distributions
can be handled appropriately with our model, because

the previous gradient descent method for maximizing
the likelihood does not need to converge to a stochastic
steady state. When the sensor distribution changes,
the statistical tests (15)—(17) ensure a fast adapta-
tion to the new state by removing and creating ker-
nels where needed, while at the same time the iter-
ative formulas (12)—(14) tune the parameters of the
new kernels appropriately (see examples below).
Second, constant n means that the robot does not
have to wait at each configuration for a specific num-
ber of sensor readings before moving on. As long as it
remains at a particular configuration and sensor read-
ings arrive, the respective parameters are iteratively
updated using the formulas (12)—(15). We show next
how this process is interleaved with robot localization.

3 Robot localization and map update

The method we described in the previous section
can be used for building and maintaining a proba-
bilistic map from the sensor readings when the exact
configuration of the robot is known. In this section we
extend the previous derivations to cases where there
is some sort of uncertainty associated with the robot
configuration at any moment. It turns out that robot
localization and map estimation must be interleaving
tasks.

One approach that is often used for mobile robot
navigation and localization under uncertainty [6, 1,
4, 8] is to maintain a probability distribution over the
robot’s configuration space C and continuously update
it using the motion and sensing information. The dis-
crete equivalent is to assign to each configuration q a
probability mass P(q) expressing at any moment the
robot’s belief for being at q, while it must hold

> P@=1 (18)
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Whenever the robot moves, the entire distribution
is first shifted by the associated displacement and then
it is blurred by a convolution kernel f, e.g., a discrete
multivariate Gaussian density N (0, X) with zero mean
and covariance matrix X, implied by the assumed mo-
tion error, as

P(ax) = Y flar —a)P(a), VYareC. (19)
qeC

When the robot senses, the probability masses at each
configuration q must be updated for each sensor s
from the estimated density p(r|s,q) (cf. Eq. (1)). If



we assume independence of sensor readings we can use
the joint density of the sensor signature r at each q,
i.e.,

p(rla) = [ p(r|s, @) (20)

where each measurement r is modified by simple ge-
ometrical transformations according to the distance
and angle of each q from the mode of P(q) and exclud-
ing from the product those measurements that imply
a moved obstacle, i.e., those with almost zero likeli-
hood. We then update the configuration probability
masses using the Bayes’ formula as

p(rla)P(q)
P qee P(rla) Plar)

After updating the configuration probabilities, and
until the next motion command is issued, we update
the density p(r|s,q) of each sensor s and configura-
tion q based on the new-coming sensor readings 7.
For this, and following [4], we maximize the expected
log-likelihood of the sensor readings, where the expec-
tation is taken with respect to the probability masses
at each q, i.e.,

E{logp(r|s)} = > P(q)logp(rs,q). (22)
q€eC

P(q) := (21)

Maximizing each term in the above sum separately
and reasoning as in section 2.1 yields iterative formu-
las for the ML estimates of the parameters of each
density p(r|s,q). The term P(q) is independent of
the parameters of the mixture densities p(r|s,q) in (1)
and thus drops out of the derivations and enters the
iterative formulas (12)—(15) as an additional weight as
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for a measurement r of sensor s and for all kernels j
of p(r|s,q) and all configurations q € C, where each r
is modified appropriately as in (20).

Based on the above procedure, a probabilistic map
of the robot’s environment can be built and main-
tained while the robot moves around and at the same

Initialization
An initial sensory probability map is assumed, e.g., created by
using a CAD description of the environment
Localization and map update
Assume a current configuration probability distribution P(q)
While there is no motion command from the controller
Map update
For each sensor reading r of a sensor s and
For each configuration q in C
For each kernel of p(r|s,q)
update the parameters of the kernel using (23)—(26)
update the number of kernels using (16) and (17)
When a motion command is issued that moves robot from q to q’
Configuration probability update
Update from motion
Shift P(q) by ' — q:
P(qi+4d' —q):=P(q;) forallq e C
Blur P(q) by motion noise f:
update P(qy) using (19) for all q; € C.
Update from sensing
For each configuration q in C
compute from (20) the likelihood of the first signature
update P(q) from (21)
eliminate those q; with P(q;) close to 0

Figure 2: The combined map update and robot local-
ization algorithm.

time it can be used for robot localization and navi-
gation. For each robot configuration q and each sen-
sor s a mixture Gaussian model (1) is used. When
the robot moves, the configuration probability distri-
bution P(q) is shifted by the traveled distance and
blurred from (19), and it is subsequently updated
from (21) based on the previously estimated density
p(r|s,q). Finally, from the sequential sensory infor-
mation, and until the next motion command is is-
sued, the density p(r|s,q) of each sensor is itera-
tively updated using (23)—(26), while the statistical
tests (16) and (17) decide on-line on the total number
of kernels. The complete algorithm for map update
and robot localization is shown in Fig. 2.

The creation and deletion of kernels is controlled
by the threshold parameters and the value of the con-
stant n. However, n basically plays the role of a ‘mov-
ing window’ on previous sensor signals, and thus must
be set according to the expected speed of change of
the sensor distributions. Simulations revealed the ex-
pected trade-off between adaptability (small n) and
precision (large n) in approximating the input distri-
butions.

Assuming a sensor signature obtained by a ring of
M proximity sensors around the robot and an average
of K kernels for each mixture, the total number of
parameters that have to be stored and processed at



a. one Gaussian and n=10

b. mixture of 10 Gaussians and n=100

Figure 3: Adaptability vs. precision in approximating an unknown sensor distribution.

any moment for each q are in the order of 4M K. How
large this number is depends on the precision we desire
in sensing (large M) and on the precision in density
approximation (large K).

In any case, however, a major speed-up can
be achieved by exploiting the inherent parallelism
of (23)—(26) and the independence of the M sensor
readings. A distributed neural network implementa-
tion for the mixture density estimation problem is pro-
posed in [10].

4 Results

In Fig. 3 we show a situation where a sensor s
fires from a configuration q, and we assume that at
time ¢ = 0 a new obstacle is positioned between the
robot and the old obstacle, causing the sensor density
to change. We have assumed that the initial density
p(r|s,q) is of the form shown in Fig. 1. In Fig. 3a
we show the behavior of our algorithm when a single
Gaussian kernel is used for approximating the input
density and the constant n = 10. We note that in
this case our algorithm adapts fast (after 50 sensor
readings) to the new density.

In Fig. 3b we show the behavior of our algorithm
with » = 100 and smaller split-join thresholds. In
this case the initial density is better approximated
but the adaptation is slower. The new density is very
well approximated after 3000 steps, however after 500
steps the approximation can be considered adequate.
This example reveals the trade-off between adaptabil-
ity (small n) and precision in the approximation (large

In Fig. 4 we show the behavior of the probabilis-

tic localization algorithm when applied to a simulated
mobile robot. Initially we assume that the robot’s con-
figuration density P(q) is uniformly distributed over
the free space and we show its updated values after 4
and 30 steps of random walk of the robot, respectively.
In this example we assumed a static probabilistic map
and simple Gaussian sensor models.

5 Conclusions-discussion

We have presented a method for building and main-
taining sensory probabilistic maps that can be used
for mobile robot navigation and localization in met-
ric maps. The method is based on Maximum Likeli-
hood estimation of the sensors densities at each robot
configuration q. A general Gaussian mixture density
allows even non-Gaussian sensor noise to fit into the
model, while sequential statistical tests make possi-
ble to model even dynamic maps, i.e., sensor distribu-
tions that are changing with time. Finally, we have
proposed a combined algorithm for robot localization
and map updating.

With the proposed mixture model the system is
more robust to sensor noise than with other conven-
tional techniques since new kernels of the mixture can
potentially by employed for modelling outlier sensor
measurements. The respective mixing weights are
then continuously tuned so as to fade out the erro-
neous outliers. This property is particularly useful in
dynamic environments where the sensor distributions
change with time.

The major drawback of this method, a drawback
prevalent in most Markov models described in the lit-
erature, is that a fine resolution is needed for cor-
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a. contours of P(q) after 4 steps

b. contours of P(q) after 30 steps

Figure 4: Localization on a known probabilistic map: initially we assume uniform P(q) over the total free space.

The robot performs random walk.

rectly approximating unstructured or cluttered envi-
ronments and which, considering that the total num-
ber of configurations in C could be large, requires a
proportionally large number of parameters and con-
sequently large processing time. However, due to the
distributed character of our method we believe that
parallel architectures can help reducing the process-
ing time. Currently we are investigating this possibil-
ity and also try to fit our model in a general regression
model over C that would significantly reduce the total
number of parameters.
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