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Abstract

This paper presents an algorithm for simultaneous lo-
calization and map building for a mobile robot moving
in an unknown enuvironment. The robot can measure
only the bearings to identifiable targets and its own rel-
ative motion. The approach is to recursively estimate
features of the environment which are invariant to the
robot pose in order to decouple the pose error from the
map error. The highly nonlinear nature of this prob-
lem requires more explicit reasoning about the spatial
relationships between landmarks and between the robot
and landmarks than those used in previous methods.

1 Introduction

It may be required for a robot to enter an unknown en-
vironment and to concurrently explore and produce a
metric map of the area while maintaining an accurate
estimate of its position. If the robot were to have an
a prior: map, then localization would be a relatively
easy task. Alternatively, if the robot were to have a
precise, externally referenced position estimate, then
mapping would be an easy task. However, problems in
which the robot has no a priori map and no external
position reference are particularly challenging. Such
scenarios may arrise for AUV’s, mining applications,
or planetary surfaces. This problem has been referred
to as concurrent localization and mapping (CLM) and
simultaneous localization and mapping (SLAM). We
will use the latter in this paper.

Section 2 discusses some previous work in SLAM. Sec-
tion 3 discusses the general ideas behind how the In-
variant Filter works. Section 4 details the algorithm.
Section 5 shows results from implementing the filter
and testing it using real data.
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2 Previous Work

The SLAM problem was originally taken on by Smith,
Self and Cheeseman[1] who first published the stochas-
tic map, and by Moutarlier and Chatila[2] who pro-
vided experiments using this approach with real data.
Because the stochastic mapping approach is based on
the Extended Kalman Filter, the update requires an
O(N3) matrix inversion, where N is the number of
landmarks or environment states to be estimated. Ap-
proaches based on the stochastic map method are com-
mon and a good review can be found in [3].

Recently, however, new solutions to the SLAM prob-
lem have been reported which take a principled ap-
proach to decoupling the problem in order to keep
the computation tractable. If the state covariance
matrix is diagonal or block diagonal, inversion be-
comes simpler and the EKF update can be done
much faster. Leonard and Feder have recently in-
troduced the Decoupled Stochastic Mapping (DSM)
algorithm[4] which tesselates the environment with
loosely coupled local maps, each of which is a full
stochastic map. Between local maps the relationship is
approximate and covariances are not considered. The
computational complexity of the stochastic map is in-
curred only within each local map.

Csorba and Durrant-Whyte introduced the concept
of a relative filter{5], which recursively estimates fea-
tures which are invariant to robot position, thereby
removing the correlation between the robot posi-
tion uncertainty and feature uncertainties, as well as
feature-feature correlations. Newman expanded on
the method, introducing the Geometric Projection Fil-
ter (GPF)[6] which provides a means by which to pro-
duce a geometrically consistent map from the relative
features in Csorba’s filter by solving a set of simultane-
ous linear constraint equations to project the relative
map states onto an absolute coordinate system. To
the authors’ knowledge, previous implementations of
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Figure 1: Errors in estimates of rover pose and land-
mark position, in the global frame, are correlated

the relative filter and GPF have assumed that absolute
heading is measurable (e.g. by a compass) and that
bearing and range to each target is measurable. Un-
der these conditions, the relative filter or GPF can use
environment features which are invariant only under
translation and treat the problem in a linear fashion.
In this paper we present an algorithm for Invariant Fil-
tering, which is a more general version of the GPF[6].
The approach is based on the same principles as the
relative filter and GPF, but is able to deal with un-
known heading as well by filtering environment fea-
tures which are invariant under rotation and transla-
tion, not just translation. We also consider the use of a
bearings only sensor, using an omnidirectional camera
to track landmarks as the robot moves.

3 Invariant Filter

Consider a mobile robot which can measure the bear-
ings to landmarks, which we will define to be uniquely
identifiable point features. The robot can measure its
own motion through odometry or inertial sensing. We
will restrict our discussion here to the planar case.
The robot’s pose in (z,y,8) is parameterized by the
vector zx. There is some nonlinear stochastic process
model which, given an initial position estimate #; and
a motion measurement ug, predicts the final position
of the robot &1

Ergr = F(Ex, ux) + wy (1)

where wy is taken to be zero mean Gaussian noise with
covariance Q. The robot is equipped with a bearing
sensor which makes a noisy measurement of the bear-
ing to a landmark from the robot’s current pose,

zi = h(zg, £) + Uk 2)

where v 1s zero mean Gaussian noise with covariance
R. If the robot measures the bearing to a landmark

Figure 2: Environment features invariant to rover pose
are impervious to errors in pose estimate

from two unique positions z; and k41, then an esti-
mate of the location of the landmark may be inferred
through triangulation. Let L£() be a function which
takes as inputs the starting pose of the robot, the
motion measurement, and the bearing to a landmark
from the starting and ending pose; and computes the
position of the landmark by triangulation,

£ = ﬁ(zk,uk,z,i,z,';+1). (3)

In any realistic scenario, the pose of the robot is not
known to absolute certainty. The estimate &; of the
robot pose has some assoc1ated error Iy = xk Tk and
landmark position estimates # have error & = — ¢,
One major difficulty with absolute coordinate frames
in SLAM is that landmark position estimates £ and
the robot pose estimate Zp are correlated. Assum-
ing for the moment that the bearing measurements z;,
and z,; 4 are perfect, the error in the landmark posi-
tion due to_the error in robot pose can be found by
expanding # then taking a Taylor expansion

F o= F-¢ ;
L(zx + Bry uk, 2, 2kp1) —
‘C(xk)uk)zliyz;;+1)

F ~ (Ve L&+ O((#k)?) (4)

Dropping all but the first order term,

E[Zx k] = B2k (Vi L) 2] ()
Figure 1 shows a diagram of how this happens. The
vehicle measures the bearing to a target, moves, and
measures the bearing to the target again. The position
of the target is measured in a rover-centered coordi-
nate frame with the initial robot position as its origin.
The resulting estimate of the landmark location in ab-
solute coordinates depends on where the vehicle was
when it began its motion and the error in landmark
position is directly correlated with the error in robot
position.
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A similar argument demonstrates how the error in the
robot pose estimate becomes correlated to errors in
the map when the rover attempts to localize relative
to landmarks with erroneous locations. Over time,
filtering methods such as Kalman filters which recur-
sively update robot pose and landmark positions in an
absolute coordinate frame can diverge.

In addition, absolute filtering approaches to solving
the SLAM problem suffer the curse of dimensionality.
The state space is of dimension N where in a planar
environment, N is three parameters for the robot pose
plus two parameters for every landmark. Kalman fil-
ters require O(N?) storage and O(N?3) computation
per step in order to keep track of the full covariance
matrix, and as the robot explores larger and larger
regions, the filter becomes intractable. :

The fundamental importance of the relative filter[5] is
that it recursively updates estimates of environmental
features which are invariant to the robot pose. Con-
sider the distance between two landmarks,

di = ||6 - £ (6)
The estimate dA"j' and error d do not depend on z.
If D(zk, uk, 24, 24, Z4 41, Zoqy) 1S the estimator for d*/,

then L )
vzkp(zk;ukaz;nziyz;c-f-lyz‘]’g.*.]) =0 (7)

and therefore .

l'l'[:i"kd;cJ ]=0. (8)
Even an error in heading, which is notoriously prob-
lematic for dead reckoning, does not affect the esti-
mate. Figure 2 shows a robot estimating the distance
d*J between landmarks i and j. The position of each

landmark is wrong due to Z; but the relationship be-
tween the landmarks is unaffected.

The two invariant features which can be estimated are
pairwise distances, as mentioned above, and angles
¥*7* subtended by a landmark pair #, £¥ as measured
from a third, #, as in Figure 3. The endpoints which
define a distance, or the triplet of points which de-
fine an angle, are called control points. For simplicity,
we will deal with only distance measurements for the
rest of this paper, but note that angles may be more
difficult to use. Angles represent more nonlinear rela-
tionships and may present singularities. In addition,
estimating angles requires the simultaneous observa-
tion of three landmarks instead of two.

4 The Algorithm

In this section we will detail the the current imple-
mentation of the algorithm.

Figure 3: Angles between two landmarks subtended
at a third are invariant to robot pose

4.1 Data structure

The invariant filter requires two separate “maps” to
be maintained. The first map is a relative map sim-
ilar to that of [5]. This map contains the invariant
relationships between landmarks. Each invariant fea-
ture has an associated type (distance or angle), a list
of the landmarks which make up its control points,
and a mean and covariance for the estimated feature
value.

The second map is an absolute map which contains es-
timates for landmark positions in a global coordinate
frame. Each landmark in the absolute map contains
an estimated (z,y) coordinate and a list of the in-
variant features for which it is a control point. This
enables efficient computation of the derivatives for op-
timizing the absolute map with respect to the relative
map. Figure 4 shows a diagram of these data struc-
tures and their relationships.

Absolute Map Relative Map
landmark[0] feature{0]
x coordinate \><< type {angle, distance)
y coordinaty/ [~ endpoint1
feature[0]

/ endpoint2
feature[1] \ / centerpoint {angle only}
mean
featurefF-1] \§ / sigma
landmark({1] 5\\ feature[1)

landmark{L-1] ™ feature[F-1]

Figure 4: Relationship between absolute map and rel-
ative map data structures

4.2 Building the maps

When a new landmark is encountered, its position is
estimated in the global reference frame using the es-
timate of the robot pose and an estimate of the land-
mark position in the robot coordinate frame. The
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landmark 1s then inserted into the absolute map at
that location. It is only important that the landmark
be inserted close enough to its “true” position that
the optimization procedure used to update the abso-
lute map converges to the right solution.

Invariant features involving the new landmark must
also be inserted into the relative map. A greedy tri-

angulation algorithm is used to connect the new land--

mark to observable neighbors. Note that we do not re-
quire a planar triangulation. The triangulation must
simply provide enough constraints to fix the land-
marks in the absolute map. An attempt is made to
create invariant features using landmarks which are
close together, since landmarks which are far apart
are less likely to be observed simultaneously.

4.3 Strategy for avoiding correlations

The goal in this filtering method is to ensure that the
state vector is decoupled so that memory requirements
and update computation are trivial. In order to do
this, we must be careful not to introduce correlations.
Correlation between robot pose error and landmark
position errors is eliminated by using map features
which are invariant to robot pose. By proper con-
sideration, we can also eliminate correlation between
map features.

When bearing observations are made, the bearings
Z; = {zi;i = 0,...} to all visible targets at time k
are stored. The measurement u; of motion from time
k to k + 1 is also stored.

Triangulation allows computation of the landmark po-
sitions using the motion estimate as a baseline,

Z{ = ‘C(Ikaf(xk)“k)1zli72;;+l)' (9)

We then compute the Euclidean distance between
pairs of landmarks as d/ = || — #|[>. The error
d*7 will be correlated with u, z}, 2z, #, and 2z ;.
In order to be sure that the estimate d*/ is not cor-
related with any other features in the relative map,
we cannot use any of {uk,z,’;,z,’;_'_l,zi,ziﬂ} to esti-
mate other features. The restriction that we cannot
use zi +1 and z[ , means that we must remove those
measurements from the buffer. The restriction that
we cannot use u, means that not only will u, be re-
moved from the buffer, but also all old bearing mea-
surements Zj as well, since these bearings cannot be
used for triangulation without estimates of motion af-
ter the bearings were measured. The result is that
after step k + 1, only Zxy1 — {7}, %441} remain in
the measurement buffer for the next step.

4.4 Updating the relative map

At time k, the algorithm checks the buffer to find all
pairs of consecutive bearing measurements of the same
landmark {z}_,,z]}. These pairs create a list of ob-
servable invariant features which are checked against
the invariant features already in the relative map.
This check 1s necessary because not every landmark
pair distance or landmark triplet angle appear in the
relative map.

Once a list of candidate features is found, a decision
must be made as to which feature should be updated.
We have adopted a greedy strategy where the observ-
able relative feature d] with the highest covariance
0';;] is updated. The selected feature is updated using
the familiar equations

(op)2dy + ("'Lj)zp(éiﬂ’éiﬂ)

d = —
o (00)* + (@7’ u)
. on)2(a)2

0,,:]+1 ( 'D) ( k) (11)

(0p)? + (0}))?

where d and o}/ are the estimate and variance at

time k and D(£,,,,6 ) is the new measurement,
with variance op.

4.5 Updating the absolute map

The update of the absolute map is independent of the
update of the relative map and can be done asyn-
chronously. The upate step can be invoked automat-
ically whenever the relative map is updated or can
be delayed until a localization is required, a relative
feature estimate changes dramatically, or some other
criterion.

The update is done by optimizing the relationships be-
tween landmarks in the absolute map with respect to
the relationships estimated in the relative map. This
is done by applying Levenberg-Marquardt (LM) opti-
mization to the cost function

Fu [ 50i) — D) pey )’
E=)_ (d D, 0F) (12)
p=0

oi(p)ilp)

where Fj, is the number of features in the relative map
at time k and i(p) and j(p) are the indeces for the
landmarks which are the control points for the pth
feature.

The LM algorithm has an advantage over the EKF or
IEKF (i.e. Newton-Raphson) update in cases where
inverse Hessian methods cause iterations to diverge
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away from the solution. The LM algorithm checks the
solution at each step by evaluating (12) and if the so-
lution is worse, LM smoothly transitions to gradient
descent behavior by forcing the Hessian to be diag-
onally dominant{7]. One step of LM has the same
complexity as one step of the EKF or IEKF.

4.6 Memory and computational re-
quirements

At time k, let Ly be the number of landmarks in the
absolute map, Fy be the number of features in the
relative map and Vi be the number of landmarks that
are visible. In the worst case, i.e. for small areas or
long range sensors where every landmark is visible at
each step, Vi could be Li, but generally Vi < L.
With a reasonable triangulation, Fj is O(Lyg).

Checking for new features to add is fast. A list is
maintained containing all of the landmarks which re-
quire another invariant feature in order to be properly
constrained. This list is usually much smaller than L.
Determining whether a new landmark is to be added
is O(Vi), since all visible landmarks must be checked
to see if any are new. Determining which invariant
feature to update is O(Fy) in the worst case. Once
the feature to be added or updated is selected, the
update is O(1). O(Fx) memory is required to store
the relative map since a full covariance matrix is not
needed.

The update of the absolute map given the features in
the relative map is done using Levenberg-Marquardt
optimization. One iteration is O(L?) in general, but
may be faster if sparse matrix techniques are used to
speed up the inversion of the Hessian. The algorithm
has quadratic convergence near the optimum, so al-
though we require an unknown number of iterations
there should not be many if the solution is near the op-
timum when iteration begins. We also do not need to
update the absolute map every cycle. O(L) memory
is required to store the absolute map.

By comparison, Kalman filtering requires an O(Lz)
update each time new observations become available,
and O(L}) memory to maintain the covariance matrix.

5 Experimental Results

The above algorithm has been implemented and tested
in simulation and on real data. In the interest of time
we will only present results with real data here.

The robot is an RWI ATRV with an omnidirectional

" "
o 20 40 60 80 100 120 140

Figure 5: Convergence of relative feature 0, d°!.

0 20 40 60 -] 100 120

Figure 6: Convergence of invariant feature 4, d®3.

camera onboard. The robot logs images from the cam-
era at about 1Hz, and odometry at about 10 Hz. The
“landmarks” are large textured foam blocks. It is not
our intent at this time to solve the tracking or land-
mark recognition problem, so the landmark selection
in the omnidirectional images was done by hand, and
the visual tracking requires a user to identify targets.

During these tests, the ATRV had a broken wheel.
The result was a significant bias in dead reckoning
which was partially calibrated out. The error model
was also modified to increase the vehicle motion un-
certainty to a much higher degree when going through
large turns. The invariant filtering algorithm success-
fully recovers the relationships between the landmarks
even with this bias.

Figure 5 and 6 show the time evolution of invariant
features d®! and d?3, the first and fourth features to
be added to the relative map. The estimated mean is
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Figure 7: Final estimated map (x’s) with MMSE esti-
mate (0’s)

shown along with 35%/ intervals.

Ground truth for the map is not available. Instead,
we implemented a full minimum mean square error
(MMSE) batch estimation and used all available data
to optimize the estimate of map and robot trajectory.
Since the map computed by the invariant filter is not
computed with an absolute position reference, there is
an unknown planar transformation between the map
from the invariant filter and the map from the MMSE
estimate. This is accounted for by finding the trans-
formation which most closely aligns the two maps.

The map recovered by the invariant filter is shown in
Figure 7 along with the MMSE map. The landmark
positions agree to within about a half meter after reg-
istration.

6 Summary and Conclusions

In this paper we introduce the invariant filter, a solu-
tion to the SLAM problem which decouples the robot
position and orientation from the mapping phase in
order to simplify computation. The strength of the
invariant filtering approach to SLAM lies in the de-
coupling of the estimates of each environment feature
so that the map states are completely uncorrelated
with each other and the robot state. This allows much
more scalable approach since the computational and
memory requirements scale linearly with the number
of features. Our implementation has been shown to
work onboard a mobile robot in an environment with
a modest number of features.

Our current implementation requires some investiga-
tion into more reasonable triangulation schemes in or-
der to achieve good maps. The current greedy trian-
gulation does not take geometry into account, and can
add relationships which do not adequately constrain
the positions of some landmarks.
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