
Active Markov Localization for Mobile Robots

Dieter Fox, Wolfram Burgard

Dept. of Computer Science III, University of Bonn,
D-53117 Bonn, Germany1

Sebastian Thrun

Dept. of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Localization is the problem of determining the position of a mobile robot from sensor data. Most existing
localization approaches are passive, i.e., they do not exploit the opportunity to control the robot’s effectors
during localization. This paper proposes anactive localization approach. The approach is based on Markov
localization and provides rational criteria for (1) setting the robot’s motion direction (exploration), and (2)
determining the pointing direction of the sensors so as to most efficiently localize the robot. Furthermore, it
is able to deal with noisy sensors and approximative world models. The appropriateness of our approach is
demonstrated empirically using a mobile robot in a structured office environment.
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1 Introduction

To navigate reliably in indoor environments, a
mobile robot must know where it is. Over the last
few years, there has been a tremendous scientific
interest in algorithms for estimating a robot’s lo-
cation from sensor data. A recent book on this
issue [3] illustrates the importance of the local-
ization problem and provides a unique descrip-
tion of the state-of-the-art.

The majority of existing approaches to localiza-

1 The work of these authors was partially supported
by EC Contract No ERBFMRX-CT96-0049 under
the TMR Programme.

tion arepassive. Passive localization exclusively
addresses the estimation of the location based on
an incoming stream of sensor data. It rests on
the assumption that neither robot motion, nor the
pointing direction of the robot’s sensors can be
controlled.Active localizationassumes that dur-
ing localization, the localization routine has par-
tial or full control over the robot, providing the
opportunity to increase the efficiency and the ro-
bustness of localization. Key open issues in ac-
tive localization are“where to move”and“where
to look” so as to best localize the robot.

This paper demonstrates that active localization
is a promising research direction for developing
more efficient and more robust localization meth-
ods. In other sub-fields of artificial intelligence
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(such as heuristic search and machine learning),
the value of active control during learning and
problem solving has long been recognized. It has
been shown, both through theoretical analysis
and practical experimentation, that the complex-
ity of achieving a task can be greatly reduced
by actively interacting with the environment. For
example, choosing the right action during ex-
ploration can reduce exponential complexity to
low-degree polynomial complexity, as for exam-
ple shown in Koenig’s and Thrun’s work on ex-
ploration in heuristic search and learning control
[14,21]. Similarly, active vision (see e.g., [1]) has
also led to results superior to passive approaches
to computer vision. In the context of mobile robot
localization, actively controlling a robot is par-
ticularly beneficial when the environment pos-
sesses relatively few features that enable a robot
to unambiguously determine its location. This is
the case in many office environments. For exam-
ple, corridors and offices often look alike for a
mobile robot, hence random motion or perpetual
wall following is often incapable for determining
a robot’s position, or very inefficient.

In this paper we demonstrate that actively con-
trolling the robot’s actuators can significantly im-
prove the efficiency of localization. Our frame-
work is based onMarkov localization, a pas-
sive probabilistic approach to localization which
was recently developed in different variants by
[6,11,17,19]. At any point in time, Markov local-
ization maintains a probability density (belief)
over the entire configuration space of the robot;
however, it does not provide an answer as to how
to control the robot’s actuators. The guiding prin-
ciple of our approach is to control the actuators
so as to minimize future expected uncertainty.
Uncertainty is measured by the entropy of fu-
ture belief distributions. By choosing actions to
minimize the expected future uncertainty, the ap-
proach is capable of actively localizing the robot.

The approach is empirically validated in the con-
text of two localization problems:

(1) Active navigation, which addresses the
questions of where to move next, and

(2) Active sensing,which addresses the prob-
lem of what sensors to use and where to
point them.

Our implementation assumes that initially, the
robot is given a metric map of its environment,
but it does not know where it is. Notice that this is
a difficult localization problem; most existing ap-
proaches (see, e.g., [3]) concentrate on situations
where the initial robot location is known and are
not capable of localizing a robot from scratch.
Our approach has been empirically tested using
a mobile robot equipped with a circular array
of 24 ultrasound sensors. The key experimen-
tal result is that the efficiency of localization is
improved drastically by actively controlling the
robot’s motion direction and by actively control-
ling its sensors.

2 Related Work

While most research has concentrated on passive
localization (see e.g., [3]), active localization has
received considerably little attention in the mo-
bile robotics community. This is primarily be-
cause the majority of literature concerned with
robot control (e.g., the planning community) as-
sumes that the position of the robot is known,
whereas research on localization has mainly fo-
cused on the estimation problem itself. In recent
years, navigation under uncertainty has been ad-
dressed by a few researchers [17,19], who de-
veloped the Markov navigation paradigm. How-
ever, both their approaches do not aim at ac-
tively localizing the robot. Localization occurs as
a side effect when operating the robot under un-
certainty. Moreover, as argued by Kaelbling [11],
there exist conditions under which the approach
reported in [19] can exhibit cyclic behavior due
to uncertainty in localization.
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On the forefront of localization driven naviga-
tion, [15] used a rehearsal procedure to check
whether a location has been visited while learn-
ing a map. In [13] the problem of active local-
ization is treated theoretically in finding “critical
directions within the environment” under the as-
sumption of perfect sensors.

In [12], acting in the environment is modeled
as a partially observable Markov decision pro-
cess (POMDP). This approach derives anoptimal
strategy for moving to a target location given that
the position of the robot is not known perfectly.
In [11] this method is extended by actions allow-
ing the robot to improve its position estimation.
This is done by minimizing the expected entropy
after the immediate next robot control action.
While this approach is computationally tractable,
its greediness might prevent it from finding effi-
cient solutions in realistic environments. For ex-
ample, if disambiguating the robot’s position re-
quires the robot to move to a remote location,
greedy single-step entropy minimization can fail
to make the robot move there. In our own work
[20], we have developed robot exploration tech-
niques for efficiently mapping unknown envi-
ronments. While such methods give better-than-
random results when applied to localization, their
primary goal is not to localize a robot, and there
are situations in which they will fail to do so.

3 Markov Localization

3.1 General Equations

This section briefly outlines the basic Markov lo-
calization algorithm upon which our approach is
based (see [18] for a detailed introduction). The
key idea of Markov localization is to compute
a probability distribution over all possible loca-
tions in the environment.Bel(Lt = l) denotes
the robot’s belief of being at positionl at timet.

Here,l is a location inx-y-� space wherex and
y are Cartesian coordinates and� is the robot’s
orientation. Initially,Bel(L0) reflects the initial
state of knowledge: if the robot knows its starting
position,Bel(L0) is centered on the correct lo-
cation; if the robot does not know its initial loca-
tion, Bel(L0) is uniformly distributed to reflect
the global uncertainty of the robot—the latter is
the case in all our experiments.

The beliefBel is updated whenever . . .

. . . the robot moves.Robot motion is modeled
by the conditional probabilitypa(l j l0). Pa(l j
l0) denotes the probability that motion action
a, when executed atl0, carries the robot tol.
pa(l j l

0) is used to update the belief upon
robot motion, wheredBel(Lt = l) denotes the
resulting belief at timet:

dBel(Lt = l) 
X
l0

pa(l j l
0) Bel(Lt�1 = l0) (1)

In our implementation,pa(l j l0) is obtained
from a model of the robot’s kinematics.

. . . the robot senses.Let s denote a sensor read-
ing, andp(s j l) the likelihood of perceiving
s at l. The probabilityp(s j l) is usually re-
ferred to asmap of the environment, since it
specifies the probability of observations at the
different locations in the environment. When
sensings, the belief is updated according to
the following rule:

Bel(Lt = l) 
p(s j l) dBel(Lt = l)

p(s)
(2)

Herep(s) is a normalizer that ensures that the
beliefBel sums up to 1 over alll.

While our description of Markov navigation is
brief, it is important that the reader grasps the
essentials of the approach: The robot maintains
a belief distributionBel(L) which is updated
upon robot motion, and upon the arrival of sen-
sor data. Such probabilistic representations are
well-suited for mobile robot localization due to
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their ability to handle ambiguities and to repre-
sent degree-of-belief.

3.2 Position Probability Grids

While all implementations of Markov localiza-
tion rely on the update cycle presented in the pre-
vious section, the existing implementations can
be distinguished particularly by the discretiza-
tion of the state spaceL and the world model
they rely on. [17,19,11,10] use atopologicalrep-
resentation of the belief state, where each possi-
ble locationl corresponds to a node in a topolog-
ical map of the environment. Due to the nature
of this representation, the sensingss are abstract
features extracted from proximity sensors (e.g. a
percepts can be the detection of a T-junction be-
tween two hallways within an office building).

In contrast to these techniques, our implementa-
tion is based on a fine-grained,geometricvariant
of Markov localization, where the spatial resolu-
tion is usually between 10 and 15 cm and the an-
gular resolution is usually 1 or 2 degrees. We ob-
tain the likelihoodp(s j l) directly from a metric
model of the environment and a model of prox-
imity sensors. The advantage of this approach is
that it can operate based on the raw data of prox-
imity sensors and thus permits the exploitation of
arbitrary geometric features of the environment
such as the width of a corridor or the size of a
cupboard. Additionally, it can easily be extended
to incorporate the abstract features or landmarks
used in [17,19,11]. The disadvantage of this grid-
based method lies in the huge state space which
has to be maintained. For a mid-size environment
of size30 � 30m2 and an angular resolution of
2� the state space consists of7; 200; 000 states.
To deal with such state spaces in real-time, we
modified the basic approach in several ways In
essence, our efficient implementation is based on
the following two techniques, which reduce the
complexity by several orders of magnitude:

(1) Pre-computation.The sensor modelp(s j l)
for proximity sensors is pre-computed based on
a map and stored in a large look-up table. More
specifically, our approach pre-computes for each
x-y location and each possible sensor angle� the
distanceo to the nearest obstacle in that direction,
which is the expected measurement in a noise-
free world. During localization, probabilities of
the typep(s j o) are computed by a mixture
of a Gaussian-uniform and a geometric density
function. An example of such a function given a
specific distanceo is depicted in Figure 1.
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Fig. 1. Sensor model of ultrasound sensors and
laser-range finders.

Please note that the higher accuracy of laser-
range finders versus ultrasound sensors is rep-
resented by a smaller standard deviation of the
Gaussian distribution. With this sensor model,
computingp(s j l) amounts to a fast series of
two table look-ups (see [5] for more details).

(2) Selective Computation.Most of the time the
probability mass is centered on a small number of
location. With the exception of the initial global
localization phase, the vast majority of probabil-
ities Bel(L = l) are usually close to 0 and can
safely be ignored. This observation is the basis
for a selective computation scheme, which en-
hances the computational speed of the algorithm.
Our implementation only considers locationsl
for whichBel(L = l) is above a certain thresh-
old2 (see [2] for more details).

2 In our current implementation� is set to 1% of
the a priori position probability.
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With these modifications, the time required for
processing a sensor scan usually takes less than
0.2 seconds on an Intel Pentium-200 processor.

4 Active Markov Localization

Position probability grids have been shown to
be able to robustly estimate the position of a
robot in unstructured and populated environ-
ments [6,4,9,8]. However, Markov localization
is passive since it provides no criteria on how
to control the robot (e.g. in order to resolve am-
biguities). In this section we will derive criteria
on how to control the actuators of the robot so
as to best localize a robot.

4.1 General Equations

To choose optimal actions we have to trade off
the utilityU(a) and costsC(a) of each individual
actiona.

4.1.1 Utility of Actions

In order to eliminate uncertainty in the position
estimateBel(L), the robot must choose actions
which help it distinguish different locations. The
entropy of the belief, obtained by the following
formula

H(L) = �
X
l

Bel(L = l) logBel(L = l); (3)

measures the uncertainty in the robot position: If
H(L) = 0, Bel(L) is centered on a single posi-
tion, whereas the entropy is maximal, if the robot
is completely uncertain andBel(L) is uniformly
distributed.

LetEa[H(Lt+1)] denote the expected entropyaf-
ter having performed actiona at timet andaf-
ter having fired the sensors of the robot; then we

can measure the utilityUt(a) of performing an
actiona by the decrease in uncertainty:

Ut(a)=H(Lt)� Ea[H(Lt+1)] (4)

By averaging over all possible sensingss, we
obtain Eq. (5). Herep(s j a) is the probability of
perceiving sensings after execution of actiona.

Ea[H(Lt+1)]

=
X
s

H(Lt+1 j s; a)p(s j a) (5)

=�
X
s;l

Bel(Lt+1 = l j s; a) �

logBel(Lt+1 = l j s; a) p(s j a) (6)

=�
X
s;l

p(s j l) Bel(Lt+1 = l j a) �

log
p(s j l)Bel(Lt+1 = l j a)

p(s j a)
(7)

Let Bel(Lt+1 = l j s; a) denote the belief of
being at positionl after having performeda and
perceiveds; then expression (6) is obtained from
the definition of the entropy given in Eq. (3). By
applying the Markov update equations (1) and (2)
we finally get Eq. (7) for computing the expected
entropy for actiona. Here,p(s j a) serves as a
normalizer ensuring thatBel(Lt+1) sums up to
one over alll.

4.1.2 Costs of Actions

To find the best action we have to trade off the
utility of each action against the cost of executing
the action. CostsCt(a) strongly depends on the
particular actions and can range from the time
needed to perform an action to the amount of en-
ergy used up by the action (see e.g. Section 4.2).

4.1.3 Action Selection

Given the utility and costs of actions, the robot
chooses at any pointt in time the actiona� that
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maximizes

a� =argmax
a

(Ut(a)� � � Ct(a)): (8)

Here� � 0 determines the relative importance of
certainty versus costs. The choice of� depends
on the application. In our experiments,� was set
to 1.

In the next two sections we will present applica-
tions of this general scheme to (1) actively navi-
gating the robot and to (2) actively choosing the
optimal sensing direction.

4.2 Active Navigation

Active navigation addresses the problem of de-
termining where to move so as to best position
the robot. At first glance, one might use simple
motor control actions (such as “move 1 meter
forward”) as basic actions in active navigation.
However, just looking at the immediate next mo-
tor command is often insufficient. For example,
Figure 2 shows a typical situation occuring dur-
ing global localization in our department. Here
the robot was placed in the corridor and the fig-
ure gives the belief stateBel(L) after some me-
ters of random motion within this corridor (more
likely positions are darker). The two local max-
ima stem from the symmetry of the corridor and
in such a situation the robot has to move into one
of the offices in order to uniquely determine its
position.

We have chosen to consider arbitrary target
points as atomic actions in active navigation.
Target points are specified relative to the cur-
rent robot location, not in absolute coordinates.
For example, an actiona = move(�9m;�4m)
will make the robot move to a location 9 me-
ters behind it and 4 meters to the left. Because
actions are represented relative to the robot’s
position, the absolute position of such targets

local maxima

Fig. 2. Outline of the department along with
position probabilities.

strongly depends on the actual belief of the
position estimate. Figure 3 shows a situation
where the belief is concentrated on the two po-
sitions marked by the big circles. The action
a = move(�9m;�4m) might thus carry the
robot to the location marked “1” or to the loca-
tion marked “2”.

move<-9m,-4m>

1

2

Fig. 3. Absolute positions of target points.

To see, letfa(l) be the coordinate transforma-
tion, which expresses the real-world coordinates
of the target location of actiona, assuming that
the robot is atl. Further letaf and as denote
the forward and the sideward component of the
movement actiona, respectively. Then the three
components of the target point of actiona exe-
cuted at locationl are given by Eq. (9).

[fa(l)]x = lx + cos l�af + sin l�as
[fa(l)]y = ly + sin l�af � cos l�as (9)

[fa(l)]� = l� + a�

The remainder of this section specifies the com-
putation of the utility and the costs of navigation
actions.
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4.2.1 Utility of Navigation Actions

In order to determine the utility of moving to a
relative target location using Eq. (7) we have to
specify the entropy expected upon executing a
navigation actiona. To computeBel(Lt+1 j a)
we apply the inverse of the coordinate transfor-
mation given in Eq. (9) and get the following
equation (compare Eq. (7)):

Ea[H(Lt+1)] =�
X
s;l

p(s j l) Bel(Lt = fa
�1(l)) �

log
p(s j l)Bel(Lt = fa

�1(l))

p(s j a)
(10)

4.2.2 Costs of Navigation Actions

To estimateC(a) for an actiona we estimate the
expected costs on the cost-optimal path from the
current location of the robot to the target location.
To do so, our approach rests on the assumption
that a map of the environment is available, which
specifies which pointl is occupied and which one
is not. In our implementation the world model is
given as an occupancy grid map.

Occupancy probabilities: Let pocc(l) denote
the probability that locationl is blocked by an
obstacle. The robot has to compute the proba-
bility that a target pointa is occupied. Recall
that the robot does not know its exact location;
thus, it must estimate the probability that a tar-
get pointa is occupied. This probability will be
denotedpocc(a). Geometric considerations per-
mit the “translation” frompocc(l) (in real-world
coordinates) topocc(a) (in robot coordinates):

pocc(a)=
X
l

Bel(L = l) pocc(fa(l)) (11)

Here,fa(l) is the coordinate transformation in-
troduced in Eq. (9). Thus,pocc(fa(l)) is the oc-
cupancy probability of the positionfa(l) reached

when executing actiona at positionl. The ex-
pected occupancy probabilitypocc(a) of the tar-
get point reached by actiona is then obtained
by averaging over all locationsl, weighted by
the robot’s subjective beliefBel(L = l) of being
there. The result is the expected ocupancy of a
point a relative to the robot.

Cost and cost-optimal paths:Based onpocc(a),
the expected path length and the cost-optimal
policy can be obtained throughvalue iteration,
a popular version of dynamic programming (see
e.g., [16] for details). Value iteration assigns to
each locationa a value v(a) that represents its
distance to the robot. Initially,v(a) is set to 0
for the locationa = (0; 0) (which is the robot’s
location), and1 for all other locationsa. The
value functionv(a) is then updated recursively
according to the following rule:

v(a) � pocc(a) + min
b
[v(b)] (12)

Herev(b) is minimized over allneighborsof a,
i.e., all locations that can be reached froma with
a single, atomic motor command. Eq. (12) as-
sumes that the costs for traversing a pointa is
proportional to the probability thata is occupied
(pocc(a)). Iteratively applying this equation leads
to the cost functionC(a) for reaching any point
a relative to the robot, and hill climbing inv
(starting ata) gives the cost-optimal path from
the robot’s current position to any locationa.

This completes the description of active naviga-
tion with the purpose of localization. To summa-
rize, actions represent arbitrary target points rel-
ative to the robot’s current position. Actions are
selected by maximizing a weighted sum of (1)
expected decrease in uncertainty (entropy) and
(2) costs of moving there. Costs are considered
because they may vary drastically between dif-
ferent target points.
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4.3 Active Sensing

By active sensing we attack the problem of where
to point the robot’s sensors so as to best local-
ize the robot. Corresponding to active navigation
this is realized by pointing the sensor into the
direction which maximizes the expected utility.

4.3.1 Utility of Sensing Actions

To see, leta� = point(�) denote the action of
pointing the sensor into the direction� relative
to the robot’s orientation. The expected entropy
of such an action is given in Eq. (13) (compare
Eq. (7)).

Ea� [H(Lt+1)] =�
X
s�;l

p(s� j l) Bel(Lt = l) �

log
p(s� j l)Bel(Lt = l)

p(s� j a)
(13)

Heres� are only those sensings perceivable in
the corresponding direction�. Please note that
we replacedBel(Lt+1 = l j a�) in Eq. (7) by
Bel(Lt = l) because pointing a sensor in a spe-
cific direction does not change the location of the
robot.

In this work we assume that the costs for point-
ing a sensor do not depend on the pointing di-
rection. Thus we can neglect costs during active
sensing and select the pointing direction depend-
ing solely on the utility.

5 Experimental Results

In this section we test the influence of our active
extension to Markov localization on the perfor-
mance of the position estimation.

5.1 Efficient Implementation

The active navigation and sensing methods de-
scribed here have been implemented and tested
using position probability gridsintroduced in
Section 3.2. In our implementation of active nav-
igation the discretization of the possible actions
is as small as the resolution of the applied posi-
tion probability grid. The complexity of comput-
ing the utility of a single action is inO(jLj � jSj),
wherejLj is the number of possible locations and
jSj is the number of possible sensings (compare
Eq. (7)). This results in an overall complexity of
O(jLj2 � jSj) for computing the best actiona ac-
cording to Eq. (4). In order to make the compu-
tation of the utilities tractable we approximateL
by a setLm of m Gaussian densities with means
�i 2 L. The equations presented in Section 4 are
only applied to the means�i. This simplification
is somewhat justified by the observation that in
practice,Bel(L) is usually quickly centered on a
small number of hypotheses and approximately
zero anywhere else3 . The centers of the Gaus-
sians�i are computed at runtime, by scanning
the belief state for local maximal whose prob-
ability Bel(L = l) exceeds a certain threshold.
While this modification often reduces the size of
jLj by more than four orders of magnitude we
are convinced that the set of these local maxima
represents the most important aspects of the be-
lief state at a sufficient rich level. Together with
the fast sensor model introduced in Section 3.2
action selection can be performed in reasonable
time for active navigation and in real-time for
active sensing (see next sections).

3 Before this concentration of the belief state is es-
tablished, the technique introduced here does not ap-
ply.
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Fig. 4. (a) Environment and path of the robot. (b) BeliefBel(L) and (c) occupancy probabilities
pocc(a) at pos. 2.

(a) (b) (c)

Fig. 5. (a) Expected costsC(a), (b) utility U(a), and (c) payoffU(a)� �C(a) at pos. 2.

5.2 Active navigation

Active navigation was tested by placing the robot
in the corridor of our department as plotted in
Figure 4 (a). Notice that the corridor in this en-
vironment is basically symmetric and possesses
various places that look alike, making it diffi-
cult for the robot to determine where it is. In this
environment, the robot must move into one of
the offices, since only here it finds distinguishing
features due to the different furniture in the of-
fices. The state of the doors has no influence on
the position estimation itself and is only used for
determining the expected costs of moving to the
different target points. In this particular experi-
ment, the robot is only able to uniquely localize
itself by moving either into room B or C.

In a total of 10 additional experiments, random
wandering consistently failed to localize the
robot. Please note that wall following is less ef-
ficient than random wandering, since it prevents

the robot from moving into rooms. A simple
strategy might be to follow a wall until the next
door is reached and to move into the correspond-
ing room. Whereas this approach would lead to
an efficient solution in this situation, it cannot be
applied in arbitrary and possibly less structured
environments. In more than 20 experiments us-
ing the active navigation approach presented
here, the robot always managed to localize itself
in a considerably short amount of time.

Figure 4 (a) also shows a representative exam-
ple of the path taken during active exploration.
In this particular run we started the robot at posi-
tion 1 in the corridor facing south-west. The task
of the robot was to determine its position within
the environment and then to move into roomA
(so that we could see that localization was suc-
cessful).

In order to deal with the computational com-
plexity of active localization (see Section 5.1),
the robot starts with random motion until the be-
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lief is concentrated on several local maxima. Af-
ter about ten meters of such random motion, the
robot reached position 2 (c.F. 4(a)). Figure 4 (b)
depicts the beliefBel(L) at this point in time
(more likely positions are darker). The positions
and orientations of the six local maxima consid-
ered for computing the utility and costs of ac-
tions are marked by the six circles.

The expected occupancy probabilitiespocc(a),
obtained by Eq. (11), are depicted in Figure 4 (c).
High probabilities are shown in dark colors.
Note that this figure roughly corresponds to a
weighted overlay of the environmental map rel-
ative to the six local maxima, where the weights
are given by the probabilities of these maxima.
Figure 4 (c) also contains the origin of the cor-
responding coordinate system. This point rep-
resents the current position of the robot or the
action a = move(0m; 0m), respectively (with
robot facing right). Figure 5 (a) displays the
expected costs for reaching the different target
points. These costs have been computed using
value iteration based on Eq. (12). Figure 5 (b)
shows the utility of the target points, according
to Eq. (4). As can be seen there, the expected
decrease in uncertainty of locations in rooms is
high, thus making them favorable for localiza-
tion. The utility is also high, however, for the
two ends of the corridor, since those can fur-
ther reduce uncertainty. Based on the utility-cost
trade-off depicted in Figure 5 (c), the robot now
decides to first pick a target at the end of the
corridor.

At this point it is important to notice that the
exact trajectory from the current position to the
target point cannot be computed off-line. This
is due to unavoidable inaccuracies in the world
model and to unforeseen obstacles in populated
environments such as our office. These difficul-
ties are increased if the position of the robot is
not known, as is the case during localization.
To overcome these problems the robot must be
controlled by a reactive collision avoidance tech-

nique. In our implementation a global planning
module uses dynamic programming as described
in section 4.2 to generate a cost minimal path to
the target location (see [20]). Intermediate tar-
get points on this path are presented to our reac-
tive collision avoidance technique described in
[7]. The collision avoidance then generates mo-
tion commands to safely guide the robot to these
targets. An overview of the architecture of the
navigation system is given in [22,4].

After having reached the end of the corridor (po-
sition 3 in Figure 4 (a)) the belief state contains
only two local maxima (see Figure 6 (a)). The
occupancy probabilities and the resulting costs
of the different actions for this belief are depicted
in Figure 6 (b) and (c), respectively. Please note
that due to the state of the doors, the costs for
reaching room B or C are remarkably lower than
those for reaching the other rooms. The ambigu-
ity in the belief displayed in Figure 6 (a) can no
longer be resolved without leaving the corridor.
Accordingly the utility shown in Figure 7 (a) is
low for target points in the corridor compared
to the utility of actions which guide the robot
into the rooms. Because of the state of the doors
and the resulting costs, the overall payoff as dis-
played in Figure 7 (b) is maximal for target points
in rooms B and C.

As shown in Figure 4 (a) the robot decided to
move into the room behind it on the right, which
in this case turned out to be room B. Here the
robot has been able to resolve the ambiguity be-
tween the rooms B and C based on the different
furniture in the two rooms. After having uniquely
determined its location the robot moved straight
to the target location in room A. Figure 7 (c)
shows the belief state at this point. Please note
that only ultrasound sensors were used in these
experiments.
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(a) (b) (c)

Fig. 6. (a) BeliefBel(L) at pos. 3, (b) occupancy probabilitiespocc(a), and (c) expected costsC(a).

(a) (b) (c)

Fig. 7. (a) UtilityU(a), (b) payoffU(a)� �C(a) at pos. 3, and (c) final belief.

5.3 Active Sensing

In the following experiments we demonstrate
how the efficiency of localization can be im-
proved by choosing the optimal pointing direc-
tion of the robot’s sensors. Our experiments are
conducted with two different sensors (ultrasound
and laser-range finder ) in order to demonstrate
the ability of our technique to select the kind of
sensor which is most appropriate in the given
situation (e.g. a camera mounted on a pan head
with two different zoom values). The differ-
ence between ultrasound sensors and laser-range
finders lies in their accuracy. While ultrasound
sensors have an angular resolution of15�, our
laser-range finders have an angular resolution
of 1�. In addition to this, laser-range finders are
able to measure obstacles more accurate than
ultrasound sensors. Please note that in our ap-
proach these differences are represented solely
in the model of the sensors, specifically in the
probabilitiesp(s j o) of measuring distances if

an obstacle is placed in distanceo (c.F. 1).

Figure 8 shows the setup of the experiments: the
robot was placed in the corridor of our depart-
ment and moved up and down with a constant
velocity of 30 cm/sec. Obviously, this corridor
(23� 4:5m2, all doors closed) is symmetric. In
order to allow the robot to uniquely determine
its location we installed a single box on one side
of the corridor. This obstacle could only be de-
tected by the robot’s ultrasound sensors. Thus, to
uniquely determine its location, the robot had to
choose ultrasound sensors pointing towards this
box.

Path of robot

Only detectable by sonars

Fig. 8. Experimental setup.

To simulate active sensing, we allowed the robot
to read only a single sensor at any point in time.
As a passive method, we chose a sensor at ran-
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Fig. 9. Estimation error when using (a) only ultrasound, (b) only laser-range finder, and (c) both.

dom. This passive method was compared to our
active approach, where sensors are according to
Eq. (13). To evaluate the difference between the
two approaches we compute the error in local-
ization measured by theL1 norm, weighted by
Bel(l). In the first experiment the robot was only
allowed to choose among its 24 ultrasound sen-
sors. The results are depicted in Figure 9 (a).
This figure plots the localization error as a func-
tion of the time, averaged over 12 runs, along
with their 95% confidence intervals (bars). Ap-
parently, the error decreases significantly faster
when sensors are selected actively (solid line).
This result clearly demonstrates the benefit of
active sensing.

Figure 9 (b) depicts the corresponding results for
the laser-range finder. In this case active sensing
is not superior to choosing a pointing direction
randomly. Obviously none of the methods is able
to correctly determine the position of the robot,
which is due to the inability of the laser-range
finder to detect features breaking the symmetry
of the corridor. During this kind of experiments
we always observed two local maxima in the po-
sition probability distribution, one representing
the true location of the robot and one represent-
ing the position mirrored by180�.

In the final experiment the robot was allowed
to choose among both, ultrasound sensors and
laser-range finders. The result is depicted in Fig-
ure 9 (c). Here again, active sensing significantly
improves the efficiency of the localization pro-

cess. In addition to this, active sensing performs
much better when choosing from both sensors
(Figure 9 (c)) than when being restricted to only
one kind of sensor (Figure 9 (a) and Figure 9 (b)).
In order to estimate the certainty of the two ap-
proaches of being at the true location during this
class of experiments we summed up the proba-
bilities assigned to positions closer than 40 cm
to the true location of the robot. These probabil-
ities are depicted in Figure 10. As can be seen
here active sensing is certain of being at the true
location after less than 400 seconds. The random
strategy on the other hand is not able to uniquely
determine the position of the robot within the
scope of the experiment.
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Fig. 10. Probability assigned to correct position.

To shed light onto the question as to why active
localization performs significantly better than the
passive method we analyzed the sensor readings
that our active approach considered during local-
ization. The points depicted in Figure 11 have
been generated by storing the sensor measure-
ments considered for localization and plotting
their end points relative to the true position of
the robot at that time.
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(a)

(b)

Fig. 11. End points of actively selected (a)
ultrasound and (b) laser sensings.

Please note that the points in Figure 11 (a) and
Figure 11 (b) stem fromoneexperiment where
the robot was allowed to choose among both sen-
sors. Here the advantage of our method becomes
obvious: the less accurate ultrasound sensors are
only used to scan the box and its symmetric po-
sition (upper left cloud of points in Figure 11 (a))
in order to break the symmetry of the corridor.
In most other cases the laser sensors were pre-
ferred due to their higher accuracy (c.F. 11(b)).
This also explains why active sensing when us-
ing both sensors is significantly better than active
sensing when using only one kind of sensor: by
selecting the right kind of sensor our approach
combines the accuracy of the laser-range finder
with the ability of the ultrasound sensors to dis-
ambiguate the position estimation.

6 Conclusions

This paper advocates a new, active approach to
mobile robot localization. In active localization,
the robot controls its various effectors so as to
most efficiently localize itself. In essence, actions
are generated by maximizing the expected de-
crease of uncertainty, measured by entropy. This
basic principle has been applied to two active lo-
calization problems:active navigation, andac-
tive sensing. In the case of active navigation, ex-
pected costs are incorporated into the action se-
lection. Both approaches have been verified em-

pirically using our RWI B21 mobile robot.

The key results of the experimental comparison
are:

(1) The efficiency of localization is increased
when actions are selected by minimizing
entropy. This is the case for both active nav-
igation and active sensing. In some cases,
the active component enabled a robot to lo-
calize itself where the passive counterpart
failed.

(2) The relative advantage of active localization
is particularly large if the environment pos-
sesses relatively few features that enable a
robot to unambiguously determine its loca-
tion.

Despite these encouraging results, there are some
limitations that deserve future research. One of
the key limitations arises from the algorithmic
complexity of the entropy prediction (compare
Eq. (7)). While some algorithmic tricks made
the computation of entropy feasible within the
complexity bounds of our environment, more
research is needed to scale the approach to en-
vironments that are significantly larger (e.g.,
1000m�1000m). A second limitation arises
from the greediness of action selection. In prin-
ciple, the problem of optimal exploration is NP
hard, and there exist situations where greedy so-
lutions will fail. However, in none of our exper-
iments we ever observed that the robot was un-
able to localize itself using our greedy approach,
something that quite frequently happened with
the passive counterpart.
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