
Exploration of Unknown Environments Using
a Compass, Topological Map and Neural Network

Tom Duckett and Ulrich Nehmzow
Department of Computer Science

University of Manchester
Manchester M13 9PL

United Kingdom
duckettt@cs.man.ac.uk, ulrich@cs.man.ac.uk

Abstract

This paper addresses the problem of autonomous explo-
ration and mapping of unknown environments by a mobile
robot. A map-based exploration system is presented, in
which a topological map of the environment is acquired
incrementally by the robot, using an artificial neural net-
work to detect new areas of unexplored territory. Using
this approach, no manual intervention in the map acqui-
sition process is required, and all computation is carried
out in real-time on board the robot. Experiments are pre-
sented in which a Nomad 200 robot successfully mapped
and navigated complex, real world environments contain-
ing transient changes such as moving people.

1 Introduction

In recent years, there has been a great deal of research
on the topic of mobile robot navigation, and a number of
successful navigation systems have been produced. Many
systems either rely on pre-installed maps [14], or use pas-
sive mechanisms to build maps while the robot is manually
steered around the environment by a human operator [8, 6].
In other systems, the sensor-motor data required for map
building is first collected by the robot under manual con-
trol, then an off-line learning algorithm is used to find the
best map to fit the data [13].

While all of the methods described above have their
merits, manual intervention is costly and prone to hu-
man error. Similarly, reactive behaviours such as wall-
following, though often very robust, cannot be guaranteed
to build complete maps in large, complex environments.
We therefore believe that the most flexible approach is for
the robot to acquire its own maps through a process of
autonomous, map-based exploration. In other words, the
robot should be able to identify regions of unexplored ter-

ritory, navigate to the identified areas using its own map,
and incrementally update this map at the same time.

A version of the latter strategy was used here, in which
the robot continuously tries to expand the territory which
has already been charted. The basic idea is that the robot
travels to the edge of the existing map, and then uses its
range-finder sensors to detect new regions of unexplored
territory. The new territory is added to the map, then the
robot attempts to travel to the next unexplored edge of the
map. The process is repeated until the robot has covered
the entire environment.

The robot uses a graph-based representation of its envi-
ronment, in which the nodes correspond to contiguous re-
gions known as places and the links to possible transitions
between places. A topological rather than metric represen-
tation was used because metric maps require large amounts
of computation and also depend on precise position infor-
mation for map learning. These requirements are partic-
ularly hard to satisfy in larger environments, especially if
fully autonomous operation is required.

The approach differs from previous work in that it does
not require high precision sensing or depend upon sim-
plifying assumptions about particular environments, and
has been tested in populated, real world environments.
An artificial neural network is used to detect areas of un-
explored territory, fusing together information from the
robot’s sonar and infrared sensors. All of the data required
for training the network is collected by the robot itself,
avoiding the need for the system designer to determine the
training signal. The complete system requires only mini-
mal computational resources due to the compactness of its
representations, thereby eliminating the need for off-line
processing and increasing the autonomy of the robot.

In this paper, we assume that the robot has the ability
to determine its own location in the topological map; full
details of the self-localisation mechanism used in these ex-
periments can be found in [3].



1.1 Related Work

Yamauchi [18] developed a technique called “frontier-
based” exploration, in which a global occupancy grid [11]
was used to represent the environment. Image segmen-
tation techniques were used to extract regions in the grid
between charted and unknown territory known as “fron-
tiers”. Exploration was then directed towards the frontiers.
A disadvantage of this approach is that it depends critically
upon accurate laser sensors and precisely corrected odome-
try, because exact position information is needed to update
grid-based maps.

Thrun [15] also developed a map building system us-
ing a global occupancy grid. An artificial neural network
was trained to translate neighbouring groups of sonar sen-
sor readings into occupancy values in the grid. Exploration
was then directed towards areas of high uncertainty in the
acquired map. The required training examples were ob-
tained using a simulator, though the trained neural net-
works were shown to work well on the real robot.

Edlinger and Weiss [5] developed a map building sys-
tem in which the robot’s map consisted of a set of laser
range-finder scans and the topological relations between
the scans. The system attempted to detect obstacle-free
segments in the scans known as “passages”, that is, regions
of open space which are wide enough for the robot to move
into. The detected passages were added to a stack of unex-
plored locations, which were visited in turn until the whole
environment had been covered by the robot.

2 Exploration Strategy

The robot builds a topological map, which is augmented
with metric information concerning the distance and angles
between connected places. The map contains two different
types of places (figure 1):

� Predicted. Places presumed to exist but not yet vis-
ited by the robot.

� Confirmed. Places actually visited by the robot.

Exploration consists of continuously trying to expand
the territory already charted by the robot, using a neural
network to add new ‘predicted’ places to the map. Subse-
quent movement by the robot is used to verify whether the
‘predicted’ places actually exist or not.

From its initial location, the robot adds the first set of
‘predicted’ places to the map, and then attempts to navi-
gate to the nearest ‘predicted’ place. If the robot is able to
move to a physically distinct new location in the environ-
ment without encountering any obstacles, the ‘predicted’

Figure 1: Example of Topological Map Building. Places
predicted by the neural network but not yet visited by the
robot are shown by squares. Places visited by the robot are
shown by filled circles.

place is replaced by a ‘confirmed’ place, otherwise it is
deleted. Whenever another ‘confirmed’ place is added to
the map, the neural network is used again to predict further
new places. This process is repeated until all ‘predicted’
places in the map have either been visited by the robot or
deleted.

In order to implement this exploration strategy, the fol-
lowing mechanisms were required:

1. Location Recognition. We assume that the robot has
the ability to locate itself within the map. The self-
localisation algorithm described in [3] was used here;
this algorithm is able to determine the most likely
place occupied by the robot, and also the most likely
displacement of the robot within each of the possible
places.

2. Open Space Detection and Compass Sense. In or-
der to add the new ‘predicted’ places to the map, the
robot requires the ability to determine its orientation
(see section 3). In addition, some mechanism is re-
quired to add the new ‘predicted’ places to the map,
i.e., to detect areas of unexplored territory in a particu-
lar direction. Individual range-finder readings are not
well suited for this purpose because of problems such
as occlusions caused by moving people, sensor noise,
cross-talk and specular reflections. Instead, an artifi-
cial neural network was trained to learn the concept of
“open space”, combining noisy information obtained
from many sensor readings (see section 5).



3. Way Finding. Dijkstra’s algorithm was used for path
planning. The robot’s heading was controlled by tak-
ing into account the robot’s current location in the
map, the compass sense and the shortest path to the
goal location. A pre-trained behaviour for moving
forwards while avoiding obstacles was used for low
level sensor-motor control [12].

4. Local Dead Reckoning. In order to determine
whether a new ‘confirmed’ place should be added to
the map, a local dead reckoning strategy was used
(see section 4). If the robot managed to travel by a
pre-specified distance threshold (1m) from the near-
est stored place in the map without encountering any
obstacles, then a new ‘confirmed’ place was added to
the map.

5. Consistency Maintenance. Dead reckoning cannot
be used for global position estimation during map
building, due to the accumulated drift errors caused
by wheel slippage. Therefore, some other mechanism
was required to assign globally consistent coordinates
to the places in the robot’s map, using only the local
metric relations between the places (see section 6).

The system was implemented on a Nomad 200 robot
equipped with sonar, infrared and odometry sensors and a
flux-gate compass (figure 2).

Turret

16 sonar
sensors

sensors
16 infrared

Base

Figure 2: The Nomad 200 Mobile Robot FortyTwo. The
sonar and infrared sensors are mounted on the turret, which
can rotate independently relative to the base of the robot.

3 Compass Sense

A separate behaviour was used to rotate the robot’s tur-
ret at small speeds in the direction of ‘North’, as indicated
by the flux-gate compass. The effect of this behaviour was
to smooth out local fluctuations in the magnetic field of the
robot’s environment. Using the compass in this way gave
the robot a single view of each location, i.e., the appearance

of locations to the robot depended on the robot’s position
alone, not its orientation.

While this method is robust in dealing with minor vari-
ations in the magnetic field, severe compass errors caused
by ferrous building materials could pose a problem in some
environments. A more reliable compass sense could be
obtained by integrating perceptual information from the
robot’s exteroceptive and proprioceptive sensors, as in the
self-orientation system described by Li et al [9], or by us-
ing correlation with a vision-based map of the ceiling as in
Thrun et al [16].

4 Dead Reckoning

Instead of using the robot’s rotational wheel encoders
for the on-line dead reckoning, we used the relative angu-
lar displacement of the turret from the base of the robot.
This had the effect of removing the accumulated angular
drift affecting the robot’s raw odometry (figure 3), because
the turret was anchored to ‘North’ by the compass sense.
Using compass-based odometry leaves a translational drift
error of approximately 2-5% of distance travelled.

-30

-25

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20 25 30

O
do

m
et

er
 Y

/m

Odometer X/m

RAW ODOMETRY

-5

0

5

10

15

20

25

30

35

40

45

-30 -25 -20 -15 -10 -5 0 5 10 15 20

O
do

m
et

er
 Y

/m

Odometer X/m

COMPASS-BASED ODOMETRY

Figure 3: Top: Raw Odometry. Bottom: Compass-Based
Odometry. The accumulated rotational drift in the robot’s
raw odometry was removed on-line using the compass
sense.



5 Open Space Detection

A fully connected, feedforward neural network with 6
inputs, 3 hidden units and 1 output was trained to asso-
ciate the sensory input in a given direction with the robot’s
ability to move by a pre-specified distance (1m) in that di-
rection. The output of this network was the probability of
open space in the given direction (figure 4).

Infrared

Sensors
Sonar

Sensors

probability
of open space

Symmetry Filter

Median Filter

1 output

3 hidden
units

6 inputs

10 inputs

58 inputs

Artificial
Neural
Network

3 sonar
3 infrared

5 sonar
5 infrared

29 sonar
29 infrared

Figure 4: Architecture for Open Space Detection. Two
pre-processing functions were applied to the sensory in-
put, then an artificial neural network was used to detect the
presence or absence of open space in a given direction.

5.1 Data Collection

The sensing strategy used by the robot consisted of ro-
tating its turret to obtain a detailed scan, consisting of 144
sonar and 144 infrared readings at 2.5 degree intervals. For
data collection, a scan was first taken, then the robot at-
tempted to move as far as possible in an arbitrary direc-
tion until an obstacle was detected, recording both the sen-
sor readings from the scan and the distance travelled. The
data was collected in several different areas of the com-
puter building at Manchester.

5.2 Pre-Processing

The recorded sensor readings were first processed to
take into account the heading of the robot. A subset of

58 of the readings, centred around the direction of travel,
was used as input to the classification mechanism. The fol-
lowing functions were then applied:

Median Filter. The robot’s raw sensor readings rarely
give accurate range measurements; the values may be too
high, e.g., due to specular reflections, or too low, e.g., due
to cross-talk or occlusions caused by moving people. To
reduce these effects, groups of 5 or 6 adjacent sensor read-
ings were combined to produce a single reading by taking
their median value. This resulted in five sonar and five in-
frared inputs to the next pre-processing stage.

Symmetry Filter. This function was used to exploit the
bilateral symmetry inherent in this classification task. For
example, the left-most sonar reading was combined with
the right-most sonar reading by taking the minimum of the
two values (i.e., the nearest of the two obstacles detected).
The middle-left and middle-right readings were similarly
combined. This resulted in three sonar and three infrared
inputs to the neural network, since the centre readings were
not affected by this operation.

5.3 Training and Testing

A key issue was that of misclassification errors. Though
the performance of the network used here was very good
(see results), any classification mechanism is bound to
make some errors. These errors will either be ‘false posi-
tives’, where the robot predicts open space when the space
is actually occupied, or ‘false negatives’, where the robot
predicts occupied space when the space is actually open.
In the exploration strategy presented, ‘false positives’ are
not a major problem, because subsequent movement by the
robot is used to verify whether the predicted places actually
exist. However, ‘false negatives’ would pose a problem, as
we do not want the robot to miss any areas of unexplored
territory.

The solution adopted here was to bias the classifier
mechanism into over-estimating the likelihood of open
space in a given direction, thereby producing more ‘false
positives’ but fewer ‘false negatives’ (none in the experi-
ments presented here). The network was trained to output
the probability of open space by using the cross-entropy er-
ror function instead of the sum-of-squares error normally
used in neural network training [1]. During testing, a bias
value (0 � 15) was added to the output of the network in or-
der to produce the desired over-estimates. An input pat-
tern was thus classified as “open space” if the output was
greater than a threshold of 0 � 5, and “occupied space” oth-
erwise.



6 Map Learning

6.1 Local Metric Relations

Whenever the robot moved between two distinct places
i and j for the first time, a new topological connection
was recorded in the map. In addition, the distance di j

and heading θi j of the robot between the two places was
recorded. The links between places were constrained to be
bi-directional, that is, di j

� d ji and θi j
� θ ji

� π. These
measurements were obtained using local dead reckoning
and matching of local range-finder scans constructed from
the robot’s sonar readings [3] (see also [17, 10]).

During subsequent traversals of an existing link in the
map, the measurements associated with the link were
adapted using the following rules taken from Yamauchi
and Beer [19]:

d
�
i j
� λdobs

���
1 � λ � di j �

θ
�
i j
� tan � 1 	 λsinθobs

���
1 � λ � sinθi j

λcosθobs
���

1 � λ � cosθi j 
 �
where the vector

�
dobs � θobs � refers to the observed dis-

placement, i.e., distance and heading, of the robot between
the two places, and the link adaptation rate, λ � 0 � 5 in these
experiments.

6.2 Consistency Maintenance

The problem addressed here was how to assign glob-
ally consistent coordinate values to the places in the robot’s
map. Each place in the map was represented by a Cartesian
coordinate

�
xi � yi � . A relaxation algorithm was used to find

an optimal set of coordinates to fit the observed measure-
ments, using only the local metric relations between the
places.

In this approach, each link in the map can be modelled
as a spring which connects two adjacent places i and j.
The spring reaches minimum energy when the relative dis-
placement between the coordinates of i and j is equal to
the vector

�
di j � θi j � measured by the robot [10, 7]. Thus,

global consistency is maintained in the map by minimising
the following energy function:

E � ∑
i

�
∑

j

�
xi � x j

�
di j cosθi j � 2 ��� yi � y j

�
di j sinθi j � 2 �

where ∑
�
j refers to the sum over the neighbours of a given

node. There are a number of different algorithms which
can be applied to solve this particular optimisation prob-
lem, including Gaussian elimination, stiffness methods and
expectation-maximisation [4, 10, 7, 13].

Figure 5: Left: floor plan of a corridor environment. Right:
the corresponding map acquired by the robot.

7 Results

The neural network was trained using 276 examples to
perform the open space classification task, resulting in a
test error of 7 � 6%, A validation error of 4 � 0% was observed
during the testing of the complete exploration system (this
was lower than the test error because the data used for
training and testing contained a higher proportion of “dif-
ficult” examples, such as junctions and corners).

The map-based exploration strategy was tested success-
fully in a number of untreated, real world environments at
our computer building, which contained transient changes
such as moving people, doors opening and closing, etc. An
example map acquired by the robot in a corridor environ-
ment of size 34m � 33m is shown in figure 5.

To assess the quality of the maps obtained, we con-
sidered the robot’s ability to navigate using its own self-
acquired map. Firstly, we considered the robot’s ability
to relocalise under global uncertainty, i.e., to recover its
position after becoming lost. To assess localisation per-
formance, the Uncertainty Coefficient U

�
L � R � was mea-

sured against the distance travelled by the robot from an
unknown starting position using wall-following (see fig-
ure 6). This statistic measures the extent to which the
robot’s response, R (the location estimates produced by
self-localisation) predicts the robot’s true location, L, as

U
�
L � R ��
 H

�
L ��� H

�
L � R �

H
�
L � �

H
�
L � � � ∑

j
p � j ln p � j �

H
�
L � R � � � ∑

i � j pi jln
pi j

pi � �
where p � j � ∑i pi j, pi � � ∑ j pi j, and pi j refers to the prob-
ability of the robot’s response being i when the robot’s true



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20

U
(L

|R
)

Distance/m

RELOCALISATION PERFORMANCE

Figure 6: Relocalisation performance U
�
L � R � under

global uncertainty in the corridor environment.

location was j. Full details of the experimental procedure
used to assess localisation performance can be found in [2].

Finally, the exploration system was validated through
its integration into a complete navigation system [3]. The
robot had to perform a delivery task, finding 100 different
routes through the corridor environment in figure 5. The
success rate was 100% when starting from a known loca-
tion and 92% when starting from a completely unknown
location, indicating the effectiveness of our approach.

8 Discussion

In this paper, we presented a complete map-based ex-
ploration system for a mobile robot. The basic mecha-
nisms included a compass, a topological map augmented
with metric information and a neural network trained to
detect areas of open space, combined with our previous
work on self-localisation using landmarks [2, 3]. Using
this approach, real world environments of several hundred
m2 were mapped independently by a Nomad 200 robot
without requiring off-line processing or human interven-
tion in the exploration process.

Future work will need to examine the problem of self-
orientation in more detail to improve the reliability of the
compass sense (section 3). Another fundamental problem
for any navigating robot is to build consistent maps in very
large environments containing loops. So far, mobile robots
have only been successful in “closing the loop” by us-
ing accurate range-finder sensing and precisely corrected
odometry [15]. This approach will inevitably fail once the
size of the environment is increased beyond the limits of
the robot’s mechanisms for position correction.

References

[1] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, ISBN 0-19-853864-2, 1995.

[2] T. Duckett and U. Nehmzow. Mobile robot self-localisation and
measurement of performance in middle scale environments. J.
Robotics and Autonomous Systems, 24(1–2), 1998.

[3] T. Duckett and U. Nehmzow. Knowing your place in real world
environments. In EUROBOT ’99, 3rd European Workshop on Ad-
vanced Mobile Robots. IEEE Computer Society Press, 1999.

[4] H.F. Durrant-Whyte. Integration, Coordination and Control of Mul-
tisensor Robot Systems. Kluwer Academic Publishers, Boston MA,
1988.

[5] T. Edlinger and G. Weiss. Exploration, navigation and self-
localisation in an autonomous mobile robot. In Autonomous Mobile
Systems, 1995.

[6] S. Engelson. Passive Map Learning and Visual Place Recognition.
PhD thesis, Dept. of Computer Science, Yale University, 1994.

[7] M. Golfarelli, D. Maio, and S. Rizzi. Elastic correction of dead-
reckoning errors in map building. In Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, pages 905–911, 1998.

[8] D. Kortenkamp and T. Weymouth. Topological mapping for mobile
robots using a combination of sonar and vision sensing. In AAAI-94,
pages 979–984, 1994.

[9] G. Li, B. Svensson, and A. Lansner. Self-orienting with on-line
learning of environmental features. In AISB ’97 Workshop on Spa-
tial Reasoning in Animals and Robots, 1997.

[10] F. Lu and E.E. Milios. Globally consistent range scan alignment for
environment mapping. J. Autonomous Robots, 4:333–349, 1997.

[11] H. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proc. IEEE Int. Conf. Robotics and Automation, pages
116–121, St. Louis, Missouri, 1985. IEEE Computer Society Press.

[12] U. Nehmzow. Autonomous acquisition of sensor-motor couplings
in robots. Technical Report ISSN 1361-6161, UMCS-94-11-1,
Dept. of Computer Science, Manchester University, 1994.

[13] H. Shatkay. Learning Models for Robot Navigation. PhD thesis,
Dept. of Computer Science, Brown University, 1998.

[14] A. Stevens, M. Stevens, and H. Durrant-Whyte. OXNAV : Reli-
able autonomous navigation. In Proc. IEEE Int. Conf. Robotics and
Automation, pages 2607–2612, 1995.

[15] S. Thrun. Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99, 1998.

[16] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dael-
laert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and
D. Schulz. MINERVA : A second-generation museum tour-guide
robot. In Proc. IEEE Int. Conf. Robotics and Automation, 1999.

[17] G. Weiss and E. von Puttkamer. A map based on laserscans without
geometric interpretation. In Proc. Intelligent Autonomous Systems
4 (IAS-4), pages 403–407, 1995.

[18] B. Yamauchi. A frontier-based approach for autonomous explo-
ration. In Proc. IEEE Int. Symposium on Computational Intelligence
in Robotics and Automation, 1997.

[19] B. Yamauchi and R. Beer. Spatial learning for navigation in dy-
namic environments. IEEE Transactions on Systems, Man and Cy-
bernetics Part B, 26(3), 1996.


