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Abstract:

Locdization, that is the estimation of arobot's location from sensor data, is a fundamenta problem in mobile
robotics. This papers presents a version of Markov locdization which provides accurate position estimates and
which istailored towards dynamic environments. The key idea of Markov locdization isto maintain a probability
dengty over the space of dl locations of arobot in its environment. Our gpproach represents this space metricaly,
using afine-grained grid to gpproximate dengities. It is able to globaly locdize the robot from scratch and to
recover from localization failures. It is robust to gpproximate modds of the environment (such as occupancy grid
maps) and noisy sensors (such as ultrasound sensors). Our gpproach aso includes a filtering technique which
dlows amobile robot to reliably estimate its postion even in densdy populated environments in which crowds of
people block the robot's sensors for extended periods of time. The method described here has been implemented
and tested in severd red-world gpplications of mobile robots, including the deployments of two mobile robots as
interactive museum tour-guides.
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| ntroduction

Robot locdization has been recognized as one of the most fundamental problems in mobile robotics [Cox &
Wilfong1990, Borengtein et al. 1996]. The am of locdlization is to estimate the postition of arobot in its
environment, given amap of the environment and sensor data. Most successful mobile robot systems to date utilize
localization, as knowledge of the robot's position is essentid for a broad range of mobile robot tasks.

L ocalization--often referred to as position estimation or position control--is currently ahighly active fidd of
research, as arecent book by Borenstein and colleagues [Borenstein et al. 1996] suggests. The locdization
techniques developed so far can be distinguished according to the type of problem they attack. Tracking or local
techniques aim at compensating odometric errors occurring during robot navigation. They require, however, that
the initid location of the robot is (gpproximately) known and they typicaly cannot recover if they lose track of the
robot's pogition (within certain bounds). Another family of approachesis caled global techniques. These are
designed to estimate the position of the robot even under globa uncertainty. Techniques of this type solve the
so-called wake-up robot problem, in that they can locdize arobot without any prior knowledge about its
position. They furthermore can handle the kidnapped robot problem, in which arobot is carried to an arbitrary
location during it's operation. Please note that the wake-up problem is the specia case of the kidnapped robot
problem in which the robot istold that it has been carried away. Globd locdization techniques are more powerful
than loca ones. They typicaly can cope with situations in which the robot is likely to experience serious positioning
errors.

In this paper we present ametric variant of Markov localization, a technique to globaly estimate the postion of a
robot in its environment. Markov locdization uses a probabilistic framework to maintain a position probability
dengity over the whole sat of possible robot poses. Such a dengity can have arbitrary forms representing various
kinds of information about the robot's pogition. For example, the robot can tart with a uniform digtribution
representing that it is completdly uncertain about its pogtion. It furthermore can contain multiple modes in the case
of ambiguous Stuations. In the usud case, in which the robot is highly certain about its postion, it condgts of a
unimodal distribution centered around the true position of the robot. Based on the probabilistic nature of the
gpproach and the representation, Markov locdization can globdly estimate the position of the roboat, it can ded
with ambiguous Situations, and it can re-locdize the robot in the case of locdization failures. These properties are
basic preconditions for truly autonomous robots designed to operate over long periods of time.

Our method uses afine-grained and metric discretization of the state space. This gpproach has severd advantages
over previous ones, which predominately used Gaussians or coarse-grained, topological representations for
gpproximating arobot's belief. Fird, it provides more accurate position estimates, which are required in many
mobile robot tasks (e.g., tasks involving mobile manipulation). Second, it can incorporate raw sensory input such
as a sngle beam of an ultrasound sensor. Most previous approaches to Markov localization, in contrast, screen
sensor data for the presence or absence of landmarks, and they are prone to fail if the environment does not dign
well with the underlying assumptions (e.g., if it does not contain any of the required landmarks).

Mot importantly, however, previous Markov locdization techniques assumed that the environment is static.
Therefore, they typicdly fail in highly dynamic environments, such as public places where crowds of people may
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cover the robot's sensors for extended periods of time. To deal with such Situations, our method gpplies afiltering
technique that, in essence, updates the position probability dendty using only those measurements which are with
high likelihood produced by known objects contained in the map. As aresult, it permits accurate locdization even
in densely crowded, non-gtatic environments.

Fig. 1. The mobile robots Rhino {a) and Minerva (b} acting as interactive museum
tour-guides.

Our Markov locdization gpproach has been implemented and evaluated in various environments, using different
kinds of robots and sensor moddities. Among these gpplications are the deployments of the mobile robots Rhino
and Minerva (see Figure 1) as interactive museum tour-guide robots ([Burgard et al. 1998a, Burgard et al. 2000,
Thrunet al. 1999]) in the Deutsches Museum Bonn and the National Museum of American History in
Washington, DC, respectively. Experiments described in this paper illustrate the ability of our Markov locdization
technique to deal with approximate models of the environment, such as occupancy grid maps and noisy sensors
such as ultrasound sensors, and they demondtrate that our gpproach is well-suited to localize robots in densely
crowded environments, such as museums full of people.

The paper is organized as follows. The next section describes the mathematica framework of Markov locdization.
We introduce our metric verson of Markov localization in Section 3. This section also presents a probabilitic
mode of proximity sensors and afiltering scheme to ded with highly dynamic environments. Theresfter, we
describe experimenta resultsillustrating different aspects of our gpproach. Related work is discussed in Section 5
followed by concluding remarks.
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M arkov L ocalization

To introduce the major concepts, we will begin with an intuitive description of Markov localization, followed by a
mathematica derivation of the dgorithm. The reader may notice that Markov locdization is a specid case of
probabiligtic state estimation, gpplied to mobile robot locdization (see dso [Russdll & Norvig1995, Fox1998,
Koenig & Smmons1998]).

For darity of the presentation, we will initidly make the redtrictive assumption that the environment is static. This
assumption, called Markov assumption, is commonly made in the robotics literature. It postulates that the robot's
location isthe only gtate in the environment which systematicdly affects sensor readings. The Markov assumption
isviolated if robots share the same environment with people. Further below, in Section 3.3, we will Sde-gtep this
assumption and present aMarkov locdization agorithm that works well even in highly dynamic environments, eg.,
museums full of people.

TheBasic ldea

Basic Notation

Recursive Locdization

The Markov Locdization Algorithm
Implementations of Markov Locdization
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TheBasc |dea

Markov localization addresses the problem of state estimation from sensor data. Markov localization isa
probabilistic dgorithm: Instead of maintaining a Sngle hypothess as to where in the world arobot might be,
Markov locdization maintains a probability distribution over the space of dl such hypotheses. The probabilistic
representation dlows it to weigh these different hypotheses in a mathematically sound way.

Before we ddve into mathematica detall, let usillugtrate the basic concepts with asmple example. Congder the
environment depicted in Figure 2. For the sake of smplicity, let us assume that the space of robot postionsis
one-dimensiond, that is, the robot can only move horizontaly (it may not rotate). Now suppose the robot is
placed somewhere in this environment, but it is not told its location. Markov locdlization represents this state of
uncertainty by auniform distribution over dl positions, as shown by the graph in the first diagram in Figure 2.
Now let us assume the robot queries its sensors and finds out thet it is next to a door. Markov localization modifies
the belief by raisng the probability for places next to doors, and lowering it anywhere dse. Thisisillustrated in the
second diagram in Figure 2. Notice that the resulting belief is multi-modd, reflecting the fact thet the available
information is insufficient for globa locdization. Notice also that places not next to a door till possess non-zero
probability. Thisis because sensor readings are noisy, and asingle Sght of adoor istypicaly insufficient to exclude
the possibility of not being next to adoor.

" m T T L o [l I T 1 L T d T " T r T = 1 7T 11 L
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Now let us assume the robot moves a meter forward. Markov locdlization incorporates this information by shifting
the belief digtribution accordingly, as visudized in the third diagram in Figure 2. To account for the inherent noisein
robot motion, which inevitably leadsto aloss of information, the new belief is smoother (and less certain) than the
previous one. Findly, let us assume the robot senses a second time, and again it finds itself next to a door. Now
this observation is multiplied into the current (non-uniform) belief, which leads to the find bdief shown at the last
diagramin Fgure 2. At this point in time, most of the probability is centered around a single location. The robot is
now quite certain about its position.
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Basic Notation

To make this more formd, let us denote the position (or: location) of amobile robot by a three-dimensiona
varidble! = {z, 4, 8} , comprising its x-y coordinates (in some Cartesian coordinate system) and its heading

direction8 . Let I denote the robot's true location at timet, and £+ denote the corresponding random variable.
Throughout this paper, we will use the terms position and location interchangegbly.

Typicaly, the robot does not know its exact pogtion. Instead, it carries abelief asto where it might be. Let
Bel{L:) denote the robot's position belief at timet. Bel{L+) isaprobability distribution over the space of
positions. For example, Bel{L+ = 1) isthe probability (density) that the robot assigns to the possihility thet its

location at timet isl. The belief is updated in response to two different types of events. The arrivd of a
measurement through the robot's environment sensors (e.g., a cameraimage, a sonar scan), and the arriva of an
odometry reading (e.g., whed revolution count). Let us denote environment sensor messurements by s and
odometry measurements by a, and the corresponding random variablesby Sand A, respectively.

The robot perceives a stream of measurements, sensor measurements s and odometry readings a. Let

d = {dﬂ;dlj"';dq’} {1]

denote the stream of measurements, where each d (with{) < £ < T') dther is a sensor measurement or an

odometry reading. The varigble t indexes the data, and T is the most recently collected data item (one might think
of t as "'time"). The set d, which comprises dl available sensor data, will be referred to asthe data.
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Recursive Localization

Markov localization estimates the posterior distribution over L conditioned on dl available data, thet is

Before deriving incrementa update equations for this posterior, let us briefly make explicit the key assumption
underlying our derivation, caled the Markov assumption. The Markov assumption, sometimes referred to as
static world assumption, specifiesthat if one knows the robot's location £ , future measurements are independent

of past ones (and vice versa):
P{dt—l—l?dt-l—i’.';"' |Lt =I?dﬂ?"'?dt] = P{dt+1?dt-|-2:"' |Lt =I‘] Vi {3]

In other words, we assume that the robot's location is the only tate in the environment, and knowing it isal one
needs to know about the past to predict future data. This assumption is clearly inaccurate if the environment
contains moving (and measurable) objects other than the robot itsalf. Further below, in Section 3.3, we will extend
the basic paradigm to non-Markovian environments, effectively devising alocalization dgorithm that workswell in
abroad range of dynamic environments. For now, however, we will adhere to the Markov assumption, to facilitate
the derivation of the basic agorithm.

When computing P{L7 = I | ), we digtinguish two cases, depending on whether the most recent dataitem dr

IS a sensor measurement or an odometry reading.

Case 1: Themost recent data item isa sensor measurement g = s7.

Here
P{LT=I|d] = P{L'I'=I|dﬂ:"':df—1:ST}' {4]
Bayes rule suggests that this term can be transformed to

Psr | doy. - dr-1, L =1) PIx =1 | doy-. ., dr-1)
P{STldﬂ?"'?d’T—lj -

()

which, because of our Markov assumption, can be smplified to:

P{st | Ly =1) P(Lr =1 | dy,...,dr_1)
P{ST | dﬂ:"':dT—l}

- (6)
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We aso observe that the denominator can be replaced by a constant argr , since it does not depend on L4 . Thus,

we have

PlLr=1|d) = arPlsy |Lyr=1) P{Ly=1|dy,...,dr_1). ()
The reeder may notice the incrementa nature of Equation (7): If we write

Bel(Ly=1) = P(Ly=I|dy,...,dr), (8)
to denote the robot's belief Equation (7) becomes

Bel{Ly =I) = arp P(sy|l) Bel(Ly_1 =1). (9)

In this equation we replaced the term P{s7 | Ly = I} by P{s7 | I') based on the assumption that it is
independent of the time.

Case 2: Themost recent dataitem isan odometry reading: dy = ag .

Here we compute P{Lg = I | &) using the Theorem of Tota Probability:
PlLr=1I|d) = fP{LT =1|d,Lyr_1=1)P{Ly_1 =T |d) dl'. {(10)

Congder the firgt term on the right-hand side. Our Markov assumption suggests that

P{Ly =1|d,Ly_1=T¥) = P{Ly=I|dg,...,dy_n,er, Ly 1=1) (11)
= Pl{ly=I|ar,Lr_1=T) (12

The second term on the right-hand side of Equation (10) can aso be smplified by observing that a7 does not
carry any information about the position Lg_ 1 :

P{LT—1=F|d] = P{LT—1=F|dﬂ:"':d’P—1:'ﬂT] {13]
= P{LT—1=F|dﬂ?"'?d’P—1] (14)

Subdtituting 12 and 14 back into Equation (10) gives us the desired result
Py =I|d) = fP{LT =1|ar,Lyr_1=0) P(Ly_1=1"|do,...,dr_1) dI'. (15)
Notice that Equation (15) is, too, of an incrementd form. With our definition of belief above, we have

Bel{Lr =1) = f P{ |ar,F) Bel{Lr—1 = I') dr'. (16)
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Please note that we used P{I | ar, I) indead of P{Lg =1 | ar, Ly_1 =1") since we assume that it does
not change over time.

M"ﬂ“ Previausll

Next: The Markov Locdlization Algorithm Up: Markov Localizetion Previous: Basic Notation

Dieter Fox
Fri Nov 19 14:29:33 MET 1999

30f 3 12/10/00 11:23 AM



IMIU__[&'” Previuus”

Next: Implementations of Markov Localization Up: Markov Locdization Previous: Recursve Locdlization

The Markov Localization Algorithm

Update Equations (9) and (16) form the core of the Markov locdization adgorithm. The full dgorithm is shown in Table 1.
Following [Basye et al. 1992] and [Russell & Norvig1995], we denote P{I | &, ') as the robot's motion model, since it

models how motion effect the robot's position. The conditional probability P(s | I} is caled perceptual model, because it

modd s the outcome of the robot's sensors.

for each location [ do /* initialize the belief */
Bel{lo=1) «— P{Lo=1) (17
end for

forever do

if new sensory iupnt sy is received do

gy — ()
for each location ! do /* apply the perception maodel */
Bel{lLy=1) «— Plsy|l)-Bel{Lr_1 =1I) (18)
ay «— ap+Bel(ly =1 (19)

end for
for each location ! do /* normalize the belief */
Bel{llLy =1) «— ar ‘. BelfLy=1) (20)

end for

end if

if an odometry reading ar is received do

for each location ! do /* apply the motion model */
Bel(Ly =1) «— fP{x |, ar) - Bel(Ly_1 =1') dl' {21)

end for
end if




In the Markov locdlization agorithm P{Lg = I}, whichinitidizesthe belief Bel{Lqg) , reflects the prior knowledge about

the starting pogition of the robot. This distribution can beinitidized arbitrarily, but in practice two cases prevall: If the
position of the robot relaive to its map is entirely unknown, P{ Lg) is usualy uniformly distributed. If the initial position of

the robot is gpproximately known, then P{ L) istypicaly anarrow Gaussian distribution centered at the robot's position.
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| mplementations of Markov L ocalization
The reader may natice that the principle of Markov locdization leaves open

1. how the robot's belief Bel(L) is represented and
2. how the conditiona probebilities P{I | &, I") and P{s | I} are computed.

Accordingly, exigting gpproaches to Markov locdization mainly differ in the representation of the Sate gpace and the
computation of the perceptud modd. In this section we will briefly discuss different implementations of Markov locdization
focusing on these two topics (see Section 5 for a more detailed discussion of related work).

1. State Space Representations. A very common approach for the representation of the robots belief Bel(L) is based
on Kaman filtering [Kalman1960, Smithet al. 1990] which rests on the redtrictive assumption that the position of the
robot can be modeled by a unimoda Gaussian digtribution. Existing implementations [Leonard &
Durrant-Whyte1992, Schide & Crowley1994, Gutmann & Schlege 1996, Arras & Vestli1998) have proven to be
robust and accurate for keeping track of the robot's position. Because of the redtrictive assumption of a Gaussan
distribution these techniques lack the ability to represent Stuations in which the position of the robot maintains
multiple, digtinct beliefs (cf. 2). Asaresult, locdization gpproaches usng Kaman filters typicaly require thet the
garting position of the robot is known and are not able to re-locdize the robot in the case of locdization failures.
Additiondly, Kaman filters rely on sensor modes that generate estimates with Gaussian uncertainty. This assumption,
unfortunately, is not met in al Stuations (see for example [Ddlaert et al. 1999)).

To overcome these limitations, different gpproaches have used increasingly richer schemes to represent uncertainty in
the robot's position, moving beyond the Gaussian dengty assumption inherent in the vanilla Kaman filter.
[Nourbakhsh et al. 1995, Smmons & Koenigl1995, Kadbling et al. 1996] use Markov locdization for
landmark-based corridor navigation and the state space is organized according to the coarse, topologica structure of
the environment and with generdly only four possible orientations of the robot. These approaches can, in principle,
solve the problem of global localization. However, due to the coarse resolution of the state representation, the
accuracy of the pogtion estimatesis limited. Topologica approaches typicdly give only arough sense asto where the
robot is. Furthermore, these techniques require that the environment satisfies an orthogondity assumption and that
there are certain landmarks or abstract features that can be extracted from the sensor data. These assumptions make
it difficult to gpply the topologica approachesin ungtructured environments.

2. Sensor Models: In addition to the different representations of the state space various perception models have been
developed for different types of sensors (see for example [Moravec1988, Kortenkamp & Weymouth1994, Smmons
& Koenig1995, Burgard et al. 1996, Dellagrt et al. 1999, Konolige1999]). These sensor models differ in the way
how they compute the probability of the current measurement. Whereas topologica gpproaches such
as [Kortenkamp & Weymouth1994, Smmons & Koenig1995, Kadbling et al. 1996] first extract landmark
information out of a sensor scan, the gpproaches in [Moravec1988, Burgard et al. 1996, Ddlaert et al. 1999,
Konoligel1999] operate on the raw sensor measurements. The techniques for proximity sensors described
in [Moravec1988, Burgard et al. 1996, Konolige1999] mainly differ in their efficdency and how they modd the
characterigtics of the sensors and the map of the environment.

In order to combine the strengths of the previous representations, our gpproach relies on afine and less restrictive
representation of the state space ([Burgard et al. 1996, Burgard et al. 1998b, Fox1998]). Here the robot's belief is
gpproximated by afine-grained, regularly spaced grid, where the spatia resolution is usualy between 10 and 40 cm and the
angular resolution is usudly 2 or 5 degrees. The advantage of this approach compared to the Kaman-filter based techniques
isits ability to represent multi-moda distributions, a prerequisite for globa locdization from scratch. In contragt to the




topologica approachesto Markov localization, our gpproach alows accurate position estimates in a much broader range of
environments, including environments that might not even possess identifiable landmarks. Since it does not depend on
abstract features, it can incorporate raw sensor data into the robot's belief. And it typically yields results that are an order of
magnitude more accurate. An obvious shortcoming of the grid-based representation, however, is the size of the state space
that has to be maintained. Section 3.4 addresses thisissue directly by introducing techniques that make it possible to update
extremdy large gridsin red-time.
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Metric Markov Localization for Dynamic
Environments

In this section we will describe our metric variant of Markov locdization. This includes appropriate motion and
sensor models. We dso describe afiltering technique which is designed to overcome the assumption of a static
world modd generaly made in Markov locdization and dlows to localize amobile robot even in densdly crowded
environments. We then describe our fine-grained grid-based representation of the state space and present
techniques to efficiently update even large State spaces.

The Action Model
The Perception Modd for Proximity Sensors
Fltering Techniques for Dynamic Environments
o The Entropy Filter
o TheDigance Filter
Grid-based Representation of the State Space
o Pre-Computation of the Sensor Model
o Sdective Update
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The Action Modédl

To update the belief when the robot moves, we have to specify the action model P{I | I, &;) . Based on the assumption of

normdly distributed errors in trandation and rotation, we use a mixture of two independent, zero-centered Gaussian
digributions whose tails are cut off [Burgard et al. 1996]. The variances of these distributions are proportiona to the length

of the measured motion.

(a)

(b)

Fig. 3. Typical “banana-shaped™ distributions resulting from different motion actions.

Figure 3 illustrates the resulting dengties for two example pathsiif the robot's belief starts with a Dirac digtribution. Both
digtributions are three-dimensiond (in{x, 3, 8} -space) and Figure 3 shows their 2D projectionsinto {z, %} -space.
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The Perception M odel for Proximity Sensors

As mentioned above, the likelihood P{s | I} that a sensor reading s is measured a position | has to be computed

for dl postions| in each update of the Markov locdization agorithm (see Table 1). Therefore, it is crucia for
on-line position estimation that this quantity can be computed very efficiently. [Moravec1988] proposed a method
to compute a generally non-Gaussian probability density function P(s | I} over adiscrete set of possible distances

measured by an ultrasound sensor at location |. In afirst implementation of our approach [Burgard et al. 1996] we
used asimilar method, which unfortunatdly turned out to be computationally too expensive for locdization in
red-time.

To overcome this disadvantage, we devel oped a sensor-model which allows to compute P(s | I) solely based on

the distance o4 to the closest obstacle in the map adong the direction of the sensor. This distance can be computed

by ray-tracing in occupancy grid maps or CAD-modds of the environment. In particular, we consider a
discretizationdy, - - - , da of possible distances measured by a proximity sensor. In our discretization, the size of

therangesdyg = di11 — diisthesamefor dl i, and dx, corresponds to the maximal range of the proximity
sensor2l Let P{d; | I') denote the probability of measuring adistance d; if the robot isat location |. In order to
derive this probability we first consider the following two cases (see dso [Hennig1997, Fox1998)):

1. Known obstacles: If the sensor detects an obstacle the resulting distribution is modeled by a Gaussian
digtribution with mean a the distance to this obstacle. Let P {d | ) denote the probability of measuring

distance d if therobot is at location |, assuming that the sensor beam is reflected by the closest obgtaclein
the map (along the sensor beam). We denote the distance to this specific obstacle by a4 . The probability

P4 | I} isthen given by aGaussian distribution with mean at o :

1 _ {d—ap)?
Pn{d|l) = S (22)

a2

The standard deviation ¢r of this distribution models the uncertainty of the measured distance, based on
o the granularity of the discretization of L, which represents the robot's position,
o theaccuracy of the world mode, and
o theaccuracy of the sensor.

Figure 4(a) gives examples of such Gaussan distributions for ultrasound sensors and laser range-finders.
Here the distance o to the closest obstacle is 230cm. Observe here that the laser sensor has a higher

accuracy than the ultrasound sensor, as indicated by the smaller variance,
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Fig. 4. Probability of measuring a distance d; (a) if obstacle in distance o; is detec
(b} due to unknown obstacles.

2. Unknown obstacles: In Markov locdization, the world mode generdly is assumed to be getic and
complete. However, mobile robot environments are often populated and therefore contain objects that are
not included in the map. Consequently, there is a non-zero probability that the sensor isreflected by an
obstacle not represented in the world model. Assuming that these objects are equally distributed in the
environment, the probability Fy:{d; ) of detecting an unknown obstacle at distance d; is independent of the

location of the robot and can be modeled by a geometric distribution. This distribution results from the
following observation. A distance d; is measured if the sensor is not reflected by an obstacle at a shorter

distance d;.; and isreflected a distance d; . The resulting probability is

Q i=1{
FPuldy) = (23)
er{l — 3,05 Pulds)) otherwise.

In this equation the condtant - is the probability that the sensor is reflected by an unknown obstacle a any
range given by the discretization.

A typicd digtribution for sonar and laser measurementsis depicted in Figure 4(b). In this example, the
relatively large probability of measuring 500cm is due to the fact that the maximum range of the proximity
sensorsis set to 500cm. Thus, this distance represents the probability of measuring at least 500cm.

Obvioudy, only one of these two cases can occur at a certain point in time, i.e., the sensor beam is ether reflected
by aknown or an unknown object. Thus, P{d; | I} isaamixture of the two digtributions Pr, and P, . To
determine the combined probability F{d; | I} of measuring adistance &; if the robot is at location| we consider

the following two Stuations: A distance d; is measured, if {

1. thesensor beamis
1. not reflected by an unknown obstacle before reaching distance d;

a;=1- ZPu{dj}: (24)

g
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2. and reflected by the known obstacle at distance &;

ay = g Pro{d; | 1) (25)

2. OR thebeamis
1. reflected neither by an unknown obstacle nor by the known obstacle before reaching distance d;

Bi=1-)Y P{d; |I) {26)

j<i
2. and reflected by an unknown obstacle at distance d;
by = - (27)
The parameter &4 in Equation (25) denotes the probability that the sensor detects the closest obstacle in the map.

These consderations for the combined probability are summarized in Equation (28). By double negation and
insartion of the Equations (24) to (27), wefindly get Equation (31).

P |) = p{ (mhm) vV (A ) (28)
= p{ wram) A Ak ) (29)
= ([1 Paiay)] [I—P(blbﬂ]]) (30)
= 1-(1-0- gmd et Pld | D)) - (1 — (1 - gp{djn &) (1)
ji j<i

To obtain the probakility of measuring d, , the maxima range of the sensor, we explait the following equivaence:

The probability of measuring adistance larger than or equa to the maxima sensor rangeis equivaent to the
probability of not measuring a distance shorter than dj, . In our incrementa scheme, this probability can easily be

determined:
P(d,|) = 1-3 Plg; |I) (32)

j<n

To summarize, the probability of sensor measurements is computed incrementdly for the different distances sarting
at distance &1 = {) cm. For each distance we consider the probability that the sensor beam reaches the

corresponding distance and is reflected either by the closest obstacle in the map (dlong the sensor beam), or by an
unknown obstacle.

30f 5 12/10/00 11:47 AM



The Perception Model for Proximity Sensors http://www.cs.cmu.edu/af s/'cs/project/jair/pub/vol umell/fox99a-htmi/nodel0.html

Approximated |—— |

A pproxinnated |—— t
Mepgued F—-—]

Meszumd F——-1
[Ny s 1

LAY 3

a;

a;

1495 -

probebilinr pdd |7
probability pfaf 7
=
°

0015

" ] ] am 4m
roegsumd digtance & [cra]

=010 T e m n
f(ﬂ') roegzured d igtance o [cra]

(b}
Fig. 5. Measured and approrvimated probabilities of {a) sonar and {b) laser measuremer,
qiven the distance o o the closest obstacle along the sensing direction.

In order to adjust the parameters & , & and & of our perception model we collected eleven million data pairs
consigting of the expected distance oy and the measured distance &; during the typical operation of the robot.

From these data we were able to estimate the probability of measuring a certain distance d; if the distance oy to the
closest obgtacle in the map aong the senaing direction is given. The dotted line in Figure 5(a) depictsthis
probability for sonar measurements if the distance 9 to the next obstacle is 230cm. Again, the high probability of

measuring 500cm is due to the fact that this distance represents the probability of measuring at least 500cm. The
solid line in the figure represents the distribution obtained by adapting the parameters of our sensor model so asto

best fit the measured data. The corresponding measured and approximated probabilities for the laser sensor are
plotted in Figure 5(b).

The observed densties for all possible distances 4 to an obstacle for ultrasound sensors and laser range-finder
are depicted in Figure 6(a) and Figure 6(c), respectively. The approximated densities are shown in Figure 6(b) and
Figure 6(d). In dl figures, the distance 7 islabeled " expected distance”. The smilarity between the measured and
the approximated digtributions shows that our sensor mode yields a good approximation of the data.
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Fig. 6. Measured and approrimated probability of sonar (a,b} and laser {ec,d) measm
ments, respectively. Each fable confains the probabilities of distance measurements gin
the expected distance o7 exfracted from a map of the environment.

Please note that there are further well-known types of sensor noise which are not explicitly represented in our
sensor modd. Among them are specular reflections or cross-talk which are often regarded as serious sources of

noise in the context of ultra-sound sensors. However, these sources of sensor noise are modeled implicitly by the
geometric distribution resulting from unknown obstacles.
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Filtering Techniques for Dynamic Environments

Markov locdization has been shown to be robust to occasiond changes of an environment such as opened /
closed doors or people waking by. Unfortunatdly, it failsto locaize arobot if too many aspects of the environment
are not covered by the world modd. Thisisthe case, for example, in densay crowded environments, where
groups of people cover the robots sensors and thus lead to many unexpected measurements. The mobile robots
Rhino and Minerva, which were deployed as interactive museum tour-guides [Burgard et al. 1998a, Burgard et
al. 2000, Thrunet al. 1999], were permanently faced with such a Stuation. Figure 7 shows two casesin which the
robot Rhino is surrounded by many visitors while giving atour in the Deutsches Museum Bonn, Germany.

(a) (b)
Fig. 7. Rhino surrounded by visitors in the Deutsches Musenm Bonn.
(@) (b)

Fig. & Typical laser scans obtained when Rhino is surrounded by visitors.

The reason why Markov locdlization failsin such Stuationsis the violation of the Markov assumption, an
independence assumption on which virtudly dl locdization techniques are based. As discussed in Section 2.3, this
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assumption states that the sensor measurements observed at time t are independent of al other measurements,
given that the current state £.¢ of the world is known. In the case of locdization in densely populated environments,

this independence assumption is clearly violated when using a static modd of the world.

To illugrate this point, Figure 8 depicts two typica laser scans obtained during the museum projects (maximd
range measurements are omitted). The figure dso shows the obstacles contained in the map. Obvioudy, the
readings are, to alarge extent, corrupted, since people in the museum are not represented in the gtatic world
model. The different shading of the beams indicates the two classes they belong to: the black lines correspond to
the static obstacles in the map and are independent of each other if the position of the robot is known. The
grey-shaded lines are beams reflected by vigtorsin the Museum. These sensor beams cannot be predicted by the
world model and therefore are not independent of each other. Since the vicinity of people usudly increases the
robot's belief of being close to modeled obstacles, the robot quickly loses track of its position when incorporating
al sensor measurements. To reestablish the independence of sensor measurements we could include the position
of the robot and the position of people into the Sate variable L. Unfortunately, thisis infeesible snce the
computational complexity of state estimation increases exponentialy in the number of dependent Sate variablesto
be estimated.

A dosdy related solution to this problem could be to adapt the map according to the changes of the environment.
Techniques for concurrent map-building and localization such as [Lu & Milios1997, Gutmann & Schlegel 1996,
Shatkey & Kadbhling1997, Thrunet al. 1998b], however, dso assume that the environment is dmost static and
therefore are unable to deal with such environments. Another approach would be to adapt the perception mode to
correctly reflect such stuations. Note that our perceptual model aready assigns a certain probability to events
where the sensor beam is reflected by an unknown obstacle. Unfortunately, such approaches are only capable to
model such noise on average. While such approaches turn out to work reliably with occasiona sensor blockage,
they are not sufficient in Stuations where more than fifty percent of the sensor measurements are corrupted. Our
localization system therefore includes filters which are designed to detect whether a certain sensor reading is
corrupted or not. Compared to a modification of the static sensor modd described above, these filters have the
advantage that they do not average over al possible stuations and that their decison is based on the current belief
of the robot.

The filters are designed to select those readings of a complete scan which do not come from objects contained in
the map. In this section we introduce two different kinds of filters. The first oneis cdled entropy filter. Snceit
filters areading based soldly on its effect on the bdlief Bel(L), it can be applied to arbitrary sensors. The second
filter isthe distance filter which sdects the readings according to how much shorter they are than the expected
vaue. It thereforeis especidly designed for proximity sensors.

e TheEntropy Filter
¢ The Digance Filter
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The Entropy Filter

Theentropy H(L) of the belief over L isdefined as

H({L) = —) Bel{L =1) logBel{L =1) (33)
I

and isameasure of uncertainty about the outcome of the random varigble L [Cover & Thomas1991]. The higher
the entropy, the higher the robot's uncertainty asto whereit is. The entropy filter measures the reative change of
entropy upon incorporating a sensor reading into the belief Bel(L). More specificdly, let s denote the measurement
of asensor (in our case asingle range measurement). The change of the entropy of Bel(L) given sisdefined as.

AH(L|s) = H(L|s)— H(L) (34)

Thetem H{L | 8)isthe entropy of the belief Bel(L) after incorporating the sensor measurement s (see

Equations (18) - (20)). While a positive change of entropy indicates that after incorporating s, the robot is less
certain about its pogition, a negative change indicates an increase in certainty. The sdlection scheme of the entropy
filter isto exclude dl sensor messurements swith AH{L | 8] < 0. In other words, it only uses those sensor

readings confirming the robot's current belief.

Entropy filters work well when the robot's belief is focused on the correct hypothesis. However, they may fail in
stuations in which the robot's belief sate isincorrect. Thistopic will be andyzed systematically in the experiments
described in Section 4.1. The advantage of the entropy filter is that it makes no assumptions about the nature of the
sensor dataand the kind of disturbances occurring in dynamic environments.

Dieter Fox
Fri Nov 19 14:29:33 MET 1999
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The Distance Filter

The distance filter has specificaly been designed for proximity sensors such as laser range-finders. Distancefilters
are based on asmple observation: In proximity sensing, unmodeed obstacles typicdly produce readings thet are
shorter than the distance expected from the map. In essence, the distance filter selects sensor readings based on
their distance rdlative to the distance to the closest obstacle in the map.

To be more specific, thisfilter removes those sensor measurements s which with probability higher than «y (this
threshold is set to 0.99 in dl experiments) are shorter than expected, and which therefore are caused by an

unmodeled object (e.g. aperson).
Tosee, let d1, . .- , dn be adiscrete set of possible distances measured by a proximity sensor. Asin Section 3.2,
we denote by P, {d; | I} the probability of measuring distance &; if the robot is a position | and the sensor

detects the closest obstacle in the map dong the sensing direction. The distribution Py, describes the sensor

measurement expected from the map. As described above, this distribution is assumed to be Gaussian with mean
at the distance a4 to the closest obstacle dong the senaing direction. The dashed linein Figure 9 represents Fy, |

for alaser range-finder and a distance a; of 230cm. We now can define the probability Pa.er {di | I) that a
measured distance 4; is shorter than the expected one given the robot is at position |. This probability is obvioudy
equivaent to the probability that the expected measurement a4 islonger than d; given the robot is at location | and
thus can be computed asfollows:

Pocaldi | ) = 3 Puld; | D). (35)

i
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distance d; 15 shorier than the expected measurement given the location L.

In practice, however, we are interested in the probability B, ..+ {es) that d; is shorter than expected, given the
complete current belief of the robot. Thus, we have to average over al possible positions of the robot:

Pioilds) = Y Paoildi |1)Bel{L =1) (36)
I

Given the digtribution P.e- {ez) , we now can implement the distance filter by excluding al sensor measurements
d; with Pa,o {di) > 7 . Whereas the entropy filter filters measurements according to their effect on the belief
date of the robot the distance filter salects measurements solely based on their vaue and regardless of their effect
on the robot's certainty.

It should be noted that [Fox1998] additiondly developed a blockage filter for proximity sensors, which is based
on a probabilistic description of Stuationsin which a sensor is blocked by an unknown obstacle. We omit thisfilter
here ance its derivation is quite complex and the resulting filter is not Sgnificantly different from the distance filter
described here.
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Grid-based Representation of the State Space

Wewill now return to the issue of how to represent and compute the belief digtribution of the robot efficiently,
describing what one might think of asthe “"nut and bolts’ of grid-based Markov localization. Recdl that to obtain
accurate metric position estimates, our gpproach to Markov localization uses a fine-grained discretization of the
state space. Here L is represented by athree-dimensiond, regularly spaced grid, where the spatid resolution is
usudly between 10cm and 40cm and the angular resolution is usualy 2 or 5 degrees. Figure 10 illugrates the
sructure of a position probability grid. Each layer of such agrid corresponds to al possible poses of the robot

with the same orientation.

Bel(L, = 1)

Fig. 10. Grid-based representation of the state space

While such afine-grained gpproximation makes it possible to estimate the robot's position with high accuracy, an
obvious disadvantage of such afine-grained discretization lies in the huge state space which has to be maintained.
For amid-size environment of size 30 x 30 m2, an angular grid resolution of 2° , and acdll sizeof 15 x 15 cm2

the State space congsts of 7,200,000 gtates. The basic Markov localization agorithm updates each of these Sates
for each sensory input and each atomic movement of the robot. Current computer speed, thus, makes it impossble

to update matrices of thissizein red-time.

To update such state spaces efficiently, we have devel oped two techniques, which are described in the remainder
of this section. The first method, introduced in Section 3.4.1, pre-computes the sensor model. It alows usto
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determine the likelihood .P{s | I} of sensor measurements by two look-up operations--instead of expensive ray

tracing operations. The second optimization, described in Section 3.4.2, is a selective update Srategy. This
srategy focuses the computation, by only updating the relevant part of the state space. Based on these two
techniques, grid-based Markov locdization can be applied on-line to estimate the position of a mobile robot during
its operation, using alow-cost PC.

¢ Pre-Computation of the Sensor Modd
e Sdective Update
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Pre-Computation of the Sensor M odel

As described in Section 3.2, the perception model P{s | I} for proximity sensors only depends on the distance o;

to the closest obstacle in the map aong the sensor beam. Based on the assumption that the map of the environment
is static, our approach pre-computes and stores these distances a4 for each possible robot location | inthe

environment. Following our sensor moddl, we use adiscretizetion d, - - - , 8, Of the possible distances a7 . This

discretization is exactly the same for the expected and the measured distances. We then store for each location |
only the index of the expected distance a5 in athree-dimensond table. Please note that this table only needs one

byte per valueif 256 different values for the discretization of o; are used. The probability F{d; | ;) of meesuring
adistance 4; if the closest obstacle is at distance a5 (see Figure 6) can also be pre-computed and stored in a
two-dimensiona |ookup-table.

As aresult, the probability (s | I} of measuring s given alocation | can quickly be computed by two nested
lookups. The first look-up retrieves the distance a4 to the closest obstacle in the sensing direction given the robot is
a location |. The second lookup is then used to get the probability P{s | a¢) . The efficient computation based on

table look-ups enabled our implementation to quickly incorporate even laser-range scans that consist of up to 180
vauesin the overdl belief Sate of the robot. In our experiments, the use of the look-up tablesled to a
speed-up-factor of 10, when compared to a compuitation of the distance to the closest obstacle at run-time.

Dieter Fox
Fri Nov 19 14:29:33 MET 1999
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Selective Update

The sdective update scheme is based on the observation that during globa localization, the certainty of the
position estimation permanently increases and the dengity quickly concentrates on the grid cells representing the
true position of the robot. The probability of the other grid cells decreases during locdization and the key idea of
our optimization is to exclude unlikely cdlls from being updated.

For this purpose, we introduceathreshole and update only those grid cells| with Bel{L+ =) >> & . To

dlow for such a sel ective update while sill maintaining adensty over the entire state space, we gpproximate
P(s¢ | I)for callswith Bel{L; =1) < & by thea priori probability of measuring s; . This quantity, which we

cdl ﬁ{st] , is determined by averaging over dl possible locations of the robot:
P(sy) = Pls: |1) P(D) (37)
I

Please note that ﬁ{st] IS independent of the current belief state of the robot and can be determined beforehand.

Theincrementa update rule for anew sensor measurement 8¢ is changed as follows (compare Equation (9)):

o P(se | 1) - Bel{Ly_1 =1) #Bel(Li 1 =I)>¢
Bel(Ly=1) «— ) (38)
oy Ps;) - Bel{ly 1 =1} otherwise

By multiplying ﬁ{ 8¢ ) into the normdization factor «x; , We can rewrite this equation as

&t,ﬂﬁs—*maﬂej{Lt_1=f] HBEI{Lt_1=I] > E
Bel{lLi=1) «— tae) {39)
&y - Bel{l; 1 =1) otherwise

where&t = *ﬁ{.‘it].

The key advantage of the selective update scheme given in Equation (39) isthat dl celswith
Bel{L;_1 =1) < & are updated with the same value &x; . In order to obtain smooth transitions between global

locdlization and position tracking and to focus the computation on the important regions of the state space L, for
example, in the case of ambiguities we use a partitioning of the state space. Suppose the state space L is
partitioned into n segments or parts T, - - - , Tn . A Segment 1r; is caled active at timet if it contains locations
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with probability above the threshold £ ; otherwise we cal such a part passive because the probabilities of dl cdls
are below the threshold. Obvioudy, we can keep track of the individua probabilities within a passive part 1r; by

accumulating the normalization factors & into avaue f3; . Whenever a segment 1r; becomes passive, i.e. the
probabilities of dl locations within 4z no longer exceed € , the normalizer 3;{i) isinitialized to 1 and subsequently
updated asfollows. Fi{t + 1) = & - Bi{t) . Assoon as apart becomes active again, we can restore the

probabilities of the individua grid cdls by multiplying the probabilities of each cdl with the accumulated normalizer
{3:(i) . By keeping track of the robot motion since a part became passive, it suffices to incorporate the

accumulated motion whenever the part becomes active again. In order to efficiently detect whether a passive part
has to be activated again, we store the maximal probability P™2* of dl cellsin the part a the time it becomes

passve. Whenever Bf72* . 3:(t) exceeds € , the part r; is activated again because it contains at least one

position with probability above the threshold. In our current implementation we partition the state space L such
that each part 1r; conssts of dl locations with equa orientation relative to the robot's start location.

To illustrate the effect of this selective update scheme, let us compare the updete of active and passive cells on
incoming sensor data. According to Equation (39), the difference liesin the ratio P{s¢ | I} /P{5t) . An example

of thisratio for our modd of proximity sensorsis depicted in Figure 11 (here, we replaced sz by aproximity
measurement d; ).

W T LI ] T T
Laser F—
Sonar h----- ]

li kelihood catio

easured distance & [cu]

Fig. i11. Ratio }—Et%l—;l for sonar and laser measurements for expected distance op of 530ct

In the beginning of the localization process, al cells are active and updated according to the retio depicted in
Figure 11. The measured and expected distances for cells that do not represent the true location of the robot
usudly deviate sgnificantly. Thus, the probabilities of these cells quickly fal below the threshold & .

Now the effect of the sdlective update scheme becomes obvious: Those parts of the state space that do not align
well with the orientation of the environment, quickly become passive as the robot localizes itsalf. Consequently,
only asmall fraction of the state space has to be updated as soon as the robot has correctly determined its
position. If, however, the position of the robot islogt, then the likelihood ratios for the distances measured at the
active |locations become smdler than one on average. Thus the probabilities of the active locations decrease while
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the normdizers f3; of the passive parts increase until these segments are activated again. Once the true position of
the robot is among the active locations, the robot is able to re-establish the correct belief.

In extensve experimenta tests we did not observe evidence that the selective update scheme has a noticably
negetive impact on the robot's behavior. In contragt, it turned out to be highly effective, sncein practice only a
smdll fraction (generdly less than 5%) of the state space has to be updated once the position of the robot has
been determined correctly, and the probabilities of the active locations generally sum up to at least 0.99. Thus, the
selective update scheme automaticaly adapts the computation time required to update the belief to the certainty of
the robot. Thisway, our system is able to efficiently track the position of arobot once its position has been
determined. Additiondly, Markov locdization keeps the ability to detect locdization failures and to rdocalize the
robot. The only disadvantage liesin the fixed representation of the grid which has the undesirable effect thet the
memory requirement in our current implementation stay's constant even if only aminor part of the Sate spaceis
updated. In this context we would like to mention that recently promising techniques have been presented to
overcome this disadvantage by applying dternative and dynamic representations of the state space [Burgard et al.
1998b, Fox et al. 1999].
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Experimental Results

Our metric Markov locdization technique, including both sensor filters, has been implemented and evauated
extengvely in various environments. In this section we present some of the experiments carried out with the mobile
robots Rhino and Minerva (see Figure 1). Rhino has aring of 24 ultrasound sensors each with an opening angle of
15 degrees. Both, Rhino and Minerva are equipped with two laser range-finders covering a 360 degrees field of
view.

Thefirst set of experiments demongtrates the robustness of Markov localization in two red-world scenarios. In
particular, it sysemdticaly evauates the effect of the filtering techniques on the locdlization performance in highly
dynamic environments. An additiond experiment illustrates a further advantage of the filtering technique, which
enables amohile robot to reidbly estimate its pogtion even if only an outline of an office environment isgiven asa

map.

In further experiments described in this section, we will illustrate the ability of our Markov locdlization technique to
globdly locaize amobile robot in approximate world models such as occupancy grid maps, even when using
inaccurate sensors such as ultrasound sensors. Findly, we present experiments andyzing the accuracy and
efficiency of grid-based Markov locdization with respect to the size of the grid cdlls.

The experiments reported here demondtrate that Markov localization is able to globally estimate the position of a
mobile robot, and to rdiably keep track of it even if only an approximate mode of a possbly dynamic
environment is given, if the robot has aweak odometry, and if noisy sensors such as ultrasound sensors are used.

Long-term Experiments in Dynamic Environments

o Datasets

o Tracking the Robot's Position

o Recovery from Extreme L ocdization Failures
Locdlization in Incomplete Maps
Locdization in Occupancy Grid Maps Usng Sonar
Precison and Performance
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L ong-term Experimentsin Dynamic Environments

For our mobile robots Rhino and Minerva, which operated in the Deutsches Museum Bonn and the
US-Smithsonian's National Museum of American History, the robustness and reliability of our Markov
localization system was of utmost importance. Accurate position estimation was a crucia component, as many of
the obstacles were “invisible" to the robots sensors (such as glass cages, metal bars, staircases, and the dike).
Given the estimate of the robot's position [Fox et al. 1998b] integrated map information into the collison
avoidance system in order to prevent the robot from colliding with obstacles that could not be detected.

Figure 12(a) shows atypicd trgectory of the robot Rhino, recorded in the museum in Bonn, dong with the map
used for locdization. The reader may notice that only the obstacles shown in black were actualy used for
localization; the others were ether invisible or could not be detected reliably. Rhino used the entropy filter to
identify sensor readings that were corrupted by the presence of people. Rhino's localization module was able to
(1) globdly locdize the robot in the morning when the robot was switched on and (2) to reliably and accurately
keep track of the robot's position. In the entire six-day deployment period, in which Rhino traveled over 18km,
our gpproach led only to asingle software-rdated collison, which involved an “invisble' obstacle and which was
caused by alocaization error that was dightly larger than a 30cm safety margin.

Figure 12(b) shows a 2km long trgectory of the robot Minervain the National Museum of American Higtory.
Minerva used the distance filter to identify readings reflected by unmodeled objects. Thisfilter was developed
after Rhino's deployment in the museum in Bonn, based on an analysis of the localization failure reported above
and in an attempt to prevent smilar effects in future ingdlations. Based on the distance filter, Minervawas able to
operate reliably over aperiod of 13 days. During that time Minervatraveled atota of 44km with amaximum
Speed of 1.63m/sec.

Unfortunately, the evidence from the museum projects is anecdota . Based on sensor data collected during Rhino's
deployment in the museum in Bonn, we dso investigated the effect of our filter techniques more systematicdly, and
under even more extreme conditions. In particular, we were interested in the locdization results

1. when the environment is densaly populated (more than 50% of the sensor reading are corrupted), and

2. when the robot suffers extreme dead-reckoning errors (e.g. induced by a person carrying the robot
somewhere ese). Since such cases are rare, we manudly inflicted such errorsinto the origind datato
andyze thar effect.

e Datasets
¢ Tracking the Robot's Position
¢ Recovery from Extreme Locdization Failures
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Datasets

Doration: 4.8 honrs
Distance: 154 meters f(“)

(b}

Fig. 18. Typical trajectories of {a} Rhino in the Deutsches Musenm Bomn and (b} Miner
in the National Musemm of American History.

During the experiments, we used two different datasets. These sets differ mainly in the amount of sensor noise.

1. Thefirg dataset was collected during 2.0 hours of robot mation, in which the robot traveled approximeately
1,000 meters. This dataset was collected when the museum was closed, and the robot guided only remote
I nternet-visitors through the museum. The robot's top speed was 50cmysec. Thus, this dataset was ided”
in that the environment was only sparsaly populated, and the robot moved dowly.

2. The second dataset was recorded during a period of 4.8 hours, during which Rhino traveled approximately
1,540 meters. The path of this dataset is shown in Figure 12(a). When collecting this data, the robot
operated during pesk traffic hours. It was frequently faced with situations such asthe oneillustrated in
Figure 7. The robot's top speed was 80cm/sec.

Both datasets cons st of logs of odometry and laser range-finder scans, collected while the robot moved through
the museum. Using the time sampsin the logs, dl tests have been conducted in red-time Smulation on a
SUN-Ultra-Sparc 1 (177-MHz). Thefirst dataset contained more than 32,000, and the second dataset more
than 73,000 laser scans. To evauate the different locdization methods, we generated two reference paths, by
averaging over the estimates of nine independent runs for each filter on the datasets (with small random noise
added to the input data). We verified the correctness of both reference paths by visud ingpection; hence, they can
be taken as " "ground truth."
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Fig. 13. Perceniage of notsy sensor measuremenis averaged over time infervals of five
minuies.

Figure 13 shows the estimated percentage of corrupted sensor readings over time for both datasets. The dashed
line corresponds to the first data set, while the solid lineillustrates the corruption of the second (longer) data .
In the second dataset, more than half of al measurements were corrupted for extended durations of time, as
estimated by andyzing each laser reading post-facto as to whether it was significantly shorter than the distance to
the next obstacle.
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Tracking the Robot's Position

In our firgt series of experiments, we were interested in comparing the ability of dl three approaches--plain
Markov localization without filtering, locdization with the entropy filter, and localization with the distance filter--to
keep track of the robot's position under normal working conditions. All three gpproaches tracked the robot's
pogition in the empty museum well (firgt dataset), exhibiting only negligible errorsin localization. The results
obtained for the second, more challenging dataset, however, were quite different. In anutshell, both filter-based
gpproaches tracked the robot's position accurately, whereas conventionad Markov localization failed frequently.
Thus, had we used the latter in the museum exhibit, it would inevitably have led to alarge number of collisonsand
other failures.

Filter Noune Entropy | Distance

failnres, [%] | 1.6 L4 | 0.9 EG4| 00 EOO

fallures, [%] | 26.8 £24| 1.1 EXx3| 12 EQ7
Table 2: Ability to track the robot's position.

Table 2 summarizes the results obtained for the different approachesin this tracking experiment. The first row of
Table 2 provides the percentage of failures for the different filters on the first dataset (error values represent 95%
confidence intervals). Position estimates were considered a ™~ failure” if the estimated location of the robot deviated
from the reference path by more than 45cm for at least 20 seconds. The percentage is measured in time during
which the position was logt, relaive to the totd time of the dataset.

As can be seen here, dl three approaches work well, and the distance filter provides the best performance. The
second row provides the failures on the second dataset. While plain Markov locdlization failed in 26.8% of the
overdl time, both filter techniques show dmost equd results with afailure of less than 2%. Thus, the two filter
techniques are robust in highly dynamic environments, plain Markov locdization is prone to fail.
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Fig. 14. Estimated and real paths of the robot along with endpoinis of incorporaied sens
measurements using {a) no filter, (b) entropy filter, and {c) distance filier.

To shed light onto the question as to why Markov localization performs so poorly when compared to the filter
agorithms, we andyzed the sensor readings that each method used during the locdization task. Figure 14 shows,
for aasmall fraction of the data, the measurements incorporated into the robot's belief by the three different
gpproaches. Shown there are the end points of the sensor measurements used for localization relative to the
positions on the reference path. Obvioudy, both filter approaches manage to focus their attention on the
“correct” sensor measurements, whereas plain Markov localization incorporates massive amounts of corrupted
(mideading) measurements. As dso illustrated by Figure 14, both filter-based approaches produce more accurate
results with a higher certainty in the correct position.
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Recovery from Extreme L ocalization Failures

We conjecture that a key advantage of the origind Markov locdlization technique liesin its ability to recover from
extreme locdization falures. Re-locdlization after afalure is often more difficult than globa locdization from
scratch, Snce the robot starts with a belief that is centered at a completely wrong position. Since the filtering
techniques use the current belief to sdlect the readings that are incorporated, it is not clear that they till maintain
the ability to recover from globd localization failures.

To andyze the behavior of thefilters under such extreme conditions, we carried out a series of experiments during
which we manualy introduced such falures into the data to test the robustness of these methods in the extreme.
More specificdly, we “tele-ported” the robot a random points in time to other locations. Technicadly, thiswas
done by changing the robot's orientation by 180 4-9{) degree and shifting it by 0 +=1{){) cm, without Ietting the

robot know. These perturbations were introduced randomly, with a probability of 0.005 per meter of robot
motion. Obvioudy, such incidents make the robot lose track of its position. Each method was tested on 20
differently corrupted versons of both datasets. This resulted in atotal of more than 50 postion falluresin each
dataset. For each of these failures we measured the time until the methods re-localized the robot correctly.

Re-L ocdlization was assumed to have succeeded if the distance between the estimated position and the reference
path was smdler than 45cm for more than 10 seconds.

Filter None Exntropy Distance ‘
Dataset 1 ‘
trec [sec] 237 27 | 1778 E548| 188 X 30
failnres [%6] | 10.2 X 1.8 | 456 71 | 68 X116
Dataset I1
trec [fec] | 269 =60 | 1310 To04| 235 E46
failures [%] | 39.5 ZHl1| 728 73 | 78 X1

Table 3: Summary of recovery experiments.

Table 3 provides re-locdization results for the various methods, based on the two different datasets. Here tpee

represents the average time in seconds needed to recover from alocalization error. The results are remarkably
different from the results obtained under norma operationa conditions. Both conventiona Markov locdization and
the technique usng distance filters are relatively efficient in recovering from extreme pogtioning errorsin the first
dataset, whereas the entropy filter-based approach is an order of magnitude less efficient (see first row in

Table 3). The unsatisfactory performance of the entropy filter in this experiment is due to the fact thet it disregards
al sensor measurements that do not confirm the belief of the robot. While this procedure is reasonable when the
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belief is correct, it prevents the robot from detecting locdization failures. The percentage of time when the position
of the robot waslost in the entire run is given in the second row of the table. Please note that this percentage
includes both, failures due to manudly introduced perturbations and tracking failures. Again, the distance filter is
dightly better than the approach withouit filter, while the entropy filter performs poorly. The average timespeg to

recover from failures on the second dataset are smilar to those in the first dataset. The bottom row in Table 3
provides the percentage of failures for this more difficult dataset. Here the distance filter-based approach performs
sgnificantly better than both other gpproaches, snceit is able to quickly recover from locdization failures and to
reliably track the robot's position.

The resultsillustrate that despite the fact that sensor readings are processed selectively, the distance filter-based
technique recovers as efficiently from extreme locdization errors as the conventiond Markov approach.
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L ocalization in Incomplete M aps

A further advantage of the filtering techniques is that Markov localization does not require a detailed map of the
environment. Instead, it suffices to provide only an outline which merely includes the aspects of the world which
are dtatic.

(a) (b} ) (e}

Fig. 15. (a) Ouiline of the office enmvironment and (b,c) examples of filtered {grey) a
incorporvated (black) sensor readings using the distance filter.

Figure 15(a) shows aground plan of our department building, which contains only the wals of the university
building. The complete map, including al movable objects such as tables and chairs, is shown in Figure 19. The
two Figures 15(b) and 15(c) illugtrate how the distance filter typically behaves when tracking the robot's position
in such a sparse map of the environment. Filtered readings are shown in grey, and the incorporated sensor
readings are shown in black. Obvioudy, the filter focuses on the known aspects of the map and ignores dl objects
(such as desks, chairs, doors and tables) which are not contained in the outline. [Fox1998] describes more
systemdtic experiments supporting our belief that Markov locaization in combination with the distance filter isaole
to accurately localize mobile robots even when relying only on an outline of the environment.
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L ocalization in Occupancy Grid Maps Using Sonar

The next experiment described hereis carried out based on data collected with the mobile robot Rhino during the

1994 AAAI mobile robot competition [Simmons1995]. Figure 16(a) shows an occupancy grid map [Moravec &

Elfes1985, Moravec1988] of the environment, oonstructed with the techniques described in [Thrunet al. 1998a,
Thrun1998b]. The size of themap is3l x 29m? , and the grid resolution is 15¢cm.
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Fig. 16. {a} Occupancy grid map of the 1994 AAATI mabile robot competition arena
Trajectory of the roboil and ulfrasound measurements used o globally localize the roboi
this map.

Figure 16(b) shows atrgectory of the robot along with measurements of the 24 ultrasound sensors obtained as
the robot moved through the competition arena. Here we use this sensor information to globaly localize the robot
from scratch. The time required to process this data on a 400MHz Pentium 11 is 80 seconds, using a position
probability grid with an angular resolution of 3 degrees. Please note that thisis exactly the time needed by the
robot to traverse this trgectory; thus, our approach works in redl-time. Figure 16(b) also marks positions of the
robot after perceiving 5 (A), 18 (B), and 24 (C) sensor sweeps. The beief states during globd locdization at
these three pointsin time are illugtrated in Figure 17.

lof3 12/10/00 12:19 PM



Localization in Occupancy Grid Maps Using Sonar

20f 3

Robot posttion [4)
P A =

\\H‘ Erobot positien (B)

'*'“——h_ Rohot pegitien [(C)

(b} (¢}

Fig. 17. Density plots after incorporating 5, 18, and 8) sonar scans {darker positions ¢
more bkely).

The figures show the belief of the robot projected onto the {z, 4} -plane by plotting for each {2, %} -position the

maximum probability over dl possble orientations. More likely positions are darker and for illustration purposes,
Figures 17(a) and 17(b) use alogarithmic scdein intendty. Figure 17(a) showsthe belief Sate after integrating 5
sensor sweeps (see aso position A in Figure 16(b)). At this point in time, al the robot knowsisthat it isin one of
the corridors of the environment. After integrating 18 sweeps of the ultrasound sensors, the robot is almost certain
that it is a the end of a corridor (compare position B in Figures 16(b) and 17(b)). A short time later, after turning
left and integrating Sx more sweeps of the ultrasound ring, the robot has determined its podition uniqudly. Thisis
represented by the unique pesk containing 99% of the whole probability massin Figure 17(c).

=33

(2) (b)

Fig. 18. Qdometry information and corrected path of the robot.

Figure 18 illugtrates the ability of Markov localization to correct accumulated dead-reckoning errors by matching
ultrasound data with occupancy grid maps. Figure 18(a) shows atypical 240m long trgectory, measured by
Rhino's whed-encoders in the 1994 AAAI mobile robot competition arena. Obvioudy, the rotationd error of the
odometry quickly increases. Already after traveling 40m, the accumulated error in the orientation (raw odometry)
is about 50 degrees. Figure 18(b) shows the path of the robot estimated by Markov localization, which is
sgnificantly more correct.
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Precision and Performance

We will now describe experiments amed a characterizing the precision of position estimates. Our experiments
aso characterize the time needed for globd locdization in relation to the size of the grid cdlls. Figure 19 shows a
path of the robot Rhino in the Computer Science Department's building a the Univergty of Bonn. This path
includes 22 reference pogitions, where the true pogition of the robot was determined using the scan matching
technique presented in [Gutmann & Schlegel1996, Lu & Milios1994]. All data recorded during this run were split
into four digoint traces of the sensor data. Each of these different traces contained the full length of the path, but
only every fourth sensor reading which was sufficient to test the locdization performance.

Fig. 18. Path of the robot and reference posifions

Figure 20(a) shows the locdization error averaged over the four runs and al reference positions. The error was
determined for different sizes of grid cdls, usng alaser range-finder or ultrasound sensors. These results
demondtrate (1) that the average locdization error for both sensorsis generdly below the cdll sze and (2) that
laser range-finders provide a significantly higher accuracy than ultrasound sensors. When using the laser
range-finder at a spatia resolution of 4cm, the average positioning error can even be reduced to 3.5cm.
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Fig. 80. ({a) Average localization error and (b} average CPU-time needed for global |
calization time both for ultrasound sensors and laser range-finder depending on the ¢
resolution.

Figure 20(b) shows the average CPU-time needed to globaly localize the robot as afunction of the sze of the grid
cdls. The vaues represent the computation time needed on a266MHz Pentium |1 for globd locdization on the
path between the starting point and position 1. In this experiment, we used a fixed angular resolution of four
degrees. In the case of 64cm cdll Sze, the average locdization time is gpproximately 2.2 seconds. Of course, the
effective time needed for globd locdization in practice highly depends on the structure of the environment and the
amount of information gathered on the path of the robot. For example, due to the symmetry of the corridor of this
office environment, the robot is not able to locdize itself unlessit enters aroom. The reader may notice that
recently, we developed a decison-theoretic method for actively guiding the robot to placeswhich dlow it to
resolve ambiguities during globa locdization [Fox et al. 1998a, Fox1998]. Based on this method, the localization
process becomes more efficient, especidly in office environments with alot of indistinguishable places as, for
example, long corridors.

The experiments described above demondirate that our metric variant of Markov locdlization is able to efficiently
estimate the pogition of a mobile robot in dynamic environments. It furthermore can dea with approximate modds
of the environment such as occupancy grid maps or rough outline maps. Findly, it is able to efficiently and
accurately estimate the position of amobile robot even if ultrasound sensors are used.
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Related Work

Mot of the techniques for mobile robot locdization in the literature belong to the class of loca approaches or
tracking techniques, which are designed to compensate odometric error occurring during navigation. They assume
that the initid pogtion of the robot is known (see [Borengein et al. 1996] for a comprehensive overview). For
example, [WeilR et al. 1994] store angle histograms congtructed out of laser range-finder scans teken at different
locations in the environment. The podition and orientation of the robot are calculated by maximizing the correlation
between the stored histograms and laser range-scans obtained while the robot moves through the environment.
The estimated position, together with the odometry information, is then used to predict the position of the robot
and to sdlect the histogram used for the next match. [Y amauchi 1996, Schultz et al. 1999] apply asmilar
technique, but they use hill-dimbing to match locad maps built from ultrasound sensors into a globa occupancy grid
map. Asin the approach by [Weil3 et al. 1994], the location of the robot is represented by the position yielding
the best match. These techniques, in contrast to Markov locdization, do not represent the uncertainty of the robot
inits current belief and therefore cannot ded appropriately with globaly ambiguous Stuations.

A popular probabiligtic framework for pogtion tracking are Kalman filters [Maybeck1990, Smithet al. 1990], a
sgnd processing technique introduced by Kadman [Kalman1960]. As mentioned in Section 2.4, Kaman
filter-based methods represent their belief of the robot's position by a unimoda Gaussian ditribution over the
three-dimensiond state-space of the robot. The mode of this distribution yields the current position of the robat,
and the variance represents the robot's uncertainty. Whenever the robot moves, the Gaussan is shifted according
to the distance measured by the robot's odometry. Simultaneoudly, the variance of the Gaussian isincreased
according to the model of the robot's odometry. New sensory input is incorporated into the position estimation by
meatching the percepts with the world modd.

Exigting gpplications of Kaman filtering to position estimation for mobile robots are smilar in how they modd the
motion of the robot. They differ mostly in how they update the Gaussian according to new sensory input. [Leonard
& Durrant-Whyte1991] match beacons extracted from sonar scans with beacons predicted from a geometric map
of the environment. These beacons consst of planes, cylinders, and corners. To update the current estimate of the
robot's position, [Cox1991] matches distances measured by infrared sensors with aline segment description of
the environment. [Schidle & Crowley1994] compare different Strategies to track the robot's position based on
occupancy grid maps and ultrasonic sensors. They show that matching loca occupancy grid maps with a globa
grid map resultsin asgmilar locdization performance asif the matching is based on features that are extracted from
both maps. [Shaffer et al. 1992] compare the robustness of two different matching techniques with different
sources of noise. They suggest a combination of map-matching and feature-based techniquesin order to inherit the
benefits of both. [Gutmann & Schlegel 1996, Lu & Milios1994] use a scan-matching technique to precisaly
estimate the position of the robot based on laser range-finder scans and learned models of the environment.

[Arras & Vestli1998] use asmilar technique to compute the position of the robot with a very high accuracy. All
these variants, however, rest on the assumption that the position of the robot can be represented by asingle
Gaussan digribution. The advantage of Kalman filter-based techniques liesin their efficiency and in the high
accuracy that can be obtained. The redtriction to a unimoda Gaussian digtribution, however, is prone to fall if the
position of arobot has to be estimated from scratch, i.e. without knowledge about the starting position of the
robot. Furthermore, these technique are typicaly unable to recover from locdization failures. Recently, [Jensfdt &
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Kristensen1999] introduced an approach based on multiple hypothesis tracking, which alows to modedl
multi-moda probability distributions as they occur during globa locdization.

Markov locdization, which has been employed successfully in severd variants [Nourbakhsh et al. 1995, Smmons
& Koenig1995, Kadlbling et al. 1996, Burgard et al. 1996, Hertzberg & Kirchner1996, Koenig &
Simmons1998, Oore et al. 1997, Thrun1998a], overcomes the disadvantage of Kaman filter based techniques.
The different variants of this technique can be roughly digtinguished by the type of discretization used for the
representation of the state space. [Nourbakhsh et al. 1995, Simmons & Koenig1995, Kadbling et al. 1996] use
Markov localization for landmark-based navigation, and the state space is organized according to the topologicdl
sructure of the environment. Here nodes of the topologica graph correspond to digtinctive places in halways
such as openings or junctions and the connections between these places. Possible observations of the robot are,
for example, hadlway intersections. The advantage of these gpproaches is that they can represent ambiguous
Stuaions and thus are in principle able to globally locaize arobot. Furthermore, the coarse discretization of the
environment results in relatively small Sate spaces that can be maintained efficiently. The topologica
representations have the disadvantage that they provide only coarse information about the robot's position and that
they rely on the definition of abstract features that can be extracted from the sensor information. The approaches
typically make strong assumptions about the nature of the environments. [Nourbakhsh et al. 1995, Smmons &
Koenig1995, Kadbling et al. 1996], for example, only consider four possible headings for the robot position
assuming that the corridors in the environment are orthogond to each other.

Our method uses instead a fine-grained, grid-based discretization of the state space. The advantage of this
gpproach compared to the Kaman filter based techniques comes from the ability to represent more complex
probability digtributions. In a recent experimental comparison to the technique by [Gutmann & Schlegel1996, Lu
& Milios1994], we found that Kalman filter based tracking techniques provide highly accurate postion estimates
but are less robust, Snce they lack the ability to globaly localize the robot and to recover from locdization

errors [Gutmannet al. 1998]. In contrast to the topologica implementations of Markov localization, our gpproach
provides accurate position estimates and can be gpplied even in highly unstructured environments [Burgard et al.
1998a, Thrunet al. 1999]. Using the selective update scheme, our techniqueis able to efficiently keep track of the
robot's position once it has been determined. It also alows the robot to recover from locdization failures.

Findly, the vast mgority of exigting gpproachesto locdization differ from oursin that they address locdlization in
datic environments. Therefore, these methods are proneto fail in highly dynamic environments in which, for
example, large crowds of people surround the robot [Fox et al. 1998c]. However, dynamic approaches have
great practica importance, and many envisioned gpplication domains of service robots involve people and

popul ated environments.
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Discussion

In this paper we presented ametric variant of Markov localization, as arobust technique for estimating the
position of amohile robot in dynamic environments. The key idea of Markov locdization isto maintain a
probability dengity over the whole state space of the robot relative to its environment. This density is updated
whenever new sensory input is received and whenever the robot moves. Metric Markov localization represents
the state space using fine-grained, metric grids. Our gpproach employs efficient, sdective update agorithmsto
update the robot's belief in real-time. It usesfiltering to cope with dynamic environments, making our approach
gpplicable to awide range of target applications.

In contrast to previous gpproaches to Markov locdization, our method uses afine-grained discretization of the
sate space. Thisalows us to compute accurate position estimates and to incorporate raw sensory input into the
belief. Asaresult, our system can exploit arbitrary features of the environment. Additionally, our approach can be
goplied in arbitrary unstructured environments and does not rely on an orthogonality assumption or smilar
assumptions of the existence of certain landmarks, as most other gpproaches to Markov localization do.

The mgority of the locdization approaches developed so far assume that the world is satic and thet the state of
the robot is the only changing aspect of the world. To be able to locaize amobile robot even in dynamic and
densdy populated environments, we developed a technique for filtering sensor measurements which are corrupted
due to the presence of people or other objects not contained in the robot's model of the environment.

To efficiently update the huge state spaces resulting from the grid-based discretization, we developed two different
techniques. Firdt, we use look-up operations to efficiently compute the quantities necessary to update the belief of
the robot given new sensory input. Second, we gpply the sdlective update scheme which focuses the computation
on the rlevant parts of the state space. As aresult, even large belief states can be updated in real-time.

Our technique has been implemented and evaluated in severd red-world experiments at different Sites. Recently
we deployed the mobile robots Rhino in the Deutsches Museum Bonn, Germany, and Minervain the
Smithsonian's National Museum of American History, Washington, DC, as interactive museum tour-guides.
During these deployments, our Markov localization technique reliably estimated the position of the robots over
long periods of time, despite the fact that both robots were permanently surrounded by visitors which produced
large amounts of false readings for the proximity sensors of the robots. The accuracy of grid-based Markov
localization turned out to be crucid to avoid even such obstacles that could not be sensed by the robot's sensors.
This has been accomplished by integrating map information into the collison avoidance system [Fox et al. 1998b].

Despite these encouraging results, severd aspects warrant future research. A key disadvantage of our current
implementation of Markov locdization liesin the fixed discretization of the state space, which isaways kept in
main memory. To scale up to truly large environments, it seemsinevitable that one needs variable-resolution
representations of the state space, such as as the one suggested in [Burgard et al. 1997, Burgard et al. 1998b,
Gutmennet al. 1998]. Alternatively, one could use Monte-Carlo based representations of the state space as
described in [Fox et al. 1999]. Here, the robot's belief is represented by samples that concentrate on the most
likely parts of the state space.
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