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Abstract

We propose topology-based maps as a new representa-
tion of the workspace of a mobile robot. These maps
capture the structure of the free space in the environ-
ment in terms of the basic topological notions of con-
nectivity and adjacency. Topology-based maps can be
automatically extracted from an occupancy grid built
from sensor data using techniques borrowed from the
image processing field. Since these techniques can be
soundly defined on fuzzy values, our approach is well
suited to deal with the uncertainty inherent in the
sensor data. Topology-based maps are fairly robust
with respect to sensor noise and to small environmen-
tal changes, and have nice computational properties.

1 Introduction

Building a representation of the environment is an im-
portant task for a mobile robot that aims at moving
autonomously in the surrounding space. In robotics,
the most common descriptions of the space are met-
ric maps and topological maps. A metric map repre-
sents the environment according to the absolute ge-
ometric position of the objects. A topological map
is a more abstract representation that describes rela-
tionships among features of the environment, without
any absolute reference system. Topological maps are
usually represented in graph form [8, 14, 6, 2].

Being more abstract, a topological maps has the ad-
vantage of being more compact and more stable with
respect to sensor noise and to small changes in the
environment. Unfortunately, the semantics associated
to topological maps are still somehow ambiguous. For
example, in the maps defined by Kuipers and Byun [8]
nodes represent places, characterized by sensor data,
and arcs represent paths between places, characterized
by control strategies. By contrast, the maps defined
by Thrun [14] are obtained by partitioning a proba-
bilistic occupancy grid into regions (nodes) separated
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by narrow passages (arcs) according to some measure
of clearance. Perhaps more puzzling, the topological
maps found in the literature seem to be rather de-
tached from a description of the environment in terms
of the usual notions of (mathematical) topology.

In this paper, we propose to build a representation
of the working space of the robot using concepts from
general topology. We call a representation of this type
a topology-based map. The semantics of these maps is
uniquely defined in terms of the topological structure
of the information. We assume that this information is
represented in a discrete form by a two-dimensional ar-
ray of cells, or gridmap. Standard topology, however,
cannot be directly applied to gridmaps because many
concepts need a continuous space, so we resort to dig-
ital topology. This discipline, used to study the topo-
logical properties of images, reformulates the general
topology for finite sets in a consistent way. The use
of digital topology makes our approach well founded,
since we define topological properties directly in a dis-
cretized space, the only one available to the robot.

In this work, we focus on topology-based maps built
from information about the free space in the environ-
ment, represented by an occupancy grid. Studying
directly the topology of free space, however, would
not be very useful since typically all the free space
mapped by the robot is connected. We then study the
topology induced by the shape of the free space. In
particular, we focus on large open spaces connected
by narrow passages, since these features are useful for
behavior-based navigation and self-localization. To
extract shape information, we use another tool from
the field of image processing: mathematical morphol-
ogy [1]. By the combined use of mathematical mor-
phology and digital topology we can build maps that
represent the topological structure of the space accord-
ing to some specific morphological criterion.

We use fuzzy logic to improve the robustness of our
maps in two ways. First, we account for the inherent
uncertainty of the sensor data using a fuzzy technique



to build the initial gridmap [10]. Second, we account
for the vagueness of the morphological concepts that
interest us, like “large open space,” using fuzzy math-
ematical morphology. Note that both mathematical
morphology and digital topology have been consis-
tently extended to the case of fuzzy values. Exper-
imental evidence suggests that the resulting topology-
based maps are fairly robust with respect to sensor
noise and to small modifications to the environment,.

The rest of this paper is organized as follows. The
next section briefly recalls the main ingredients needed
for our construction: fuzzy gridmaps, (fuzzy) digi-
tal topology, and (fuzzy) mathematical morphology.
The next two sections detail our extraction technique
in conceptual and in algorithmic terms, respectively.
Sec. 5 presents an experiment performed on real data.

2 Background

We define a gridmap I to be any two-dimensional ar-
ray of integer-coordinate points, whose elements are
called cells. In a binary gridmap the cells have values
in {0,1}, while in a fuzzy gridmap the cells have val-
ues in the real interval [0,1]. The values of the cells
define a subset M of I: in a binary gridmap, M is the
set cells that have value 1; in a fuzzy gridmap, M is
the fuzzy subset of cells identified by the membership
function p : I — [0,1]. In this paper, we only consider
fuzzy gridmaps whose elements take a finite number
of values in [0,1]. A useful way to think of a fuzzy
gridmap is as a stack of binary gridmaps, each one
obtained by cutting the fuzzy gridmap at some level
a € [0,1]. This stacking property is guaranteed by the
fact that the a-cuts are nested when « increases.

2.1 Digital topology

Digital topology is the study of topological properties
of images. First introduced by Rosenfeld in the sev-
enties for binary images [5], the approach has been
reformulated from Kovalesky [7] in the contest of gen-
eral topology. In 1979, Rosenfeld extended the digital
topology to gray-level images, considered as fuzzy sets
[11]. All the definitions we use in this section are the
one proposed by Rosenfeld [11], except the notion of
influence zone, defined by [15].

Let I be a fuzzy gridmap, and u the corresponding
membership function. Two cells in the array are said
to be 4-adjacent (resp., 8-adjacent) if they are distinct
and differ in at most one (resp., two) of their coordi-
nates. For a bidimensional gridmap with square cells,
4-adjacent cells share a common side, while 8-adjacent
cells have a side or a corner in common. In the fol-

lowing, we use “adjacent” to indicate both 4-adjacent
and 8-adjacent cells. The adjacency relation is fun-
damental to define the neighborhood of a cell, a basic
concept in topology. Given a cell p, the neighborhood
of p is the union of p with the set of its adjacent cells.

Another fundamental concept in topology is con-
nectedness. In binary digital topology, this concept is
defined as follows. Given two cells p and q of I, a path
from p to ¢ is a sequence of points ¢ = {p1,-..,Pn)
such that po = p,pn = ¢, and p; is adjacent to p;t1
fori = 1,...,n — 1. We then say that p and ¢ are
connected in M if there exists a path from p to ¢ en-
tirely in M. “Connected” is an equivalence relation,
and hence it partitions M in classes that we call con-
nected components. To extend this definition to fuzzy
sets, we need to introduce some more concepts.

Given a path p, the strength of p with respect to
p is defined as s,(p) = ming<i<p p(p;).- The de-
gree of connectedness c, of two points p and ¢ is
then defined by ¢, (p, ¢) = max, s, (o), where g ranges
over all the paths from p to ¢q. Two points p and
q are then said to be connected with respect to p
if c,(p,q) = min(u(p),u(g)), that is, if there is a
path o = (p1,...,pn) from p to g such that p(p;) >
min(pu(p), p(q)) for all 3.

Unlike the binary case, “connected” is not an equiv-
alence relation and it does not give us a partition.
However, it is still possible to define connected com-
ponents with partition-like properties. Let us define a
top (resp. bottom) of u as a maximal connected subset
IT of I on which p has constant and locally maximum
(resp. minimum) value. Two tops can be expanded
until they meet at some common border using the no-
tion of geodesic distance: a distance computed taking
into account the profile of i on the gridmap. We define
the influence zone Zp of a top II as the set of points
p € Ap such that the geodesic distance of p from II
is less than the geodesic distance of p from any other
top of p. For a a given pu, the influence zones Zy; are
uniquely determined, and they form a partition of I.
(See [15] for more formal definitions.)

In the rest of this paper, we take the sets Zy; as our
connected components. Two components Zy; and Zpys
are said to be adjacent if there is a point p € I which
is adjacent to a point p; € Zy; and a point py, € Zyyr.

2.2 Mathematical morphology

Mathematical morphology is a branch of image pro-
cessing concerned with the extraction of shape fea-
tures from a digital image. Initially defined for binary
images, mathematical morphology has been later ex-
tended to grey-scale images [12] and to fuzzy images
[1]. A nice characteristic of mathematical morphol-



Fig. 1: An ideal gridmap.

ogy is that most operations are defined starting from
a small structuring element, used as a probe, and two
elementary operations, called dilation and erosion.

Let I and K be two binary gridmaps, where I con-
tains the original image and K is the structural ele-
ment. The dilation of I by K is a new gridmap, de-
noted by I @ K, that has value 1 at point p if and only
if I(q) = 1 for some cell g in the K-neighborhood
of p, i.e., the cells for which K(q) = 1 once K is
centered on p. The erosion of I by K, denoted by
I © K, is defined in a similar way by replacing some
by all. Dilation and erosion have a nice duality prop-
erty: (I ® K) = (-I) © K, where K (z) = K(—xz).

Dilation and erosion with the same structuring el-
ement K can be combined to obtain the closure (o)
and opening (o) operators by:

TeK = (I®K)OK (1)
IToK = (IK)®K

Duality also holds for closure and opening. Closure
and opening are mainly used to single out parts of
the gridmap that do not match a given shape. For
example, consider a binary gridmap with black holes
of different diameters on a white surface: closing with
a binary disc erases the holes smaller than the disc.

The morphological operators have been extended
to fuzzy gridmaps in several ways. In this paper, we
follow [1]. Let I be a fuzzy gridmap and K a fuzzy
structuring element, with membership functions g and
v, respectively. Then we let

I8 K@) = spminlu(y),y - o))
[0K@) = nfmada()1-vly-2) )

Fuzzy closure and fuzzy opening are still defined by
(1) using definitions (2) for & and ©.

3 Topology-based maps

We now describe how we can use the above ingredients
to define and extract our topology-based maps. The
ability to define a consistent topology on a (fuzzy) dig-
ital grid allows us to give a topological representation

Fig. 2: Left: morphological opening. Right: con-
nected components. Bottom: topological graph.

of any characteristic of the robot’s workspace that can
be represented on a gridmap. In particular, we can
summarize the topological structure of this gridmap
in a graph where nodes represent connected compo-
nents, and arcs represent adjacency relationships be-
tween these components. Interestingly, this does not
depend on the specific meaning of the information rep-
resented in the gridmap: we can extract a topological
description of any useful characteristics of the envi-
ronment that can be mapped on a gridmap.

For example, suppose that the robot has a map of
the free space in the environment in the form of the
idealized (i.e., with no uncertainty) occupancy grid
shown in Fig. 1, where the white cells represent free
areas. A topological description of this gridmap gives
us the connectivity of the free-space. As we have noted
above, this description is not very interesting (we just
have two nodes) and we prefer to focus on topological
descriptions induced by the shape of the free space,
like the connectivity between large open spaces.

In order to extract the information about the “large
open spaces,” we apply a morphological opening to the
grid using as structuring element a disc of a given di-
ameter, say 17 cells. The choice of a disc is natural
one given that we do not assume any privileged direc-
tion in the environment. The result is shown in Fig. 2
(left): the white cells in the transformed grid are those
that belong to a large open space, that is, a free space
in which we can fit our disc; all the “narrow passages”
that cannot accommodate our disc have been closed.
The connected components of the transformed grid
are shown in Fig. 2 (right). The associated graph,
shown in Fig. 2 (bottom), consists of nodes represent-
ing connected components, and arcs representing the
adjacency relation. Since this graph must be used for
navigation, it may be useful to label the arcs with ad-
ditional information. For instance, we can check if an



Fig. 3: A fuzzy structural element to extract “large
open spaces.”

arc corresponds to a traversable passage by verifying
that there is a cell which is adjacent to the compo-
nents connected by this arc, and which is free (white)
in the original gridmap. Traversable arcs are marked
by thick lines in the picture.

The above procedure critically depends on a sharp
definition of what constitutes a “large open space” in
our environment, i.e., on the structuring element used
in the morphological opening. In our example, the
17-disc was too narrow to close the door on the right
side, hence the middle and the bottom-right rooms
have been considered as one open space (node C) in
the resulting topological graph. Using a larger disc
would result in a graph where these two rooms are
represented by distinct nodes. This behavior is clearly
undesirable, since it makes the result of the procedure
extremely sensitive to noise in the data. Fuzzy math-
ematical morphology allows us to extract shapes that
are less sharply defined by using a fuzzy structural el-
ement. For example, we can perform a fuzzy morpho-
logical opening using the structural element depicted
in Fig. 3, which incorporates a fuzzy notion of large.
A simple way to interpret this operation is to think
of this element as a discrete stacking of several discs.
Each disc is used for a crisp opening of the original
grid, and the results are stacked accordingly.

In the transformed grid, shown in Fig. 4 (left) the
value (grey level) in each cell is proportional to the
size of the largest disc that can be fit in the free space
and that covers that cell. Hence, this value precisely
captures the information of how much that cell belongs
to a large open space.

The result of a fuzzy opening is a fuzzy gridmap,
hence we need to use fuzzy digital topology in or-
der to extract its topological structure. Fig. 4 (right)
shows the connected components of this gridmap ac-
cording to definition given in the previous section. In-
terestingly, the borderlines, and hence the components
themselves, remain stable when the diameter of the
base of the conic structural element is varied from 25
cells to the full size of the gridmap. The corresponding
topological graph is shown in Fig. 4 (bottom).

As before, we can enrich this representation to add

Fig. 4: Left: fuzzy morphological opening. Right:
influence zones. Bottom: topological graph.
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extra topological information which is useful for nav-
igation. For example, we can label our graph using
the information contained in the gridmap obtained by
fuzzy erosion of the original one using our conic el-
ement. This transformed gridmap, shown in Fig. 5
(left), encodes information about the clearance at each
cell [13]: the maximum value of the cells in a connected
component gives the width of a space; the maximum
value of the cells in a borderline gives the clearance of
a passage. These values can be used to label the nodes
and arcs of the topological graph (Fig. 5, right).

The simple gridmap used in this section is ideal,
in that it does not contain any uncertainty about the
occupancy state of each cell. In practice, gridmaps
built from sensor data will inevitably be affected by
uncertainty and imprecision. A nice feature of fuzzy
morphological operators is that they can be applied
to fuzzy gridmaps as well. The uncertainty in the
initial data is propagated to the transformed gridmap,
and the topology is extracted from it. This makes the
resulting topology more robust than if we performed
a thresholding on the initial map.

4 Algorithm description

The procedure described in the previous section is
summarized by the following algorithm.

Fig. 5: Left: computing clearance by morphological
erosion. Right: labelled topological graph.



procedure build_topology (gridmap, n, 4)
K + MakeConicElement(n)

G1 « FuzzyErode(gridmap, K)

G2 + CFuzzyDilate(G1, K)

W « Watersheds(G2)

CC < FuseNodes(W, ¢)

graph < MakeGraph(CC)

return graph

end.
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This algorithm takes as input a gridmap (either
crisp or fuzzy), the size n of the conic structuring ele-
ment, and a filtering parameter §.

Steps 2 and 3 perform the stacked opening defined
above. Strictly speaking, this transformation requires
to perform one opening for each grey level in K, and
then to stack all the results. Unfortunately, this is
not equivalent in general to performing just one fuzzy
opening using the entire K. For a conic K, however, we
can define a specialized CFuzzyDilate operator such
that the composition of FuzzyErode and CFuzzyDilate
computes the desired transformation in time O(nm)
where m is the size of the gridmap.

Step 4 computes the connected components of G2
using an algorithm based on the segmentation tech-
nique proposed by [15]. The intuition is to see the
gridmap as a landscape with (white) valleys and
(black) peaks, and to extract the watershed that sep-
arates the valleys. This watershed partitions the
gridmap G2 into the Z11; components defined in Sec. 2:
W is a labeling of the cells in G2 where all the cells
in the same component are assigned the same label.
Since noise in the original gridmap produces small un-
dulations in the landscape which may result in spuri-
ous watersheds, in step 5 we fuse labels that are only
separated by a valley of depth less than § (see [9] for
a similar type of filtering).

Finally, in step 6 we build the topological graph: we
create a node for each label in CC; and an arc when-
ever a cell in the watershed is adjacent to two cells
with different labels in CC. The graph can be anno-
tated with additional information as explained above.

5 Experimental results

The proposed approach has been tested on gridmaps
built from real data collected in indoor environments.
The robot used is a Nomad 200: it has cylindrical
shape and is equipped with a ring of 16 Polaroid ul-
trasonic sensors. In the experiment reported here, the
robot explored an environment of 18 x9 meters consist-
ing of two parallel corridors merging into a large hall, a

Fig. 6: Fuzzy occupancy grid used in our experiment.

small area connected to the hall, and two rooms. Fig. 6
shows the fuzzy gridmap representing the free space
that was built using the technique described in [10].
Each cell represents a square of side 10cm. White
cells have received evidence of being empty; darker
cells have not—they are either occupied or unexplored.
(A dual gridmap, not used here, represents the oc-
cupied space.) The test environment was difficult to
reconstruct from sonar data, since the corridors had
windowed walls and the rooms were cluttered with
furniture; therefore the gridmap appears rather noisy.

The original gridmap was morphologically opened
with a fuzzy cone having diameter 23 cells—that is, we
regard every space larger than 2.3m as a fully open
space.! This resulted in the map shown in Fig. 7 (top).
Large open spaces are characterized by lighter gray ar-
eas, while narrow spaces are darker. Note that the na-
ture of the information represented in the original map
is completely different from the information contained
in the transformed map: in the former, each cell only
represents its own state; in the latter, it summarizes
some characteristic of its neighborhood.

The transformed map can be seen as a landscape
where tops are lighter areas, while valleys are darker.
This is best seen in the contour representation shown
in Fig. 7 (mid). A connected component, as defined
above, is composed of the top and the surrounding
regions down to the valleys. Fig. 7 (bottom) shows
the connected components found by the watershed
algorithm, using a filtering parameter § = 50. The
free-space has been correctly partitioned into a set of
connected open spaces. Note that this partition cor-
responds intuitively to the “natural” topology of the
given environment for a human observer.

This topology is represented as an annotated graph
in Fig. 8 (top). Nodes and arcs have been labeled by
their clearance, obtained from the eroded map shown

1This parameter is chosen according to the scale of the en-
vironment, but it is not critical. In our experiment, all values
between 19 and 49 result in the same topology.



Fig. 7: Extracting a topology-based map from the
grid. Top: morphological opening. Middle: contour
representation. Bottom: connected components.

in Fig. 8 (bottom) as explained above. The B and
G nodes are due to false reflections that created false
open spaces in the original map; these spurious nodes
can be easily detected because they are not connected
(B) or they are too small (G).

It is interesting to note that we could extract the
topology from the eroded map instead of the opened
map. This would result in a graph where nodes are
spaces separated by local minima of clearance, in the
spirit of [14]. A comparison between Fig. 7 (mid) and
Fig. 8 (bottom), however, reveals that this topology
would be extremely sensitive to small irregularities in
the environment and to noise in the data. For exam-
ple, this topology would have two distinct nodes for E
and several nodes for A, while it would not be able to
separate node I from L. Different data from the same

Fig. 8: Top: the annotated topology graph. Bottom:
the eroded map used to compute clearance.

environment would result in a different topology.
Our algorithm took 580 msec on a Pentium-II pro-
cessor at 400 MHz to process a gridmap of 128 x 256
cells. Extraction of topology-based maps is quite fast,
and can be performed in real time during navigation.

6 Conclusions

Topology-based maps provide a new notion of topo-
logical maps. The distinctive feature of these maps is
the fact that they have a well-founded semantics based
on concepts of general topology. Topology-based maps
also offer a number of practical advantages. First, they
can be used to describe the structure of any feature
that can be mapped on a grid, not just free space.
Second, they accommodate the uncertainty inherent
in sensor data in a natural way since the topology is
directly defined on fuzzy digital grids. Third, these
maps are robust with respect to sensor noise and to
small environmental changes. Finally, the extraction
procedure of these maps is almost parameter-free, and
it can be performed in real-time.

A peculiar aspect of our approach is the use of im-
age processing techniques to extract features from a
sonar-based representation of the space. Although it
was earlier suggested by Elfes [3], this idea has not
been extensively exploited until now (but see [16]).
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Fig. 9: Using the topology-based map for navigation.

We have used topology-based maps to plan and ex-
ecute behavior-based navigation strategies on our mo-
bile robots. Fig. 9 shows the result of inputting the
map in Fig. 8 (top) into our navigation system. The
map has been enriched by information about the shape
and orientation of each region, again computed by us-
ing image processing techniques. Spaces have been
classified into rooms and corridors according to their
eccentricity. The robot uses different behaviors to tra-
verse a room, a corridor, or a passage between regions.
(See [4] for details.)

In the near future, we will perform experiments
where we extract topology-based maps from features
other than free space; in particular, we plan to use an
artificial nose to produce a topological olfactive map of
the environment. We will also explore the integration
between topology-based maps and maps at other lev-
els of abstraction; and investigate the important issue
of using our maps for performing self-localization.
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