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Abstract - In this paper we presentraethodfor a multi-sensormobile robot to exploreautonomously
an unknownenvironmentThe methodtries to solve the main problemsinvolved by sucha task. In
particular we presenta model to representgeographic knowledge,basedon an extensionof the
“Diktiometric representation” of Engelsonand McDermott [1]. We paid special attention to the
maintenance of this model, providing mechanismallow the consistentffusion of sensoryobservation.
Furthermore we argue that, due to the different capabilitiethefdevicesof a multi-sensorsystemthe
only interaction betweenthe sensorsshould be indirect and basedon the individual effectthat each
sensorhas on the systemcontroller. Thereforewe presenta negotiation mechanismallowing to
integrate the world knowledgerepresentedn different models,each of which is updated with the
sensoryinformation provided by a specific devices.In our work this integration involves only the

exploration strategies of each representation.

1. INTRODUCTION

Severalnew applications,suchas planetarynavigation,
construction, toxic waste cleanup and even office
automationrequirethe autonomousnobile robot to be

able to operate in unstructured environments with little a

priori information. To achieve this ability the
autonomousrobot must exhibit higher degrees of
autonomy by being able to recover robust aadsistent
descriptions of its surroundings using sensory
information; this kind of task is commonly called
exploration of an unknown environment (see for
example [7], [3]).

In orderto effectively support the goal of acquiring
autonomouslya world model, the robot must exhibit
several characteristics:

¢ it mustbe ableto managea variety of sensors;
rarely a single sensorsystemis enoughto the
exploration task;

e it must provide mechanismsto manage the
uncertaintydueto the limitations of the sensor
devices;

e it mustbe ableto recoverthe uncertaintyon its
position due to the limitations of the actuators;

e it must provideexplorationstrategiesn orderto
plan autonomously the sequenceof actions
allowing to execute the task.

In recent years, several approachesto the robot
exploration have been proposed. The issue of
representingsensory information in a complete and
consistentmanner is one of the most challenging
problems faced by the research community.

The geometric approach to worepresentatiomttempts
to build a detailed metrical description of the
environment from sensalata(seefor example[2], [6],

[9]). This kind of representations hasemsonablywell-

defined relation to the real world, but is highly

vulnerable to metrical inaccurady sensorydevicesand
movement actuators.

The “Occupancy Grid” [5] framework representsa
fundamental departure from traditional geometric
approaches. It uses a stochagtigsellatedepresentation
of spatial information maintaining probabilistic
estimates of the occupancy stateeathcell in a spatial
lattice.

Other works [3], taking a more qualitative approach,
show great promise of overcoming the fragilitypoirely
metrical methods: they consist in a topological
description of theenvironment.The modelis a network
of nodes, where nodes represent distinctively
recognizable places in the environment, and arcs
representcontrol strategieswhich take the robot from
one place to another.

Diktiometric representations [1] broad#re topological
representatiorto include the paths’ shapes,i.e. the
geometricrelationsbetweenplaces.In [1] only “point-
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like” places are considered.

investigatehow to integrate the world knowledge of
everyagentandin particularhow to take into account

The aim of this paper is to present a new approach to the the different requirementsf their explorationstrategies.

exploration task for an autonomousrobot, trying to
solve the above mentioned problems.

For sake of brevity, in this paper we will just focusan
few issues involved in our work:

« world modeling: we presentan extensionof the
“diktiometric representation”of Engelson and
McDermott [1];

« observationfusion: we presentan approachto
solve the problem of preservingconsistencyin
updating the robot world model;

e explorationstrategieswe presenthow the robot
is ableto plan autonomouslythe sequenceof
actions that allows it to execute the task.

¢ a negotiation mechanism allowirtlge integration
of different exploration strategies.

In our “diktiometric representation” places maydither
single “local views” or “extended views”, that is sefs
mergedlocal views referredto a single referenceframe
attachedto the place. The whole representatioris a
network of 2Dgeometricalrepresentationsonnectecy
arcswith geometricrelations betweenplaces.In each
extendedview the uncertaintyabout featuresis locally
bounded.

Our approachto build extendedview is basedon the
Move->Sense->Model->Match->Merggcle. When new
featureshaveto be mergedin an extendedview, their
parametersnust be expressedn the referenceframe of
the extended view. This needs relations (calkedernal
relations”) that are affected even with uncertaiotythe
robot location.

To keeplow uncertaintywe introducein the merging
process‘internal relations”. Internal relations specify
distancesbetweencorners or angular widths between
edges belonging to the same visual scéimegeforetheir
measurementare affectedonly with the uncertaintyof
the sensorsystem and not on the robot location.
Measurementabout internal and externalrelations are
used to obtain a new estimate of the parameters.

The theoryoutlined in this paperis implementedin a
project called EXPLORER. In this project we
investigatehow a multi-sensorautonomousrobot can
explore a “large scale” environment.We mainly are
interestedn multi-sensorintegrationrather than muilti-
sensorfusion, unlike Durrant-White[2], Elfes [5]. We
argue that th@nly interactionbetweenthe sensoramay
be indirect and basedon the individual effectthat each
sensothason the systemcontroller. EXPLORER does
not try to build a singleonsistentrepresentationf the
environmentusing information provided from different
sensordevices;it rathertries to build a coherentset of
descriptions, that are independently consistent. In
EXPLORERthe responsibilityto managethe different
sensory information is distributed among several
“representatioragents”. Each representatioragentis a
module, belonging to a blackboard-basedlistributed
control architecturewhich builds a private description
of the environmentusing sensoryobservationprovided
by a specific device. Our aim in EXPLORER is to

We use a negotiation processamong modules, called
Proposal Mechanism, described in Section 4.

A first prototype ofEXPLORER hasbeenimplemented
and is currently under assessmentAt the moment
EXPLORER utilizes two “representation agents”,

maintaining two different worlanodels:an “Occupancy
Grid”, as defined by Elfes [5and our extensionof the

“Diktiometric Representation’df Engelson-McDermott
[1]. Anyway the architectureallows to introduce new

“representatioragents” as new sourcesof information

are available.

The paper irganizedas follows. Section2 introduces
the LASMAP agent and our version of the
“Diktiometric Representation”Furthermorewe explain
how this kind of model is useful even for reducing robot
position uncertaintyand how we face the problem of
integratingsensoryobservationsacquiredfrom different
points of view in aconsistentmanner.Section3 briefly
presentsthe second representationagents and its
exploration strategy. Section 4 presentsthe system
architectureand a general negotiation process,which
allows the collaborationamongevery kind of system
agents. Section 5 draws some conclusions.

2. THEDIKTIOMETRIC REPRESENTATION

The first representation agent, called LASMARgsthe
information provided by #elemeterdevice composedf
a laser range finder aradrotary table allowing the laser
to rotatearounda vertical axis. Eachtelemetricreading
provides thedistanceof the nearesbbstaclein front of
the telemeter device.

The world representation suilt merginga sequencef

consecutive 2Drisual scenesywherea visual sceneis a
geometricdescription of the environmentbuilt using
sensorydata acquiredfrom a single robot position. A

visual sceneis relatedto the robot referenceframe and
henceforthit will be called “local view”. The basis
elementsof this representatiomare cornersjoining pairs
of edges describing the boundariesof the detected
objects.

The main problem in such world-modeling is to compute
the relative position of features(i.e., corners)observed
from different points of view in order to merge thenain
consistent manner. LASMAP uses only geometric
characteristics of detected objects to find
correspondenceamong their features and then the
relative position. LASMAP doesn't rely on the
odometric system as in [2nd[6] andit doesn’tmake
useof visual landmarksas in [7]. The proposedself-
location method (Section 2.1) showsthe weaknesgo
dependon the amountof availableinformation, that is,
the robot is obviously not able to estimatehow far it
traveled along corridor, whereit seesjust a coupleof
parallel walls.

Since this weaknessis common to every approach
attempting to build a geometric descriptiohthe world
referred to a globaleferencdrame, LASMAP facesthis
limitation using an extension of the “diktiometric
model” of Engelsonand McDermott[1]. Engelsonand



McDermottdeal with a networksof placesbeing small
regionswhich can be treatedas single points. In our
“diktiometric representation” places may be eitbirgle
“local views” or “extendedviews”, that is sets of
mergedlocal views referredto a single referenceframe
attached to the place.

Fig. 1 showsan example of our representationeach
reference frame corresponds to a nodthefdiktiometric
graph. The displacementsbetween frames are the
measures associated to the arcs of the graph.

The explorationprocessis basedon a Move->Sense->
Model->Match->Merge cycle. Whenever the robot
reaches a new position, it builddocal view, relatedto
the robot reference frame, using the informagioovided
by the laser device.

Fig. 1 - The diktiometric representation

Afterwards it tries to self-locate by matching the
geometric features of the new local view with the
geometricfeaturesbelongingto one place of the graph
so far acquired;i.e. the robot tries to estimate the
displacement between the current reference frameaad
attached to a place of the graph.

When the displacemenis provided, the local view is
mergedinto the correspondenplace obtaining a new
extended view (frames E1, E2, E3, E4 in Fig. 1).

The robot current position is relatedto the reference
frame attachedto that place. It is clear that in a
diktiometric representation the robot absolute position is
meaningless.

As said above, when the local view is lacking in
information the robot cannotself-locate.In such a case
the local view is not allowed to be mergedinto any
place of the graph. A new place in the diktiometric graph
is inserted (frames L1, L2, L3 in Fig. 1), andana will

be created between the new place angtheeto which

the robot previous position waslated,representinghe
rigid displacemenbetweentheir referenceframes. The

displacementis computed taking into account the
odometric estimation.

This way the geometric uncertainty inside a place is kept
low (the robot canself-locate)andit is not propagated
among different place$Ve choseto represenggeometric
uncertainty in a probabilistic way.

2.1.Matching and robot self-location

It is essential for the model consistency to kremswvell
as possiblethe robot position in the real world. The
odometric system supplies an estimate of the robot
position/orientation, but it is not possible to rely on it.

The followed approach is based on comparidmta/een
two visual scenesthe last local view acquiredand an
extendedview attachedto a place of the diktiometric
graph. This comparison suppliesrrespondencesmong
the corners of the two visual scenes.

In our representationthe matching process have to
comparedifferent measurementsf cornerstaken from
different robot positions. If the matching algorithm
recognizedhat thereis a setof correspondencemmong
measurements afornersbelongingto different point of
view, they canbe usedto reducethe uncertaintyof the
displacement D existing between the two robot
positions. This is done by applying the Extended
Kalman Filter (Ayache-Faugeras [10]).

The matching processhas mainly to satisfy the basis
constraint that an hypothesis of correspondenceiga
to-one relation between the sets of corners describing the
two visual scenes.The processof matchingis broken

into two parts: hypothesis generation, hypothesis
verification.

The algorithm generatesa set of hypotheses of
correspondencedbetween corners of the two visual
scenestaking into accounttopological and geometric
properties of their objects.

Each hypothesis of correspondencegasfied: a subset
of correspondencebetweencorners belonging to an

hypothesisis used as measurementén the EKF to

estimate the visual scene relative position.

This estimate ighereforeusedto verify the consistence
of the other correspondences of the same hypothesis.

If the hypothesis is validateall its correspondencesre
used to estimate the visual scenes relative position.

In case of particular symmetries several equivalent
hypotheseganbe validated:it is necessanto use the
odometric estimate to disambiguate them.

In the next section we show how correspondences
between two visual scenes and estimates of the
displacemenbetweentheir referenceframesare usedto
allow the fusion of those visual scenes.

2.2.Integrating sensory observations

When the matcher successfuihdividuatesa consistent
set of correspondences, among the cornersefadocal



view and the corners of an extendedview of the
diktiometric graphthe mergerhasto integratethe local
view into the extended one.

For example, Fig. 2.a shows an extended view, retated
the referencedrame £, and a local view, relatedto the
reference frame £. The matcher has identified the
correspondences {(E1, L1), (E2, L2)}.

The classical approachto the fusion problem would
compute, using the EKF, a new estimate of the
parameter®f eachcommoncorner, taking into account
the two available estimatesand the estimate of the
displacement D between the franteand ..

Although we use a “goodéstimateof the displacement
D, serious fusion problem may occlet’s supposehat

in the real world there are only mutually orthogonal
edgesandthat our sensorialsystemis able to measure
the angularwidth of the corner with high precision.
Let's suppose that in th&o far acquiredextendedview,
due to uncertainty propagation, there are edges eézand
only roughly parallel.

Fig. 2 - Views integration. The local view £ is merged with
the extended view ‘£, obtaining the extended view 4.

Following the classical approacthe fusion of E1 with
L1 and of E2 with L2would producean extendedview
asshowedin Fig. 2.b.in which only the parametersf
these corner have been updated. The positbrerners
N1, N2 was computedwithout taking into accountthe
good confidenceof the measuremenif the angular
width of the correspondingcornersLl and L2 in the
local view and E1 and E2 in the extended view.

We argue that thkey to obviatesucha shortcomingis
to introduce relations, among corners, that are
independently from the displacement D daadlistribute
the uncertaintyonto the parameterof every geometric
featuresof the resulting extendedview. The proposed
solution to this problemrises from the fact that in a
local view the uncertainty justepend=on the precision
of the sensordevice. Henceforth we call relations

betweengeometricfeatures,such as distancesbetween
corners, angular width between edges, etc., “internal
relations”.

Following this approach we obtain a new extendies

with a better defined relation to the real environment,
whereconsecutivewalls are quite orthogonal(see Fig.

2.c).

The merging algorithm is divided in two steps :

e building of a topological description of the
resulting extended view,

« estimating the parameters of the features.

A. Building the topological description

The merger has to identify, using the set of
correspondences provided the matcherwhich corners
of the extendedview and of the local view will appear
into the new extended view.

Each corner of a local or extended view is described by a
structure which stores a variety of information, such as:

* the coordinates of the corner;
* anumeric identifier;
e pointers to adjacent corners.

The topological description of the new extendéglv is
built by computing thecorrectidentifier of every corner
and connecting adjacent corners through their identifier.

At the end of this process,every corner of the new
extended view is seh correspondencwith a cornerof
the old extendedview, a cornerof the local view or
both. It is possibleto computethe coordinatesof each
corner of the new extended view knowing the
coordinates of its correspondent in the local vaawd in
the old extended view.

B. Egtimating features parameters

At the end of the previous step the merggasidentified
the topology of the resulting extended vieMow it has
to estimateghe parameter®f any feature belonging to
it. This meansto estimatethe new location of every
corner.

Following our approachto the sensory observation
fusion, the problem of estimating tleerners’parameters
is simply treated as a classical problem of linear
regression.

Let be €1,Cy, ..., G, G1, ., Cx a set of 2*k
parameterdo be estimatedwherek is the number of
corners belonging to the new extended view and
(ci,ci +1) arethe coordinategx, y) of the i-th corner;

given furthermore a set of N linear equations of the form
Yt) = * ug(t) + .+ i * U (1):

representingelations(internal and external)amongthe



corners of the new extended view, whereltZ...,.Nand
y(t), u(t), ..., uy(t) are the measuresof 2k+1 real

variable obtained ithe old extendedview, in the local
view or both.

The estimate of the 2k parametess is computedusing
the Markov's weighted least squares method. Let be

Og C
6=1. ¢
FokE
and 6 the estimate of 6,
o Bul(l) UZk(l)% _ SY(l)E . Ev(l)g
o - ~ g Y¥=O- @ O 0
Hu(N) . ux(N)E  B(NE  B(N)E

and V the covariancmatrix of v, the following relation
holds:

y=®0 +v.
The Markov’s estimator and its covariance matrix are:

6= [dJTV_ldJ]_ldJTV_ly; var[é] = [GJTV_l(D]_l.

As said above, the merger utilizes two kinds of relation:

* external relations;
* internal relations.

External relations involve the displacements betwtben
local view referenceramesand the new extendedview
reference frame; therefotheir measurementare affected
by uncertainty on the robot location.

Internal relations specify distancesbetweencorners or
angularwidths betweenedgesbelonging to the same
visual scene; therefore their measurementsare not
affected by uncertainty on the robot location.

Let's consider again the example of Fig. 2.

The local view £ and the extendedview £ areto be
merged into the new extended viey

The old extendedview andthe new one arereferredto
the samereferenceframe; furthermoreit is known the
displacemenD betweenthis frame and the local view
reference frame.

The mergersetsin correspondenceéhe corner N2 with
the corner E2 through an external relation, whose
coefficients are representedn the first two rows of

matrix @ ; furthermorerows 3 and 4 of @ represent
the coefficients of the external relation setting in
correspondence N2 with L2:

M O 1 0 .. 0O

o o 1 .. 0f
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0 0 -sin(6) cosd) .. OF

B OH
N1, O
0 E2, 0 E'\,lxm
O > 0 YO
0 y 0 N2, 0
y=[L2, +a*cogf)+b* sm(@)g, 0= S\IZyD
. . 0
azy—a*sn(6)+b cos(6) O 0
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a, b, 0 are the parameters of the displacement D.

The mergercan furthermoreidentify internal relations,
suchasthe distancebetweencorners(N1, N2), whose
measurement is obtained in the local view computing the
distance between corners (L1, L2). In a coneisg this
relation can be written as follows:

DIST 32 =[N2~ N3

Obviously these relations are to be linearized; the
correspondentoefficients are insertedin new rows of

the matrix @ and the correspondenmeasurementn

the vector y. Relations such e distancebetweennot
consecutive corners provide constraints on angular width
between edges

C. Exploration strategies

Up to now we havediscusseda hew way to represent
geographicknowledge;but, which criteria are useful to
state that the environment representation is complete?

If the robot has the possibility circumnavigateall the
visible objectsin the environment,the exploration is
finished when their boundaries aal representedh the
“corners representation” by closed polygons.

During the exploration the robot has to dedth chains
of segment representing part of boundaries. Therd¢iiere
exploration strategy hasmply to completeevery chain
in order to build polygons.

This meansto searcha set of obstacle-freepositions
useful to see the remaining edges; the search starts in the
neighborhood of every ending-corner.

As said in Section1, our aim in EXPLORER is to

investigate how to integrate world knowledge
representedh different models.In the next Sectionwe

briefly describeanotherway to representgeographic
knowledge and in Section 4 we present how to tal@
account the exploration strategies requirements of

different world models.



3. THE SONMAP REPRESENTATION AGENTS

Using the information provided by a 24 ultrasonic
sensor ring, a second agent keeps up-to-date an
“Occupancy grid”, as defined in Elfes [5]; it isnaatrix,
whose elements represent the probability that
correspondingectangularareasof the environmentare
occupied by obstacles. Tlsensorydatatogetherwith a
stochastiomodel of the sensorsare usedto updatethe
probability value of every cell of the occupancygrid,
following the Bayes’ theory.

Every cell of the grid is initialized to the probability

value 0.5: it means maximum uncertaioty the stateof

the world. After several successive updatesgttieg may

have cells withow probability to be occupied(nearto

0), cells corresponding to the boundamdghe detected
objects (probability nearto 1), and cells representing
unknown regions (probability around 0.5).

This kind of world modeling is basedon strategies

Robot) is a blackboardbaseddistributed architecture
wherethereis not a fixed hierarchy amongagents,but
rather the agents establish, among them, temporary
relations depending on the problem thaistbe solved.
Each agent can collaborate with others and, when
requested, it provides its capability.

Among the agentthereis a blackboard:eachagentcan
write or read information on the blackboard.lt stores
information of global interest, such as the current
sensory measurementgprovided by the multi-sensor
system, the state of the DAA&ttivity, etc. Furthermore
one-to-one communication between agentllmved by
messageajueues.Every agentis independentfrom the
others and has its own target to reach. They can

collaborate or compete with other agents, without having

a priori knowledge about existence, features and
availability of the other agents.

At the momentsix agentsbelongto the EXPLORER
project, providing different capabilities, such as

emphasizing additional sensing, rather than on the use of managing the multi-sensor systemtlo¢ robot (LASER

sophisticated methods to extract information from

sensory data. Furthermore it doesn’t allow efficient robot

self-locationas well recognitionof previously detected
places.

On the otherhand,“OccupancyGrid” seemsto be the
most suitable world model to representsensorydata
provided by sonar devices, wh#re sensormodel takes
into account the extertf the sonarbeamasin [5] and
even in our work.

The implemented SONMAP exploration strategy is
basedon the reductionof the uncertaintyin the spatial
information encoded in the occupancy grid. This
uncertainty iscomputedusing the cell entropyfunction
[5]. Futurepositionsto be exploredare the maxima of
this entropy function over the map.

4. COLLABORATION IN A DISTRIBUTED
ARCHITECTURE

Sensorydataprovidedby different sensordeviceshave
to be adequately representeyg specific modelssuitable
to the kind of informationto store. Anyway, due to
different characteristicof every sensordevices, every
model may reflects only some features of the
environment, depending on the characteristithe used
sensor(the laserdeviceis not able to detect opaque
surfaces, while the sonar devices have probleretect
reflecting surfaces). In order to achieve a correct
integrationof the world knowledge,we developeda
framework allowing to distribute among several
“representationagents” the responsibility to manage
different world models.

In the remainder of this section we presta underling
control architecture and the negotiation mechanism
allowing collaboration among different agents.

4.1.System Architecture

The EXPLORER project was developedstarting from
the DAAR architecture of Borghi [11]. DAAR
(Distributed Architecture for Autonomous mobile

and SONAR), the graphical usietterface(GUIEX), the
environment representations (LASMAdnd SONMAP)
and the agents’ coordination (EXPLORER). Other
agents belong to the DAAR architecture, sasta path-
planner (PP) and a robot motion manager (MOVE).

Whenan agentis not ableto achieveits own goal, it

asks the architecturfer collaboration.The otheragents,
while pursuing their goals, may offercantributionto a
sharedsolution. For instance EXPLORER is not able
to decidewhereto bring the robotin orderto improve
the system world knowledge; therefore it asks the
collaboration of the architecture: LASMAP and
SONMAP will formulatea set of proposalwhereaghe
other agents will reply with a refusal message.

Subsequentlywhen an acceptableproposalis found,
EXPLORER requestthe collaboration of the path-
planner PPand of the robot motion manageMMOVE to
bring the robot in the correspondent position.

Let's now look at which level the robot system may take

advantageof the different world knowledge of the
“representation agentstsing their strategieghey may
just generate a set of proposal‘witeresting” positions
to reach, where the robot can acquensorydatauseful
to increase its knowledge about the world.

It is possiblethat proposalsof different agentsdon’t
agree, or that they are mutually incompatible.

For example the “corners representation agent”, using its

own exploration strategies,can generatea proposal
correspondingo a placewhich in the OccupancyGrid
has an high probability to be occupied.

4.2 Negotiation Process

In orderto rejectsucha proposal.every “representation
agent”is askedto review the proposalsgeneratedrom
all the other ones. In such a way every agamtexpress
a consensus with the proposals of othgentsbasedon

its knowledge and the requirements of its own strategies.

If an agentformulate a proposalthat is incompatible
with the knowledgeof someother agent,it can even
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Fig. 3 - The simulated environment 3.a, the diktiometric
representation 3.b and the occupancy grid 3.c.

relax some individuapreferenceand generatea counter-
proposal, in order to find a mutually acceptakddution.
If severalproposalsare acceptableit will be chosethe
proposal with maximum consensus.This negotiation
processs democratidn the sensethat it looks for the
generalagreemeniamongthe different requirementsof
every local strategiesA similar negotiatedmechanism
was alreadydevelopedby Landerand Lesserin a more
generaland theoreticalway. In [8] they presenteda
distributed-searchalgorithm, “negotiated search”, that
uses conflict as a sourceof control information for
directing searchactivity acrossa set of heterogeneous
agents in theiguestfor a mutually acceptablesolution.
Our approach takes into account their results.

The presentedcollaboration schemacalled “Proposal
Mechanism”involves at any time severalagents,that

interact and share resources; in maityationsan agent
coordinatests activity with anotherby synchronizing
its action with respect to the other. Tisignchronization
is achieved by exchanging information on the

blackboard and sending control messages. The

descriptionof the implementationexceedghe scopeof

this paper.

5. CONCLUSION AND RESULTS

We havepresenteda new approachto world-modeling
basedon an extensionof diktiometric representations.
The use of internal relation allous to introducein the
merging processinformation as angular width and
distancesfrom corners,information affected only by
sensor uncertainty.

Diktiometric representatiomnd internal relations allow

us to obtain a network of geometricalrepresentationn
which the uncertainty is locally bounded. An appropriate
interaction-schema,based on a distributed control
architecture,was presentedallowing to integrate the
world knowledgerepresente@nd managedby different
representation agents.

Fig. 3 showssnapshotof the userinterfaceduring the
EXPLORER activity. Fig. 3.a shows the simulated
environment.The dashedlines representobstaclesnot
visible by the laser range findeensor put visible with
the sonar sensoFig. 3.b and 3.c show respectivelythe
diktiometric representationand the occupancy grid
during the exploration.

The dashedlines in Fig. 3.b individuate the different
extendedand local views. The right-handside of the
environment is not reachableby the robot. Only
SONMAP hasthis information. The integrationof this
representation determinatee robot to exploreonly the
reachablezone of the environment.A high degree of
consistencybetweenthe diktiometric representatioand
the simulated environment can be observed.

The presentedapproachwas testedin simulation. The
simulation results showhat the robot may successfully
representan indoor environment. Currently we are
developing real experimentswith one of the mobile
robots of the PM-AI&R Laboratory. The present
implementationof the EXPLORER project runs on a
workstation SUN.
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