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Abstract

This paper presents an algorithms for learn-
ing occupancy grid maps with mobile robots
equipped with range finders, such as sonar sen-
sors. Our approach employs the EM algorithm
to solve the concurrent mapping and localization
problem. To accommodate the spatial nature of
range data, it relies on a two-layered representa-
tion of maps, where global maps are composed
from a collection of small, local maps. To avoid
local minima during likelihood maximization, a
softmax version of the M step is proposed that is
gradually annealed to the exact maximum. Ex-
perimental results demonstrate that our approach
is well suited for constructing large maps of typi-
cal indoor environments using sensors as inaccu-
rate as sonars.

1 Introduction

Learning maps with mobile robots has frequently been rec-
ognized as one of the most fundamental problems in mo-
bile robotics [CW90, KBM98]. This is because the map
learning problem, often referred to as concurrent mapping
and localization, is a chicken-and-egg problem. If the pose
(we use the term pose to refer to a robot’s x-y location
and its heading direction �) of the robot was always known
during mapping—which is actually assumed by the major-
ity of work in the field—building maps is relatively easy,
and there is a large number of approaches that work well.
On the other hand, if a map was available, determining
the robot’s poses at any time is relatively straightforward,
as methods exist that even work reliably if the environ-
ment is non-stationary (e.g., densely populated by people)
[BAC+98, FBTC98]. In map learning, however, neither the
robot’s poses nor the map is known initially—so both must

be estimated from data. Unfortunately, errors in odometry
(wheel encoders) amplify over time. For example, small
rotational error can have a huge effect on the robot’s x-y-
location later in time. This makes it difficult to estimate
poses while learning maps.

In the past, the problem of map learning has been tack-
led by a great number of researchers (see e.g., [CL85,
Cho96, CKK95, Elf87, Elf89, KB91, Mat90, Mor88,
Ren93, SK97]). Some recent methods, such as the met-
ric approaches described in [GN97, LM97, TGF+98], have
successfully been applied for learning maps up to 80 by
25 m2 in size. However, they are closely married to laser
range finders, a highly accurate and quite expensive sen-
sor technology. Other methods, such as the topological ap-
proaches described in [Sha98, TFB98], rely on landmarks
to build maps. They work with less accurate sensors (such
as sonars), but they are forced to throw away almost all sen-
sor data, except for extremely scarce landmark data. For
example, they cannot exploit the width of a corridor to dis-
ambiguate different corridors. Some of the largest topolog-
ical maps (80 by 25 m2) have been learned using the algo-
rithm in [TFB98]. However, it has only been demonstrated
to work with pre-defined landmarks. It is remarkable, how-
ever, that most successful approaches to date use statistical
techniques for map learning.

The approach proposed here builds directly on our previ-
ous work [TFB98, TGF+98]. As there, the map learn-
ing problem is phrased as a maximum likelihood estima-
tion problem, and EM is applied for finding a local max-
imum in likelihood space. The algorithm proposed here
differs in several aspects, crucial for its scalability. First,
small, local maps are generated from short sequences of
sensor data, exploiting the fact that in the short term odom-
etry errors are typically small and can be neglected. These
local maps replace the landmarks in [TFB98], thereby
overcoming the reliance on manually labeled landmark lo-
cations. More importantly, our approach relaxes an in-



dependence assumption made in [TFB98] by a weaker
one. Our previous approach represented maps in the E-
step by a single, global grid; and each grid cell was es-
timated independently of other grid cells. While this is
unproblematic if the robot approximately knows its posi-
tion (in which case the mapping step is identical to occu-
pancy grids [Elf87, Elf89, Mor88, Thr98]), this indepen-
dence assumption leads to highly ambiguous maps when
the robot is uncertain, which makes it difficult to local-
ize the robot with sonar sensors. Here we replace these
flat maps using a two-layered representation. Our algo-
rithm replaces the single map by a collection of local
maps, annotated with their pose distributions. This ap-
proach maintains dependencies between different grid cells
within each local map. It enables us to use conventional
metric Markov localization [BAC+98, BFHS96, BDFC98]
(see also [KCK96, KS96, NPB95, SK95]) in the E-step.
As a result, our new algorithm inherits all advantages of
the EM approach and simultaneously is able to operate on
raw proximity information without relying on pre-defined
landmarks. Our approach makes EM applicable to learn-
ing maps of typical indoor environments of mobile robots
equipped with sonar sensors, or other low-resolution prox-
imity sensors.

Empirical results, described in this paper, illustrate that
our approach succeeds in learning large-scale maps purely
based on sonar measurements. To demonstrate its robust-
ness, experiments with amplified odometric noise illustrate
that our approach is applicable even under significant odo-
metric errors.

2 Statistical Foundations

2.1 Models

We formulate the problem of concurrent mapping and lo-
calization as a statistical maximum likelihood estimation
problem [TFB98]. To generate a map, we assume that a
robot is given a stream of sensor data, denoted

d = fo(1); u(1); o(2); u(2); : : : ; o(T )
; u

(T )g; (1)

where o(t) stands for an observation that the robot made at
time t (e.g., using its sonar sensors), and u

(t) for an odom-
etry reading that characterizes the action executed between
time t to time t+1. T denotes the total number of time steps
in the data. Without loss of generality, we assume that the
data is an alternated sequence of actions and observations.

In statistical terms, the problem of mapping can be posed
as the problem of finding the most likely map given the
data. A map, denoted m = fmx;ygx;y, is an assignment
of “properties” mx;y to each x-y-location in the world.

In topological approaches to mapping, the properties-of-
interest are usually locations of landmarks [CKK95] or, al-
ternatively, locations of significant places [KB91, Cho96].
Metric approaches, on the other hand, usually use the lo-
cation of obstacles as properties-of-interest [CL85, Mor88,
LM97]. Here we follow the metric approach.

(a) (b)

Figure 1: Motion model. The grayly shaded area
shows the pose distribution (projected into 2D) after
the motion command indicated by the solid line.
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Figure 2: Perception model for ultrasound sensors. Prob-
ability of measuring a certain distance given the expected
distance according to the model of the environment.

Our approach assumes that the robot is given three basic,
probabilistic models, one that describes robot motion, one
that models robot perception, and an inverse model of robot
perception.

� The motion model, denoted P (�
0 j u; �), describes

the probability that the robot’s pose is � 0, if it previ-
ously executed action u at pose �. Here � is used to
refer to a pose (the x-y-location of a robot together
with its heading direction �). Our motion model as-
sumes independent bounded and normally distributed
errors in the length of the distance traveled as well
as in the rotation carried out. Figure 1 illustrates the



Figure 3: Inverse perceptual models: The top row shows
raw sensor data, the bottom row shows a likelihood field
(local map): the brighter a pixel, the higher its likelihood
for being unoccupied. The inverse perceptual model has
been learned from hand-labeled data, using artificial neural
networks.

motion model, by showing the probability distribution
for �0 upon executing different motion actions. The
images show projections of the tree-dimensional state
space of the robot onto the x-y-plane.

� The perception model, denoted as P (o j m; �), mod-
els the likelihood of observing o in situations where
both the world m and the robot’s pose � are known.
For sonar sensors, as used throughout our experi-
ments, this model is shown in Figure 2. Shown there
is the probability of a sonar reading (vertical axis) as a
function of the correct distance (determined using ray
tracing) and the measured distance. The graph in Fig-
ure 2 has been generated from several millions of raw
sonar readings (see [FBT98, Fox98]). It is the result of
fitting a model consisting of a mixture of of a linear-
Gaussian (centered around the correct distance), a Ge-
ometric distribution (modeling overly short readings)
and a Dirac distribution (modeling max-range read-
ings) to this data.

� The inverse perception model is denoted as P (m j
o; �). While the inverse perception model can be de-
rived from the perception model using Bayes rule, it
is computationally convenient to have an explicit in-
verse model for mapping. Here we use a model previ-
ously described in [Thr98], which applies neural net-
work learning to compute the likelihood of occupancy
from sonar scans. Figure 3 shows examples.

These three quantities, i.e., the given set d of data, the
motion model P (�

0 j u; �), and the perception model

P (o j m; �) form the statistical basis of our approach.

2.2 The Map Likelihood Function

Following [TFB98], the problem of mapping is the problem
of finding the most likely map m

� given the data

m
�

= argmax
m

P (m j d): (2)

As shown there, the probability P (m j d) can be rewritten
as

P (m j d) = �

Z
: : :

Z TY
t=1

P (o
(t) j m; �

(t)
)

T�1Y
t=1

P (�
(t+1) j u(t); �(t)) d�(1); : : :d�(T )

: (3)

We are only interested in maximizing P (m j d), hence the
normalizer � can safely be dropped. The remaining ex-
pression is a function of the data d, the perceptual model
P (o j m; �), and the motion model P (�

0 j u; �). Maximiz-
ing this expression is equivalent to finding the most likely
map.

2.3 EM for Learning Maps

Computing the global maximum of (3) is computationally
challenging. The currently best-known solutions perform
hill climbing in likelihood space. Following [TFB98], our
approach uses the EM algorithm [DLR77, MK97] for max-
imizing likelihood. EM is a hill-climbing routine in likeli-
hood space, which alternates two steps, an expectation step
(E-step) and a maximizationstep (M-step). In the context of
robot mapping, these steps correspond roughly to a local-
ization step and a mapping step (see also [KS96, SK97]):

1. In the E-step, the robot computes probabilities P (� j
m; d) for the robot’s poses � at the various points in
times, based on the currently best available map m (in
the first iteration, there will be no map).

2. In the M-step, the most likely map is determined by
maximizing argmax

m

P (m j �; d), using the location

estimates computed in the E-step.

The E-step corresponds to a localization step with a fixed
map, whereas the M-step implements a mapping step
which operates under the assumption that the robot’s lo-
cations (or, more precisely, probabilistic estimates thereof)
are known. Iterative application of both rules leads to a
refinement of both, the location estimates and the map.



Figure 4: Local map (left) and misleading global map
(right), generated by convolving the local map with a bi-
modal pose distribution. Such maps occur during optimiza-
tion, when the robot has not yet determined its position.
They make Markov localization fail. Our approach, hence,
maintains the local maps during EM, and builds the global
map only at the end.

3 Two-layered Map Representations

In our previous work, maps were represented by flat grids.
Each grid cell represented the posterior probability of it
containing a landmark. Unfortunately, this is problematic
when applying EM to maps constructed by proximity sen-
sors. Figure 4 illustrates why: Suppose the robot’s sensor
readings suggest a map like the one shown on the left side
of Figure 4, but it has two distinct hypotheses as to where
it might be. Integrating a single global map (which in-
volves convolution with the robot’s uncertainty) may yield
the map shown on the right side of Figure 4. While for
each individual map pixel, this map correctly estimates the
likelihood of occupancy, the map as a whole is not usable:
In some areas, it shows 3 walls, instead of 2; in others,
the corridor appears to be twice as wide. Such maps are
plainly not usable for localization with proximity sensors,
as any specific sensor scan will not fit well anywhere into
such maps. The situation is even worse when the robot is
more globally uncertain, in which case the resulting maps
often do not contain any visible structure.

This effect, which in fact is a consequence of the inde-
pendence assumption in occupancy grids [Mor88], can be
avoided by adopting a richer [JM98], layered representa-
tion. Our approach represents the world by a collection of
small, local maps annotated by their location. Formally, a
map m is a conjunction of N small maps, denoted m[i],
annotated by a coordinate transform, denoted �[i]:

m = fhm[i]; �[i]igi=1;:::;N (4)

We will refer to �[i] as the pose of the i-th local map (poses
of maps are essentially the same as robot poses). For
brevity, let us write

M[i] := hm[i]; �[i]i (5)

and hence

m = fM[i]gi=1;:::;N (6)

By representing maps in two layers, we eliminate the prob-
lems arising from using a single, monolithic map. This is
because local maps are not convolved with their pose dis-
tribution; instead, the pose distribution is represented ex-
plicitly.

Our layered map representation requires a new definition
of the perceptual model P (o j m; �). Our approach makes
the following conditional independence assumption:

P (M[i]M[j] j o; �) = P (M[i] j o; �) P (M[j] j o; �) (7)

for all i 6= j. Clearly, this assumption is only approxi-
mately correct, but it is necessary to keep the computation
manageable and in practice seems to work well (it only in-
troduces errors in regions where local maps overlap, which
results in overly confident estimates). The independence
assumption allows us to extend our perceptual model to
maps represented in layers:

P (o j �;m)

= P (o j �;
NO
i=1

M[i])

=
P (
NN

i=1M[i] j o; �)P (o j �)

P (
NN

i=1M[i] j �)

=

QN

i=1 P (M[i] j o; �)P (o j �)QN

i=1 P (M[i] j �)

=
1

P (o j �)(N�1)

NY
i=1

P (M[i] j o; �)P (o j �)

P (M[i] j �)

=
1

P (o j �)(N�1)

NY
i=1

P (o j M[i]; �)P (M[i] j �)

P (o j �)

P (o j �)

P (M[i] j �)

=
1

P (o j �)(N�1)

NY
i=1

P (o j �;M[i]) (8)

Here the expressions P (o j �;M[i]) are computed as de-
scribed in Section 2, using the learned sensor model shown
in Figure 2b. The term P (o j �)(N�1) represents the proba-
bility of observing o given the position � of the robot. This
probability is a constant, since it is independent of the map.
In the subsequent analysis, it will be subsumed in other nor-
malizers and hence be dropped from consideration at this
point.

As Equation (8) shows, our approach computes the likeli-



hood of observations separately in all maps, and then com-
bines the resulting density multiplicatively. In practice,
maps which cannot overlap with the robot’s position can
be safely eliminated, thereby speeding up the computation
while not affecting the final result.

4 Mapping

We are now ready to present the map learning algorithm.
In a first pre-processing phase, our algorithm extracts local
maps from the data d. It then applies EM, iterating local-
ization (E-step) and local map alignment (M-step). Finally,
a single global map is generated from the result of EM.

Figure 5 illustrates the difference between our past ap-
proach [TFB98, TGF+98], and the one presented here. Pre-
viously, EM was used to directly generate the most likely
map, which works well for landmarks, but purely for prox-
imity sensors (such as sonars). Our new approach uses an
intermediate, two-layered representation, in which EM is
used to estimate the position of many local maps.

Figure 6: Examples of local maps, annotated by robot tra-
jectories. These maps have been constructed from sonar
measurements.

4.1 Pre-Processing

First, our approach generates the local maps m[i]. This is
done using conventional occupancy grid mapping [Elf87,
Mor88, YLS+98], exploiting the fact that odometric errors
can typically be neglected in the short range. In our cur-
rent implementation, a new map is generated after every 5
meter of robot travel, during which the accumulated odom-
etry error can be safely neglected. As mentioned above, our
current implementation applies Backpropagation networks
and Bayes rule to estimate the probability of occupancy in
regions covered by the robot’s sensors [Thr98]. Odometric
errors are not corrected when building local maps. Figure 6
shows examples of such local maps. Local maps are com-
puted only once in the beginning.

4.2 The E-Step

The E-step uses the current-best map m along with the
data to compute probabilitiesP (�

(t) j d;m) for the robot’s
poses at times t = 1; : : : ; T . With appropriate assumptions,
P (�

(t) j d;m) can be expressed as the normalized product
of two terms

P (�
(t) j d;m) = � P (�

(t) j o(1); : : : ; o(t);m)| {z }
:=�(t)

P (�
(t) j u(t+1)

; : : : ; o
(T )

;m)| {z }
:=�(t)

(9)

Here � is a normalizer that ensure that the left-hand side
of Equation (9) sums up to one (see [TFB98] for a math-
ematical derivation). Both terms, �(t) and �

(t), as defined
in (9), are computed separately, where the former is com-
puted forward in time and the latter is computed backwards
in time. Notice that �(t) and �

(t) are analogous to those in
the alpha-beta algorithm [RJ86].

The computation of the�-values and the �-values are mod-
ified versions of Markov localization, using multiple (lo-
cal) maps. Markov localization has recently been used with
great success for robot localization in known environments
by various researchers [BAC+98, KCK96, KS96, NPB95,
SK95].

Computing the �-Values: Initially, the robot is assumed
to be at the center of the global reference frame and �(1) is
given by a Dirac distribution centered at (0; 0; 0):

�
(1)

= P (�
(1) j o(1);m)

=

�
1; if �(1) = (0; 0; 0)

0; if �(1) 6= (0; 0; 0)
(10)

All other �(t) are computed recursively:

�
(t)

=

� P (o
(t) j �(t);m) P (�

(t) j o(1); : : : ; u(t�1)
;m) (11)

where � is again a probabilistic normalizer. The rightmost
term of (11) can be transformed to

P (�
(t) j o(1); : : : ; u(t�1)

;m) =Z
P (�

(t) j u(t�1)
; �

(t�1)
) �

(t�1)
d�

(t�1) (12)

Substituting (12) into (11) yields a recursive rule for the
computation of all �

(t) with boundary condition (10).
See [TFB98] for a more detailed derivation.

Computing the �-Values: The computation of �
(t) is

completely analogous but takes place backwards in time.
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Figure 5: EM using a flat map representation (left) and using our new two-layered representation (right). In the layered
approach, EM is applied for aligning small, local maps, which after the optimization are projected into a single, global
map.

The initial �(T ), which expresses the probability that the
robot’s final pose is �, is uniformly distributed, since � (T )

does not depend on data. All other �-values are computed
in the following way:

�
(t)

= �

Z
P (�

(t+1) j u(t); �(t))

P (o
(t+1) j �(t+1)

;m) �
(t+1)

d�
(t+1) (13)

The derivation of the equations are analogous to that of
the computation rule for �-values and can be found in
[TFB98]. The result of the E-step, the products �(t)

�
(t),

are estimates of the robot’s locations at the various points
in time t.

4.3 The M-Step with Deterministic Annealing

The M-step calculates the most likely poses of the local
maps. Let t[i] be the index of the first data point in the i-th
local map. In the most generic setting, the M-step calcu-
lates

�[i] = argmax

�

P (�
(t[i]) j d;m)

= argmax

�

�
(t[i]) �

(t[i]) (14)

Unfortunately, this approach is problematic in practice. EM
is a hill climbing method, which only converges to local
maxima. If the odometric error is large, the initial map will
be erroneous, and subsequent iterations of EM might not
be able to recover.

The danger of getting stuck in a local maximum can be re-
duced significantly by a modified M-step. Instead of keep-
ing track of the most likely model, our approach generates a
distribution over models that slowly converges to the most

likely one. More specifically, the M-step generates a distri-
bution over poses, denoted �:

�(�[i]) = �

�
�
(t[i])�

(t[i])
� 1

�

(15)

Here � is a (different) normalizer that ensures that the prob-
abilities integrate to 1. The parameter � is a control param-
eter in (0; 1] which will, in analogy to the rich literature on
annealing, be referred to as temperature. Equation (15) is a
version of the softmax function [Now91]. When � = 1, the
full distribution over all poses is retained. When � = 0, our
approach is equivalent to (14). To accommodate the fact
that the E-step generates a distribution over maps, rather
than a single map only, the expression P (o j �;M[i]) in
Equation (8) has to be substituted by

Z
P (o j �; hm[i]; �[i]i) �(�[i]) d�[i] (16)

In our approach, � is initialized with 1 and annealed to-
wards zero using an exponential cooling schedule. The ef-
fect of the annealed softmax function in the E-step is to
avoid early commitment to a single map. Instead, one can
think of our approach as moving from density estimation
(over the pose parameters in the map) to maximum like-
lihood estimation. The reader should notice that our ap-
proach is not the first to employ annealing to avoid local
maxima in EM [HPJ99, Ros98].

Both the E-step and the M-step are alternated until conver-
gence (using a criterion like a threshold on the minimum
amount of change). In practice, less than 7 iterations suf-
ficed in all our experiments.



4.4 Post-Processing

To come up with a single global map of the environment,
the local maps m[i] are integrated based on their final poses
�[i]. This is done using Bayes rule, following the stan-
dard approach to building occupancy maps, as described
in [Mor88, Thr98].

More specifically, let hx; yi be arbitrary coordinates of a
grid cell in the global map. Let hx[i]; y[i]i specify the same
location in the local coordinate system if the i-th local map
m[i], which is easily obtained by applying the coordinate
transformation induced by �[i]. Let us furthermore use the
indicator function

Ihx;yi2m[i]
(17)

to indicate whether the local map m[i] covers the coordinate
hx; yi. Then the occupancy of hx; yi in global coordinates
is given by:

P (occx;y j d) = P (occx;y j
NO
i=1

hm[i]; �[i]i) = (18)

1�

0
B@1+O(occ)

Y
i:Ihx;yi2m[i]

m[i];hx[i] ;y[i]i

1�m[i];hx[i] ;y[i]i

O(occ)
�1

1
CA

�1

where

O(occ) =
P (occ)

1� P (occ)
: (19)

P (occ) is the prior for the occupancy of a grid cell (it van-
ishes when set to 0.5), and m[i];hx[i] ;y[i]i denotes the likeli-
hood for occupancy at hx[i]; y[i]i in the i-th local map. The
derivation of (19) is completely analogous to the familiar
occupancy grid approach, which is used to construct the
local maps in the pre-processing phase). It can be found
in [Thr98].

5 Experimental Results

Our approach was evaluated using various data sets col-
lected in two indoor environments. Here we show results
for two of them, one collected in the University of Bonn,
and one at Carnegie Mellon University. The first is diffi-
cult because of the large number of offices, which makes
it challenging to produce a straight corridor. The other
contains a cycle—which is more challenging to map than
non-cyclic environments [GN97, LM98]. All data has been
collected using RWI B21 robots (RHINO at the Univer-
sity of Bonn and AMELIA at Carnegie Mellon University),
equipped with 24 Polaroid sonar sensors with 15� opening

angle (main cone). The reader may notice that building
maps from sonar data is more difficult than building maps
with high-precision laser range finders, due to their limited
resolution and accuracy. Most previous approaches that
successfully mapped circular environments required laser
range finders (see e.g., [GN97, LM97, TGF+98]).

In our implementation, we used grids to represent proba-
bility densities, with a spatial resolution of 15 cm and an
angular resolution of 2 degrees. The “tricks” described
in [TFB98] were applied to keep the computation manage-
able.

Figure 7 shows on the left side a synthetic map of the first
environment, along with the robot’s path. To understand
the best possible map that can be built from sonar sensors
in this environment, we initially provided the robot with a
correct map and used Markov localization to localize the
robot. As reported in [BDFC98, GBFK98], this approach
yields accurate position estimates even for ultrasound sen-
sors. We then built a new map using the previously cor-
rected position estimates. This map is shown on the right
side of Figure 7. It can be viewed as the best possible result
for EM.

Figure 7: CAD-map of the first testing environment
(left). Desks and tables are below the height of the
sonars. Occupancy grid map constructed using the
CAD map for localization (right). This map reflects
the best possible outcome of EM.

To elucidate the scaling properties of our new algorithm,
we artificially added random noise to the robot’s odom-
etry. Figure 8 shows in the upper row maps generated
with different levels of artificial noise added. Here the
raw odometry is insufficient to generate meaningful maps.
These results are similar to those one would expect when
using a low-accuracy robot, or when operating robots un-
der less optimal conditions (e.g., on dirty surfaces that pro-
mote slippage). The lower row of this figure shows the
resulting maps after applying our method. While in fact



Figure 8: Maps of the first testing environment. The maps in the upper row been generated by adding different levels of
noise to the odometry data. The lower row contains the maps obtained as output from applying EM.

our sonar data is insufficient to completely compensate the
noise, our approach nevertheless generates maps that are
basically sufficient for navigation.

(a) (b)

Figure 9: Maps built in Wean Hall of Carnegie Mel-
lon University, (a) using raw odometry, and (b) us-
ing our new algorithm. These maps are comparable
to those generated by our previous EM method, but
without reliance on manually labeled reference posi-
tions.

Figure 9 shows similar results for the second environment.
Here the robot is asked to map a cyclic environment. Odo-
metric error induces an angular error of approximately 25�.
The map shown in Figure 9b is highly accurate, demon-
strating that our approach can handle circular environ-
ments.

To evaluate our approach quantitatively, we again used a
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Figure 10: Square error of manually determined reference
positions before and after mapping for different levels of
random noise added to the odometry data. The error bars
represent the 95% confidence interval.

data file which was corrected using a CAD-map of the en-
vironment. From this data file we chose several data points
and computed the relative distances of the corresponding
x-y-locations in the map. We then added noise to the data
and applied our mapping system to compute a map. After
mapping we measured the deviation of these relative dis-
tance from those in the reference map and computed the



overall error consisting of the sum of squared differences.
Figure 10 shows the average error before (top solid curve)
and after (bottom dashed graph) mapping, for different lev-
els of odometric noise. As is to be expected, mapping sig-
nificantly reduces the error in x-y-space.

These experiments highlight some of the maps we have
built over the last months. They are not as large as pre-
viously published maps (see e.g., [TFB98, TGF+98]), but
they do not rely on high-accuracy laser sensors, and they do
not require pre-defined landmarks. The results presented
here demonstrate that the basic EM approach can be ap-
plied to a much wider array of scenarios than previously
suspected.

6 Conclusion

This paper has presented a statistical method for map learn-
ing for robots equipped with low-resolution range finders
such as sonars. Our approach builds on a previously devel-
oped method which uses EM for searching the most likely
map. It uses a new two-layered representation of maps
during EM. This way, it is able to operate on raw prox-
imity data and does not require any pre-defined landmarks.
Maps are learned in two stages: first, small, local maps
are learned under the assumption that odometry is locally
correct. EM is then applied to integrate these local maps,
using Markov localization and the layered representation
of maps. To avoid local maxima, a softmax function is
applied during the M-step, and deterministic annealing is
used to slowly move from density estimation to likelihood
maximization. Experimental results demonstrate that our
approach is well suited for constructing maps using sen-
sors as inaccurate as sonars, without relying on human as-
sistance.
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