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Abstract - In this paper we present a method for a multi-sensor mobile robot to explore autonomously
an unknown environment. The method tries to solve the main problems involved by such a task. In
particular we present a model to represent geographic knowledge, based on an extension of the
“Diktiometric representation” of Engelson and McDermott [1]. We paid special attention to the
maintenance of this model, providing mechanism to allow the consistent fusion of sensory observation.
Furthermore we argue that, due to the different capabilities of the devices of a multi-sensor system, the
only interaction between the sensors should be indirect and based on the individual effect that each
sensor has on the system controller. Therefore we present a negotiation mechanism allowing to
integrate the world knowledge represented in different models, each of which is updated with the
sensory information provided by a specific devices. In our work this integration involves only the
exploration strategies of each representation.

 1. INTRODUCTION

Several new applications, such as planetary navigation,
construction, toxic waste cleanup and even office
automation require the autonomous mobile robot to be
able to operate in unstructured environments with little a
priori information. To achieve this ability the
autonomous robot must exhibit higher degrees of
autonomy by being able to recover robust and consistent
descriptions of its surroundings using sensory
information; this kind of task is commonly called
exploration of an unknown environment (see for
example [7], [3]).

In order to effectively support the goal of acquiring
autonomously a world model, the robot must exhibit
several characteristics:

• it must be able to manage a variety of sensors;
rarely a single sensor system is enough to the
exploration task;

• it must provide mechanisms to manage the
uncertainty due to the limitations of the sensor
devices;

• it must be able to recover the uncertainty on its
position due to the limitations of the actuators;

• it must provide exploration strategies in order to
plan autonomously the sequence of actions
allowing to execute the task.

In recent years, several approaches to the robot
exploration have been proposed. The issue of
representing sensory information in a complete and
consistent manner is one of the most challenging
problems faced by the research community.

The geometric approach to world representation attempts
to build a detailed metrical description of the
environment from sensor data (see for example [2], [6],
[9]). This kind of representations has a reasonably well-
defined relation to the real world, but is highly
vulnerable to metrical inaccuracy in sensory devices and
movement actuators.

The “Occupancy Grid” [5] framework represents a
fundamental departure from traditional geometric
approaches. It uses a stochastic tessellated representation
of spatial information maintaining probabilistic
estimates of the occupancy state of each cell in a spatial
lattice.

Other works [3], taking a more qualitative approach,
show great promise of overcoming the fragility of purely
metrical methods: they consist in a topological
description of the environment. The model is a network
of nodes, where nodes represent distinctively
recognizable places in the environment, and arcs
represent control strategies which take the robot from
one place to another.

Diktiometric representations [1] broaden the topological
representation to include the paths’ shapes, i.e. the
geometric relations between places. In [1] only “point-
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like” places are considered.

The aim of this paper is to present a new approach to the
exploration task for an autonomous robot, trying to
solve the above mentioned problems.

For sake of brevity, in this paper we will just focus on a
few issues involved in our work:

• world modeling: we present an extension of the
“diktiometric representation” of Engelson and
McDermott [1];

• observation fusion: we present an approach to
solve the problem of preserving consistency in
updating the robot world model;

• exploration strategies: we present how the robot
is able to plan autonomously the sequence of
actions that allows it to execute the task.

• a negotiation mechanism allowing the integration
of different exploration strategies.

In our “diktiometric representation” places may be either
single “local views” or “extended views”, that is sets of
merged local views referred to a single reference frame
attached to the place. The whole representation is a
network of 2D geometrical representations connected by
arcs with geometric relations between places. In each
extended view the uncertainty about features is locally
bounded.

Our approach to build extended view is based on the
Move->Sense->Model->Match->Merge cycle. When new
features have to be merged in an extended view, their
parameters must be expressed in the reference frame of
the extended view. This needs relations (called “external
relations”) that are affected even with uncertainty on the
robot location.

To keep low uncertainty we introduce in the merging
process “internal relations”. Internal relations specify
distances between corners or angular widths between
edges belonging to the same visual scene; therefore their
measurements are affected only with the uncertainty of
the sensor system and not on the robot location.
Measurements about internal and external relations are
used to obtain a new estimate of the parameters.

The theory outlined in this paper is implemented in a
project called EXPLORER. In this project we
investigate how a multi-sensor autonomous robot can
explore a “large scale” environment. We mainly are
interested in multi-sensor integration rather than multi-
sensor fusion, unlike Durrant-White [2], Elfes [5]. We
argue that the only interaction between the sensors may
be indirect and based on the individual effect that each
sensor has on the system controller. EXPLORER does
not try to build a single consistent representation of the
environment using information provided from different
sensor devices; it rather tries to build a coherent set of
descriptions, that are independently consistent. In
EXPLORER the responsibility to manage the different
sensory information is distributed among several
“representation agents”. Each representation agent is a
module, belonging to a blackboard-based distributed
control architecture, which builds a private description
of the environment using sensory observation provided
by a specific device. Our aim in EXPLORER is to

investigate how to integrate the world knowledge of
every agent and in particular how to take into account
the different requirements of their exploration strategies.
We use a negotiation process among modules, called
Proposal Mechanism, described in Section 4.

A first prototype of EXPLORER has been implemented
and is currently under assessment. At the moment
EXPLORER utilizes two “representation agents”,
maintaining two different world models: an “Occupancy
Grid”, as defined by Elfes [5], and our extension of the
“Diktiometric Representation” of Engelson-McDermott
[1]. Anyway the architecture allows to introduce new
“representation agents” as new sources of information
are available.

The paper is organized as follows. Section 2 introduces
the LASMAP agent and our version of the
“Diktiometric Representation”. Furthermore we explain
how this kind of model is useful even for reducing robot
position uncertainty and how we face the problem of
integrating sensory observations acquired from different
points of view in a consistent manner. Section 3 briefly
presents the second representation agents and its
exploration strategy. Section 4 presents the system
architecture and a general negotiation process, which
allows the collaboration among every kind of system
agents. Section 5 draws some conclusions.

 2. THE DIKTIOMETRIC REPRESENTATION

The first representation agent, called LASMAP, uses the
information provided by a telemeter device composed of
a laser range finder and a rotary table allowing the laser
to rotate around a vertical axis. Each telemetric reading
provides the distance of the nearest obstacle in front of
the telemeter device.

The world representation is built merging a sequence of
consecutive 2D visual scenes, where a visual scene is a
geometric description of the environment built using
sensory data acquired from a single robot position. A
visual scene is related to the robot reference frame and
henceforth it will be called “local view”. The basis
elements of this representation are corners joining pairs
of edges describing the boundaries of the detected
objects.

The main problem in such world-modeling is to compute
the relative position of features (i.e., corners) observed
from different points of view in order to merge them in a
consistent manner. LASMAP uses only geometric
characteristics of detected objects to find
correspondences among their features and then the
relative position. LASMAP doesn’t rely on the
odometric system as in [5] and [6] and it doesn’t make
use of visual landmarks as in [7]. The proposed self-
location method (Section 2.1) shows the weakness to
depend on the amount of available information, that is,
the robot is obviously not able to estimate how far it
traveled along a corridor, where it sees just a couple of
parallel walls.

Since this weakness is common to every approach
attempting to build a geometric description of the world
referred to a global reference frame, LASMAP faces this
limitation using an extension of the “diktiometric
model” of Engelson and McDermott [1]. Engelson and
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McDermott deal with a networks of places being small
regions which can be treated as single points. In our
“diktiometric representation” places may be either single
“local views” or “extended views”, that is sets of
merged local views referred to a single reference frame
attached to the place.

Fig. 1 shows an example of our representation: each
reference frame corresponds to a node of the diktiometric
graph. The displacements between frames are the
measures associated to the arcs of the graph.

The exploration process is based on a Move->Sense->
Model->Match->Merge cycle. Whenever the robot
reaches a new position, it builds a local view, related to
the robot reference frame, using the information provided
by the laser device.

E1

L2 E2

E3

L1

L3

E4

Fig. 1 - The diktiometric representation

Afterwards it tries to self-locate by matching the
geometric features of the new local view with the
geometric features belonging to one place of the graph
so far acquired; i.e. the robot tries to estimate the
displacement between the current reference frame and one
attached to a place of the graph.

When the displacement is provided, the local view is
merged into the correspondent place obtaining a new
extended view (frames E1, E2, E3, E4 in Fig. 1).

The robot current position is related to the reference
frame attached to that place. It is clear that in a
diktiometric representation the robot absolute position is
meaningless.

As said above, when the local view is lacking in
information the robot cannot self-locate. In such a case
the local view is not allowed to be merged into any
place of the graph. A new place in the diktiometric graph
is inserted (frames L1, L2, L3 in Fig. 1), and an arc will
be created between the new place and the place to which
the robot previous position was related, representing the
rigid displacement between their reference frames. The

displacement is computed taking into account the
odometric estimation.

This way the geometric uncertainty inside a place is kept
low (the robot can self-locate) and it is not propagated
among different places. We chose to represent geometric
uncertainty in a probabilistic way.

 2.1. Matching and robot self-location

It is essential for the model consistency to know as well
as possible the robot position in the real world. The
odometric system supplies an estimate of the robot
position/orientation, but it is not possible to rely on it.

The followed approach is based on comparisons between
two visual scenes: the last local view acquired and an
extended view attached to a place of the diktiometric
graph. This comparison supplies correspondences among
the corners of the two visual scenes.

In our representation the matching process have to
compare different measurements of corners taken from
different robot positions. If the matching algorithm
recognizes that there is a set of correspondences among
measurements of corners belonging to different point of
view, they can be used to reduce the uncertainty of the
displacement D existing between the two robot
positions. This is done by applying the Extended
Kalman Filter (Ayache-Faugeras [10]).

The matching process has mainly to satisfy the basis
constraint that an hypothesis of correspondence is a one-
to-one relation between the sets of corners describing the
two visual scenes. The process of matching is broken
into two parts: hypothesis generation, hypothesis
verification.

The algorithm generates a set of hypotheses of
correspondences between corners of the two visual
scenes, taking into account topological and geometric
properties of their objects.

Each hypothesis of correspondences is verified: a subset
of correspondences between corners belonging to an
hypothesis is used as measurements in the EKF to
estimate the visual scene relative position.

This estimate is therefore used to verify the consistence
of the other correspondences of the same hypothesis.

If the hypothesis is validated all its correspondences are
used to estimate the visual scenes relative position.

In case of particular symmetries several equivalent
hypotheses can be validated: it is necessary to use the
odometric estimate to disambiguate them.

In the next section we show how correspondences
between two visual scenes and estimates of the
displacement between their reference frames are used to
allow the fusion of those visual scenes.

 2.2. Integrating sensory observations

When the matcher successfully individuates a consistent
set of correspondences, among the corners of a new local
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view and the corners of an extended view of the
diktiometric graph, the merger has to integrate the local
view into the extended one.

For example, Fig. 2.a shows an extended view, related to
the reference frame E, and a local view, related to the
reference frame L. The matcher has identified the
correspondences {(E1, L1), (E2, L2)}.

The classical approach to the fusion problem would
compute, using the EKF, a new estimate of the
parameters of each common corner, taking into account
the two available estimates and the estimate of the
displacement D between the frames E and L.

Although we use a “good” estimate of the displacement
D, serious fusion problem may occur. Let’s suppose that
in the real world there are only mutually orthogonal
edges and that our sensorial system is able to measure
the angular width of the corner with high precision.
Let’s suppose that in the so far acquired extended view,
due to uncertainty propagation, there are edges e1 and e2
only roughly parallel.

E

L

E2 E1

L1L2

e1

e2

N

N2 N1

N

N2 N1

2.a

2.c

2.b

Fig. 2 - Views integration. The local view L is merged with
the extended view E , obtaining the extended view N .

Following the classical approach, the fusion of E1 with
L1 and of E2 with L2 would produce an extended view
as showed in Fig. 2.b. in which only the parameters of
these corner have been updated. The positions of corners
N1, N2 was computed without taking into account the
good confidence of the measurement of the angular
width of the corresponding corners L1 and L2 in the
local view and E1 and E2 in the extended view.

We argue that the key to obviate such a shortcoming is
to introduce relations, among corners, that are
independently from the displacement D and to distribute
the uncertainty onto the parameters of every geometric
features of the resulting extended view. The proposed
solution to this problem rises from the fact that in a
local view the uncertainty just depends on the precision
of the sensor device. Henceforth we call relations

between geometric features, such as distances between
corners, angular width between edges, etc., “internal
relations”.

Following this approach we obtain a new extended view
with a better defined relation to the real environment,
where consecutive walls are quite orthogonal (see Fig.
2.c).

The merging algorithm is divided in two steps :

• building of a topological description of the
resulting extended view,

• estimating the parameters of the features.

A. Building the topological description

The merger has to identify, using the set of
correspondences provided by the matcher, which corners
of the extended view and of the local view will appear
into the new extended view.

Each corner of a local or extended view is described by a
structure which stores a variety of information, such as:

• the coordinates of the corner;

• a numeric identifier;

• pointers to adjacent corners.

The topological description of the new extended view is
built by computing the correct identifier of every corner
and connecting adjacent corners through their identifier.

At the end of this process, every corner of the new
extended view is set in correspondence with a corner of
the old extended view, a corner of the local view or
both. It is possible to compute the coordinates of each
corner of the new extended view knowing the
coordinates of its correspondent in the local view and in
the old extended view.

B. Estimating features parameters

At the end of the previous step the merger has identified
the topology of the resulting extended view. Now it has
to estimates the parameters of any feature belonging to
it. This means to estimate the new location of every
corner.

Following our approach to the sensory observation
fusion, the problem of estimating the corners’ parameters
is simply treated as a classical problem of linear
regression.

Let be c  ,  c  ,  ... ,  c  ,  c  ,  ... ,  c1 2 i i 1 2k+  a set of 2*k
parameters to be estimated where k is the number of
corners belonging to the new extended view and

c ci i, +( )1  are the coordinates (x, y) of the i-th corner;

given furthermore a set of N linear equations of the form

y t c u t c u tk k( ) = ( ) + + ( )1 1 2 2* * ; ... 

representing relations (internal and external) among the
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corners of the new extended view, where t = 1,2,...,N and
y t u t u tk( ) ( ) ( ), ,1 2 ... ,   are the measures of 2k+1 real

variable obtained in the old extended view, in the local
view or both.

The estimate of the 2k parameters ci  is computed using
the Markov’s weighted least squares method. Let be
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and V the covariance matrix of v, the following relation
holds:

y v= +Φθ .

The Markov’s estimator and its covariance matrix are:

ˆ ; var ˆ .θ θ= [ ] [ ] = [ ]− − − − −
Φ Φ Φ Φ ΦT T TV V y V1 1 1 1 1

        

As said above, the merger utilizes two kinds of relation:

• external relations;

• internal relations.

External relations involve the displacements between the
local view reference frames and the new extended view
reference frame; therefore their measurements are affected
by uncertainty on the robot location.

Internal relations specify distances between corners or
angular widths between edges belonging to the same
visual scene; therefore their measurements are not
affected by uncertainty on the robot location.

Let’s consider again the example of Fig. 2.

The local view L and the extended view E are to be
merged into the new extended view N.

The old extended view and the new one are referred to
the same reference frame; furthermore it is known the
displacement D between this frame and the local view
reference frame.

The merger sets in correspondence the corner N2 with
the corner E2 through an external relation, whose
coefficients are represented in the first two rows of
matrix Φ ; furthermore rows 3 and 4 of Φ  represent
the coefficients of the external relation setting in
correspondence N2 with L2:
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    a b,   , θ  are the parameters of the displacement D.

The merger can furthermore identify internal relations,
such as the distance between corners (N1, N2), whose
measurement is obtained in the local view computing the
distance between corners (L1, L2). In a concise way this
relation can be written as follows:

DIST N NL L1 2 2 1− = − .

Obviously these relations are to be linearized; the
correspondent coefficients are inserted in new rows of
the matrix Φ  and the correspondent measurements in
the vector y. Relations such as the distance between not
consecutive corners provide constraints on angular width
between edges

C. Exploration strategies

Up to now we have discussed a new way to represent
geographic knowledge; but, which criteria are useful to
state that the environment representation is complete?

If the robot has the possibility to circumnavigate all the
visible objects in the environment, the exploration is
finished when their boundaries are all represented in the
“corners representation” by closed polygons.

During the exploration the robot has to deal with chains
of segment representing part of boundaries. Therefore the
exploration strategy has simply to complete every chain
in order to build polygons.

This means to search a set of obstacle-free positions
useful to see the remaining edges; the search starts in the
neighborhood of every ending-corner.

As said in Section 1, our aim in EXPLORER is to
investigate how to integrate world knowledge
represented in different models. In the next Section we
briefly describe another way to represent geographic
knowledge and in Section 4 we present how to take into
account the exploration strategies requirements of
different world models.
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 3. THE SONMAP REPRESENTATION AGENTS

Using the information provided by a 24 ultrasonic
sensor ring, a second agent keeps up-to-date an
“Occupancy grid”, as defined in Elfes [5]; it is a matrix,
whose elements represent the probability that
corresponding rectangular areas of the environment are
occupied by obstacles. The sensory data together with a
stochastic model of the sensors are used to update the
probability value of every cell of the occupancy grid,
following the Bayes’ theory.

Every cell of the grid is initialized to the probability
value 0.5: it means maximum uncertainty on the state of
the world. After several successive updates, the grid may
have cells with low probability to be occupied (near to
0), cells corresponding to the boundaries of the detected
objects (probability near to 1), and cells representing
unknown regions (probability around 0.5).

This kind of world modeling is based on strategies
emphasizing additional sensing, rather than on the use of
sophisticated methods to extract information from
sensory data. Furthermore it doesn’t allow efficient robot
self-location as well recognition of previously detected
places.

On the other hand, “Occupancy Grid” seems to be the
most suitable world model to represent sensory data
provided by sonar devices, when the sensor model takes
into account the extent of the sonar beam as in [5] and
even in our work.

The implemented SONMAP exploration strategy is
based on the reduction of the uncertainty in the spatial
information encoded in the occupancy grid. This
uncertainty is computed using the cell entropy function
[5]. Future positions to be explored are the maxima of
this entropy function over the map.

 4. COLLABORATION IN A DISTRIBUTED
ARCHITECTURE

Sensory data provided by different sensor devices have
to be adequately represented by specific models suitable
to the kind of information to store. Anyway, due to
different characteristics of every sensor devices, every
model may reflects only some features of the
environment, depending on the characteristic of the used
sensor (the laser device is not able to detect opaque
surfaces, while the sonar devices have problems to detect
reflecting surfaces). In order to achieve a correct
integration of the world knowledge, we developed a
framework allowing to distribute among several
“representation agents” the responsibility to manage
different world models.

In the remainder of this section we present the underling
control architecture and the negotiation mechanism
allowing collaboration among different agents.

 4.1. System Architecture

The EXPLORER project was developed starting from
the DAAR architecture of Borghi [11]. DAAR
(Distributed Architecture for Autonomous mobile

Robot) is a blackboard based distributed architecture
where there is not a fixed hierarchy among agents, but
rather the agents establish, among them, temporary
relations depending on the problem that must be solved.
Each agent can collaborate with others and, when
requested, it provides its capability.

Among the agents there is a blackboard: each agent can
write or read information on the blackboard. It stores
information of global interest, such as the current
sensory measurements provided by the multi-sensor
system, the state of the DAAR activity, etc. Furthermore
one-to-one communication between agents is allowed by
message queues. Every agent is independent from the
others and has its own target to reach. They can
collaborate or compete with other agents, without having
a priori knowledge about existence, features and
availability of the other agents.

At the moment six agents belong to the EXPLORER
project, providing different capabilities, such as
managing the multi-sensor system of the robot (LASER
and SONAR), the graphical user interface (GUIEX), the
environment representations (LASMAP and SONMAP)
and the agents’ coordination (EXPLORER). Other
agents belong to the DAAR architecture, such as a path-
planner (PP) and a robot motion manager (MOVE).

When an agent is not able to achieve its own goal, it
asks the architecture for collaboration. The other agents,
while pursuing their goals, may offer a contribution to a
shared solution. For instance, EXPLORER is not able
to decide where to bring the robot in order to improve
the system world knowledge; therefore it asks the
collaboration of the architecture: LASMAP and
SONMAP will formulate a set of proposal, whereas the
other agents will reply with a refusal message.

Subsequently, when an acceptable proposal is found,
EXPLORER request the collaboration of the path-
planner PP and of the robot motion manager MOVE to
bring the robot in the correspondent position.

Let’s now look at which level the robot system may take
advantage of the different world knowledge of the
“representation agents”. Using their strategies they may
just generate a set of proposal of “interesting” positions
to reach, where the robot can acquire sensory data useful
to increase its knowledge about the world.

It is possible that proposals of different agents don’t
agree, or that they are mutually incompatible.

For example the “corners representation agent”, using its
own exploration strategies, can generate a proposal
corresponding to a place which in the Occupancy Grid
has an high probability to be occupied.

 4.2. Negotiation Process

In order to reject such a proposal, every “representation
agent” is asked to review the proposals generated from
all the other ones. In such a way every agent can express
a consensus with the proposals of other agents based on
its knowledge and the requirements of its own strategies.

If an agent formulate a proposal that is incompatible
with the knowledge of some other agent, it can even
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relax some individual preference and generate a counter-
proposal, in order to find a mutually acceptable solution.
If several proposals are acceptable, it will be chose the
proposal with maximum consensus. This negotiation
process is democratic in the sense that it looks for the
general agreement among the different requirements of
every local strategies. A similar negotiated mechanism
was already developed by Lander and Lesser in a more
general and theoretical way. In [8] they presented a
distributed-search algorithm, “negotiated search”, that
uses conflict as a source of control information for
directing search activity across a set of heterogeneous
agents in their quest for a mutually acceptable solution.
Our approach takes into account their results.

The presented collaboration schema called “Proposal
Mechanism” involves at any time several agents, that
interact and share resources; in many situations an agent
coordinates its activity with another by synchronizing
its action with respect to the other. This synchronization
is achieved by exchanging information on the
blackboard and sending control messages. The
description of the implementation exceeds the scope of
this paper.

 5. CONCLUSION AND RESULTS

We have presented a new approach to world-modeling
based on an extension of diktiometric representations.
The use of internal relation allow us to introduce in the
merging process information as angular width and
distances from corners, information affected only by
sensor uncertainty.

Diktiometric representation and internal relations allow
us to obtain a network of geometrical representation in
which the uncertainty is locally bounded. An appropriate
interaction-schema, based on a distributed control
architecture, was presented allowing to integrate the
world knowledge represented and managed by different
representation agents.

Fig. 3 shows snapshots of the user interface during the
EXPLORER activity. Fig. 3.a shows the simulated
environment. The dashed lines represent obstacles not
visible by the laser range finder sensor, but visible with
the sonar sensor. Fig. 3.b and 3.c show respectively the
diktiometric representation and the occupancy grid
during the exploration.

The dashed lines in Fig. 3.b individuate the different
extended and local views. The right-hand side of the
environment is not reachable by the robot. Only
SONMAP has this information. The integration of this
representation determinate the robot to explore only the
reachable zone of the environment. A high degree of
consistency between the diktiometric representation and
the simulated environment can be observed.

The presented approach was tested in simulation. The
simulation results show that the robot may successfully
represent an indoor environment. Currently we are
developing real experiments with one of the mobile
robots of the PM-AI&R Laboratory. The present
implementation of the EXPLORER project runs on a
workstation SUN.

3.a

3.b 3.c

Fig. 3 - The simulated environment 3.a, the diktiometric
representation 3.b and the occupancy grid 3.c.
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