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Abstract. This paper describes a landmark-based algorithm for map matching,

and demonstrates its use in e�ciently combining topological maps of indoor envi-
ronments built by autonomous mobile robots. Results of the �rst implementation

are presented, in which two robots with di�erent mechanics and sensory capabili-

ties independently explore their environments with no a priori maps. Each robot is

initially unaware of the other's relative position and orientation. Using the match

algorithm, they eventually merge their maps into a topologically correct single map

in real time, based only on the feature sets they have discovered independently.

1 Introduction

As autonomous mobile robots are increasingly expected to share dynamic,
un-instrumented, indoor spaces with humans and other robots, purposeful
navigation and mapping capabilities arise as key requirements [2]. Broadly
speaking, research e�orts have led to two distinct mapping techniques: Met-

ric and topological maps. Metric approaches [5] are typically implemented as
occupancy grids, �rst introduced by [10] and [7], and later used by [13,14].
On the other hand, topological maps view the world as a collection of in-
terconnected landmarks [8,9,4,1], often augmented with distance information

and de�ned using probability distributions [3,12,11].

Our research addresses the development of algorithms for distributed,
anytime, topological map building that can e�ciently scale to groups of het-
erogeneous robots. This paper builds upon our existing mapping strategy
[6], and demonstrates a simple, yet robust starting point for the task of co-
operative mapping with multiple robots. An algorithm for combining two
topological maps is evaluated, and preliminary results with two robots are
shown.

Section 2 highlights the topological map components that underly the

algorithm, which, in turn, is described in Section 3. A number of map com-
bination experiments are reported in Section 4, providing evidence for the
feasibility of the approach.



2 Mapping System

The mapping and navigation algorithms used in this work have been de-
scribed in detail in [6]. The two mobile robots used in this study are Pioneer
1-AT (Vespucci) and Pioneer 2-DX (Milka) platforms with di�erent kinemat-
ics and sensory equipment. Vespucci uses a gyroscope to enhance its position
tracking, and uses a Pan-Tilt-Zoom camera connected to the FastTrack vision
system to detect visual color blobs. In contrast to Vespucci which has only
seven sonar transducers, Milka has sixteen, and carries a SICK laser range
�nder as well.

The Building blocks of our topological mapping scheme are corners, T-
junctions, end-of-corridors and closed doors, and links interconnecting them,

as shown in Figure 1. Based on the perception of these features, each robot is
capable of generating and updating a topological map augmented with metric
information [6], and refer back to it for enhancing its estimated position.

Fig. 1. On the left, topological landmarks and their attributes are illustrated on a

sample map. Robots Vespucci (middle) and Milka (right) are shown.

Both Vespucci and Milka use their sonar arrays to detect corridors, open-
ings that can be either open doors or hallways, junctions, and end-of-corridors.
While Vespucci seeks for color blobs for detecting closed doors, Milka looks
for signatures in laser scans for the same purpose.

As reported in [6], over a set of 300 sonar-based feature detection cases,
the rate for correct detection was found to be 81%, along with 20% of false
alarms. For closed door detection, the color-blob detector had a success of 92%
correct detection with 3% false alarm rate over 180 cases. Laser scanner-based

door detector performed at a correct detection rate of 85% over 130 cases.
The associated signal processing and basic feature detection is described in
[6] as is the algorithm for single robot mapping and navigation.



2.1 Data Structures

Our map is a collection of landmark elements that are the nodes of an aug-
mented graph. A node carries the following attributes:

struct node {

id

type // corner, junction, door

x,y // Approximate coordinates

struct link[4] // 4 possible directions

visit_counter

detection_counter

}

A variation of landmark types can be obtained based on the link struc-
ture's type attribute. A corner has two consecutive neighboring links as
blocked, whereas the others will be open. An end-of-corridor has only one
link that is open, which connects it to other nodes.

struct link {

connected_to_id

type // open space, blocked, door

heading // in local reference frame

compass

distance

travel_counter

}

3 Map-Matching Algorithm

3.1 Heuristics

The goal of the map matching algorithm is to �nd the transformation T12
that relates a robot's (R1) coordinate system with that of another (R2),
thus enabling the merging of the two maps. The basic intuition is that, if the
robots have visited at least partially overlapping spaces and registered enough
of the same features in their maps, it should be possible to �nd and measure
the correlation between their maps. Using this idea, the search space of our
algorithm is the set of all landmark pairs (LR1,LR2), since each landmark
discovered by R1 could potentially correspond to any other reported by R2.
Furthermore, since the landmarks carry heading and position information,
each pair de�nes a unique match, called a candidate transformation. Our
algorithm uses two important heuristics to reduce this search space.

H1 Only landmarks of the same type attribute are paired up (e.g., doors
with doors, corners with corners)

H2 Only landmarks that describe spatial features (i.e. T-junctions, corners
and end of corridors) are considered as candidates.



The reasoning behind H1 is that, over the period of time in which the
robots build and maintain their maps, a relatively small number of features
change their attribute (open vs. closed door) or disappear totally. In other
words, the heuristic assumes that the dynamics of the environment are slow
relative to the speed of exploration. In addition, H2 cuts the search space
down further by relying on those features which are not only less prone to
false alarms, but also represent an inherently sparser set in typical indoor
environments (e.g., merely a handful of corners and T-junctions as opposed
to dozens of doors on a given 
oor).

3.2 Map Matching

The preprocessing step applies the heuristics discussed above and produces
a reduced search space, populated by the so-called selected pairs of land-
marks. At this stage, these pairs are further tested for possible mismatches
in attributes that re
ect absolute measurements. When available, compass
readings are used to match approximately (+/- 30 degrees), or the candidate
is eliminated. In case the landmarks were registered while the robots traveled
in opposite directions, a hypothesized compass value is used for comparison.

Finally, for all remaining candidate transformations, translation and ro-
tation components are computed by requiring both the coordinates and the
arm-type attributes of the two landmarks (LR1,LR2) to coincide. The latter
is then evaluated by applying it to all elements of R2's map, and counting the
number of overlapping and matching landmarks. Having tried all transfor-
mations, the one that yields the highest number of match-counts is selected,
and the resulting combined map is presented to the user as the best match. In
the next section, we analyze 26 such match trials and evaluate the matching
algorithm.

4 Experimental Evaluation

4.1 USC Salvatori Computer Center

The map combination results reported in this section are based on data ob-
tained on the second 
oor of the USC Salvatori Computer Center, where a
complete loop corresponds to approximately 80 meters of traveled distance.
As summarized in Table 4.1, a total of 26 map combination experiments
were computed o�ine, combining various pairs from a total set of 19 avail-
able maps, D1 through D19. Some of these combinations involved map pairs
built by the same robot at di�erent runs as well, which does not restrict the
algorithm's generality.

The third and fourth columns of Table 4.1 indicate the original size of the
search space, and its reduced value after applying heuristics H1 and H2. For
comparison, these two numbers, and their relatively stable ratio are plotted



Combined Direction Total Number of Correctness Eliminated

Data Sets of Travel Number of Selected of the Match False Alarm

Candidates Candidates (%) (%)

D1 - D2 same 15 4 100 -

D15 - D16 opposite 15 4 100 -

D3 - D4 same 30 8 100 -

D16 - D17 same 33 6 100 100

D3 - D5 same 40 11 100 100

D4 - D5 same 48 8 100 100

D1 - D6 opposite 51 4 100 -

D1 - D7 opposite 54 5 100 -

D15 - D16 opposite 55 11 100 100

D1 - D8 same 60 5 100 100

D1 - D9 opposite 60 6 100 100

D10 - D11 same 65 9 50 50

D11 - D12 opposite 70 7 100 -

D12 - D13 same 70 10 100 100

D2 - D6 opposite 85 12 75 -

D18 - D19 opposite 88 6 86 80

D2 - D7 opposite 90 15 100 -

D12 - D14 opposite 91 9 100 100

D2 - D8 same 100 13 60 50

D2 - D9 opposite 100 16 100 100

D11 - D13 opposite 100 11 100 100

D12 - D13 opposite 130 12 100 -

D6 - D7 same 306 20 92 0

D6 - D9 same 340 21 100 33

D7 - D9 same 360 25 92 66

D8 - D9 opposite 400 22 70 33

Table 1. 26 experiments of map combination.

in Figure 2.

The column indicating the Correctness of the Match is the ratio of correct
matches to all reported matches. Finally, the last column gives a measure of
the false alarms that were successfully eliminated by combining the maps
built by di�erent robots (or, by the same robot at di�erent times). Since the
probability of both robots experiencing the same false positive at the same
location is lower than it is in the single robot case, multi-robot mapping is
inherently well-suited to eradicating false positives (e.g., the feature detector
can mistakenly signal the presence of a door due to noisy sensory input).

The �rst example of map combination is depicted on Figures 3 through

4. At a �rst glance, the maps D9 and D7 may seem to have most landmarks
of the building in common. Yet, a closer look reveals that in D9, the robot
explored a cul-de-sac in the lower right corner of the map, which does not
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Fig. 2. For all map combination cases summarized in Table 4.1, the heuristics

reduce the number of transformation candidates drastically (left), also plotted as a
percentage of the initial set (right).

exist inD7. Furthermore, their sets of detected doors do not perfectly overlap.
Despite all the discrepancies, the matching process was able to collect enough
evidence for the transformation correctly proposed in Figure 4.

A more interesting example of map matching involves D1, which is an
un�nished map as shown in Figure 5 (left). In D1, the robot has only had
a chance to explore the northern corridor of the same area as in D9, but
traveling in the opposite direction. As can be seen in Figure 5, D1 and D9

are still matched successfully. From the robot's point of view, this allows
time-critical localization decisions to be made with respect to other robots
or a global map.

Fig. 3. Map D9 (left) of the Salvatori Center. The robot traveled in a counter-

clockwise direction, registering doors and junctions as they are detected. In an
independent mapping experiment, the robot detected a slightly di�erent set of

landmarks as shown in map D7 (right).



Fig. 4. Maps D7 and D9 of the same environment are matched against each other
and their combination is correctly generated. Circles indicate features that were

registered in both maps.

Fig. 5. A snapshot of the map built by Milka (D1, left), which has so far only

explored the northern corridor of the Salvatori Center, navigating in a clockwise

direction. Salvatori maps D1 and D9 are correctly combined (right).

4.2 Preliminary on-line multi-robot trials

Our matching algorithm was also tested on-line with robots building maps
in parallel and independently from each other. The data included here is
a representative case of many multi-robot mapping experiments performed
during the DARPA Tactical Mobile Robotics experiments in July 1999, which
took place in an empty hospital building in Fort Sam Houston, San Antonio.
Figure 6 shows full-screen snapshots of the maps built by Vespucci and Milka.
In this experiment, Vespucci �rst explored the West wing of the hospital
building, and then made a tour around the central elevator block. On the
other hand, Milka started its journey at the East wing, also followed by a tour
around the elevator block. Figure 7 shows how their maps were combined.

Based on the evidence that both robots collected while turning around the
central block, they were cooperatively able to produce a complete map of the
scene.



Finally, a short remark about the metric accuracy of the maps is in order.
In Figure 8, the combined map of Figure 7 was overlaid on the 
oor plan of
the hospital. Over a stretch of more than 50 meters of corridor, all mapped
wall segments were within 1 meter of their corresponding position according
to the blue prints. This rough measure indicates a metric accuracy of about
2% of our mapping scheme.

Fig. 6. Map built by Vespucci (left), starting from the West wing of the building.

The second map was built by Milka (right), which started from the East wing of

the building.

Fig. 7. Combined maps of Vespucci and Milka provides the complete picture that

was not available to individual robots.



5 Conclusions

We have proposed and evaluated a map matching algorithm that allows mo-
bile robots to combine their augmented topological maps with those of others.
Extensive o�ine tests of the algorithm suggest that the approach will e�-
ciently scale to the multi-robot case, and also provide a reasonably cheap
framework for a group of robots to localize themselves with respect to each
other. Preliminary results from the �rst online, two-robot implementation are
also presented.

The extension of this algorithm to the multi-robot case is currently under-
way. Future work on the mapping scheme will include the use of probability
distributions for feature sets. For the multi-robot case, a generic version of
the algorithm will be made part of the existing mapping system so that
multiple robots can dynamically combine their maps to produce a uni�ed
representation of their common surroundings.

Fig. 8. Combined maps laid over the 4th 
oor plan of the hospital building.
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