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Abstract

Partitioning the configuration space of a mo-
bile robot is essential for the robot path planning
task. However, most existing techniques either rely
upon precise geometrical descriptions of the envi-
ronment, or are static by nature. In this paper we
propose a method by which the robot dynamically
builds a Voronoi tessellation of its configuration
space. In order to do this, we apply an adaptive�

-means clustering algorithm to the robot’s free
space, while letting the robot explore its environ-
ment. The cluster centers, corresponding to the
centers of the respective Voronoi cells, are con-
nected into a mesh by using the Delaunay triangu-
lation. Then, we show how the basic robot tasks
can be integrated on the resulted graph.

1 Introduction

Exploring the free space and building a good
map representation is a challenging mobile robot
problem [1, 2, 3]. In this paper we propose a
method by which the robot explores and learns its
environment without any prior information about
it. The notion of ‘learning’ implies a way of mod-
eling the free space so that subsequent tasks, like

path planning or obstacle avoidance, can easily be
carried out based on the previously gathered infor-
mation.

To accomplish this task we develop an adaptive
clustering technique [4] that partitions the robot’s
free configuration space in a number of regions,
the clusters, each one characterized by its means
and its variance. Under certain assumptions, the
cluster centers can be regarded as the centers of a
Voronoi diagram [5] of the robot’s free space.

To exploit this clustering, a way for connecting
the cluster centers in pairs must be found. For that,
we triangulate the set of clusters centers by using
the Delaunay triangulation [6], to produce a mesh
on which subsequent tasks can easily be carried
out. This mesh is a non-directed graph on which
path planning can be performed by the usual graph
searching techniques [7]. In our case, we apply a
modified ��� algorithm on the graph, like in [8].
We demonstrate some of the results of our method
running the Khepera simulator [9].

2 Clustering the Robot’s Free Config-
uration Space

Let us assume a mobile robot’s configuration
space be a subset of � ���	��

��������� , which corre-



sponds to all different positions
��� ����� and orien-

tations � of the robot in its environment [10]. We
make two assumptions; first, we restrict ourselves
to a holonomic mobile robot, i.e., a disc-shaped
robot whose degree of freedom of turning around
its central axis is independent of its current posi-
tion in the plane. In that case, the robot’s total
configuration space is ��� � � � , and the free space,
composed of all obstacle-free configurations of the
robot, is �
	���
�
���� . Second, we assume a correct
positioning system whereby the current robot’s po-
sition

��� ��� �����
	���
�
 is continuously adjusted by
an appropriate localization procedure, and thus is
considered accurate.

Then, we let the robot explore its environment.
The contiguous robot movements provide us with a
sequence of � � -dimensional samples ������������� ���! #"
from �
	���
�
 , with � unrestricted at the moment. Our
task is to group all ��$ into % clusters, so that
each cluster contains neighboring points in �&	���
�
 ,
as measured by some metric distance which may
be the Euclidean or may be not. Since we don’t
have any prior knowledge about the robot’s envi-
ronment, we want % to change dynamically.

To this direction, we employ a general statis-
tical clustering schema [11] which assumes that
samples from cluster

�
follow a � -variate normal

probability density function ' � �)(+* ��,-*." , i.e.,
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parametrized over the means (J* and variance , �* of
the cluster. In this model, a cluster can be regarded
as a circle centered at (J* , while , �* gives a measure
of its size.1 Also we assume that each cluster

�
has a prior probability �K* to be preferred over the
other clusters.

The Bayes decision rule [11] (p. 19) assigns
a future sample ��$ to cluster

�
if the posterior

probability

/ � �ML ��$ �N0 �O* / * � �!$ �PRQSDT � � S / S � �!$ � (2)

that ��$ belongs to cluster
�

is maximized over all
other clusters. Under the above framework, the

1Note that this schema does not necessarily imply a Gaus-
sian uncertainty model in the robot’s position estimates; it
rather eases the statistical computations.

problem is translated into estimating the param-
eters (+* , , �* and the prior probability �U* of each
cluster, based on the sequence of input samples
����$A" , VW0 2 ������� ��� .

3 The Probabilistic Growing Cell
Structures Algorithm

In this section we describe the probabilistic
growing cell structures algorithm [4], a prob-
abilistic clustering algorithm for arbitrary � -
dimensional input domains. In our case, the in-
put domain is the robot’s free configuration space
�
	���
�
X� � ��� .

Initialization. The initial position �
� 0��� �����Y� � of the robot becomes the center (means)
(W� of the first cluster, whereas , �� is set to 0. The
prior probability �3� of this cluster is set to 1.

Adaptation. According to the Bayes deci-
sion rule, a new input ��$ is assigned to the clus-
ter

�
with the maximum / � �ML ��$ � , as computed by

eq. 2. This cluster is called the winning clus-
ter. Ignoring the normalization factor in the de-
nominator of eq. 2 and applying the logarithm
to the nominator, this corresponds to minimiz-
ing Z � ��$ ��(+* � �\[ �1]�^�_ � � �3, �* �a` �1]�^�_ �O* , where
Z � ��$ ��(+* �X0 
 �b 9; � �!$U`c(+* � � �!$d`e(+* �gfOh �ji � is the Ma-

halanobis distance from ��$ to the center of cluster�
.
Following [4], we use the optimal under Maxi-

mum Likelihood estimations of the parameters (W*
and , �* of the winning cluster

�
, which for the � -th

sample �� read

(+* 0 (U* [lk * � �! m`n(+* � �
, �* 0 , �* [ck * 
 � �� m`o(+* � � �� m`�(+* � f `n, �* h �

where k * is the ‘learning rate’ approximated by/ � �JL �� �Dp � � �O* � , and / � �ML �� � is the posterior prob-
ability that sample �� belongs to cluster

�
. It is

interesting to note here the similarity of the above
formulas to the self-organizing learning schema of
Kohonen’s SOM algorithm [12].

Updating. The prior probabilities of all clus-
ters are updated according to [4]

�O*q0 �O* [
2
� 
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The appearance of � , the number of the input sam-
ples appeared so far, in the denominators of the
above formulas accounts for a stochastic approxi-
mation, i.e., a convergence towards a steady state,
which in turn implies a static environment. Since
we want to incorporate dynamically changing en-
vironments into our algorithm, we substitute in
the above formulas � with

�
, a restriction over the

�
most recent samples ���� 6�� ������� ���! &" . This implies
a ‘forgetting’ schema in which old samples affect
the learning process less than recent ones.

Cluster insertion. After a fixed number of
steps, and if a pre-defined maximum number of
clusters is not exceeded, we find the cluster � who
maximizes the quantity

� � � �10���� �
	 [ � b , �	P�QS�T � , �S �

with ��� ��� b appropriate coefficients that are case-
dependent. We create a new cluster � between
� and its direct neighbor 
 with the maximum� � 
 � . We estimate the means, variance and prior
probability of the new cluster as
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Clusters � and 
 change their variances and prior
probabilities appropriately as
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where
��� � =  ���� C denotes the new value.

Cluster deletion. After a fixed number of
steps we remove the cluster � with the lowest

� � � � .

4 Delaunay triangulation

With the above algorithm, a clustering of the
robot’s free configuration space �Y	���
�
 is feasible.
Moreover, the cluster centers can be viewed as the
centers of a Voronoi diagram [5] of �Y	���
�
 . The
Voronoi diagram of a set of points in � � � is a par-
tition of the plane into polygonal cells, one for
each input point, so that the cell of an input point/ contains all those loci whose nearest input point
according to the Euclidean distance is / .

In order for the clustering to be of practical use,
connections must be established between pairs of
cluster centers. To this direction, we apply the
Delaunay triangulation (DT) [6] to the cluster cen-
ters. The DT of a point set is the planar dual of the
Voronoi diagram of that set. Each edge of a DT
triangle is the perpendicular bisector of a Voronoi
cell edge, whereas the triangle vertices correspond
to the Voronoi centers. The resulting mesh of tri-
angles forms a non-directed graph, on which path
planning can be performed by one of the usual
graph searching techniques [7].

5 Results-Discussion

We implemented and tested our method on the
Khepera simulator [9]. This software simulates the
environment of a disc-shaped holonomic mobile
robot that is equipped with eight proximity sensors
and a simple sensor and kinematic model. Our ex-
ploration strategy was a random walk, whereas,
as mentioned above, we assumed accurate knowl-
edge of the robot’s

��� ��� � position at any moment.
In Fig. 1 we show the results after applying our
method in a typical indoor environment. The
left part shows the clustering of the input space,
whereas the right part depicts the resulting mesh
after the Delaunay triangulation. For the latter
we used the well-known Fortune’s sweepline al-
gorithm [13] for building the Voronoi diagram first
and then taking its planar dual.

In order to perform path planning on the re-
sulting graph we employed a modified � � algo-
rithm [8] that takes into consideration the curva-
ture of a candidate trajectory and the prior prob-
ability of each cluster to pick up paths that are
piecewise smooth, and potentially entail little un-
certainty. Given the current’s robot position � and



a. Clustering b. Delaunay triangulation

Figure 1. Clustering and triangulating the input space.

a target position
�
, two local paths are found from

� and
�

to their nearest cluster centers, and then the
path planning algorithm selects the best path in the
graph that connects these two centers.

As mentioned in section 3, the global update
procedure of the clusters’ prior probabilities im-
plies a ‘forgetting’ schema; clusters that have not
been ‘visited’ for a long time are likely to minimize
their prior probability to a certain extent and thus
be less probable for subsequent plannings. This is
analogous to the human planning system, in which
recent successful routes are usually preferred over
routes that have not been used for a long time.

Finally, as shown in Fig. 1b, the graph that the
DT method produces may contain edges that in-
tersect obstacles, even if their respective vertices
lie in the free space. To handle these cases we em-
ploy a trial-error technique. If a path over an illegal
edge is planned, the robot starts following it and
when its sensing mechanism perceives a blocking
situation the robot stops, appropriately updates the
respective map connection (legal-illegal), and re-
plans a path to the goal position.

6 Conclusions

We presented a technique for clustering and tri-
angulating the configuration space of a holonomic
mobile robot in order to build a graph appropriate
for path planning. We developed a probabilistic
clustering schema that is capable of building the
Voronoi diagram of the robot’s free space, and
showed how the Delaunay triangulation method
can be applied to the resulting cluster centers to
construct a graph.

In the course of our method we made two as-
sumptions: the robot is holonomic and a precise
localization procedure is available. Under the lat-
ter assumption, we found that a random walk was
adequate as an exploration schema. However,
the relaxation of the position accuracy assump-
tion should give rise to more elaborate exploration
strategies, e.g., like in [14].

We are currently working on incorporating a po-
sition uncertainty model to our clustering schema,
and on the other hand enhancing the robot with a
typical map-based localization procedure [15] to
check the validity of our method in more realistic
situations.
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